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Abstract

In this paper, we introduce a generic framework
for semi-supervised kernel learning. Given pair-
wise (dis-)similarity constraints, we learn a ker-
nel matrix over the data that respects the pro-
vided side-information as well as the local ge-
ometry of the data. Our framework is based
on metric learning methods, where we jointly
model the metric/kernel over the data along with
the underlying manifold. Furthermore, we show
that for some important parameterized forms of
the underlying manifold model, we can estimate
the model parameters and the kernel matrix ef-
ficiently. Our resulting algorithm is able to in-
corporate local geometry into the metric learning
task; at the same time it can handle a wide class
of constraints. Finally, our algorithm is fast and
scalable — unlike most of the existing methods, it
is able to exploit the low dimensional manifold
structure and does not require semi-definite pro-
gramming. We demonstrate wide applicability
and effectiveness of our framework by applying
to various machine learning tasks such as semi-
supervised classification, colored dimensionality
reduction, manifold alignment etc. On each of
the tasks our method performs competitively or
better than the respective state-of-the-art method.

1. Introduction
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is huge but the amount of supervision available is very lim-
ited. This necessitates semi-supervised methods for kerne
learning that also exploit the geometry of the data. Addi-
tionally, the side-information can be provided in a variety
of forms, e.g, labels, (dis-)similarity constraints, and click
through feedback. Thus, a generic framework is required
for semi-supervised kernel learning that is able to handle
different types of supervision, while exploiting the imisic
structure of the unsupervised data. Furthermore, thedearn
ing algorithm should be fast and scalable to handle large
volumes of data. While existing kernel learning algorithms
have been shown to perform well across various applica-
tions, most fail to satisfy some of these basic requirements

In this paper, we propose a framework for semi-supervised
kernel learning that is based on a generalization of exist-
ing work on metric learning (Davis et al., 2007; Wein-
berger et al., 2006; Globerson & Roweis, 2005), as well as
data-dependent kernels (Zhu et al., 2005; Sindhwani et al.,
2005). Metric learning provides a flexible method to learn
a task-dependent distance function (kernel) over the data
points using the provided distance constraints. Howetver, i
is critically dependent on the existing feature repregenta

or a pre-defined similarity function, and does not take into
account the manifold structure of the provided data. On
the other hand, data-dependent kernel learning approaches
exploit the intrinsic structure of the provided data, byt-ty
ically do not specialize to a given task.

Our framework incorporates the intrinsic structure in the
data, while learning a task-dependent kernel. Specifically
we jointly model a task-dependent kernel as well as a data-

Over the years, kernel methods have become an impogependent kernel that reflects the local geometry or mani-
tant tool in many machine learning tasks. Success of thesg|d structure of the data. We show that for some important
methods is critically dependent on selecting an apprapriatparameterizations of the set of data-dependent kernals, ou
kernel for the given task at hand using the provided sideformulation admits convexity, and the proposed optimiza-
information. To this end, there have been several recent agion algorithm efficiently learns an appropriate kerneldun
proaches to learn a kernel functiang, (Zhu et al., 2005;  tjon for the given task. Our algorithm is fast, scalable,dloe
Lanckriet et al., 2004; Davis et al., 2007; Ong et al., 2005).not involve semi-definite programming, and crucially, is
In most real-life applications, the volume of availableadat 2P!€ to exploit the low dimensional structure of the under-
lying manifold that is often present in real-world datasets

Appearing inProceedings of the6t" International Conference . . . .
on Machine LearningMontreal, Canada, 2009. Copyright 2009 OUr proposed framework is generic and can be easily tai-
by the author(s)/owner(s). lored for a variety of tasks. In this paper, we apply our



Geometry-aware Metric Learning

method to the task of classification (inductive and trans-3. Methodology
ductive setting), automatic model selection for standard_. ) d
kernel functions, and semi-supervised manifold learningC1Ven & set ofr points {z1, s, ..., z,} € R?, we seek
For each application, we empirically demonstrate that ouf Positive semi-definite kernel matriX that can be later

method can achieve comparable or better performance tha%ed'for various taske,g.classific.ation, retrie\(gl, etc. Our
the respective state-of-the-art. goal is two-fold: 1) use the provided supervision over the

data, 2) exploit the unlabeled or unsupervised data, i®., w
2. Previous Work want to learn a kernel that respects the underlying mani-

fold structure in the data while also incorporating the side
Existing kernel learning methods can be broadly dividedinformation provided. Previous kernel learning approache
into two categories. The first category includes primarilytypically handle this problem by learning a spectral ker-
task-dependent approaches, where the intrinsic struicture nel K = Y, a;v;v], where the vectors; are the low-
the data is assumed, and the goal is to maximally tune th&equency eigenvectors of the Laplacian of-&IN graph.
kernel to the provided side-information for the given task,However, constraining the eigenvectors to be unchanged
e.g, class labels for classification, must (cannot)-link con-severely restricts the class of kernels that can be learned.
straints for semi-supervised clustering. Prominent nmeho
include metric learning (Davis et al., 2007), multiple keirn
learning (Lanckriet et al., 2004), hyper-kernels (Ong et al
2005), hyper-parameter cross validation (Seeger, 2008
etc.

A contrasting task-dependent approach to kernel learning

is based on the metric learning paradigm, where the goal is
o learn a kerneK that is “close” to a pre-defined baseline
ernel K and satisfies the provided pairwise (or relative)

constraints that are specific to the task at hand. Formally,

The other category of kernel learning methods consist ofK is obtained by solving the following problem:

data-dependent approaches, which explicitly model the ge- .

ometry of the datag.g, underlying manifold structure. ming D(K, Ko), st K€K,

These methods appear in both unsupervised and senihereX is a convex set of kerndl’ that satisfy

supervised learning scenarios. For the unsupervised case, .

(Weinberger et al., 2004) proposed a method to recover the K+ Kj; —2K;; <u (i,7) € S,

underlying low dimensional manifold by learning a kernel Kii+ Kj; —2K;; > 1 (i,7) € D,

over it. More generally, (Bengio et al., 2004) show that a K >~ 0. (1)

large class of manifold learning methods are equivalent to

learning certain types of kernels. For the semi-supervisedh the aboveS is the given set of similar points) is the

setting, data-dependent kernels are used to enforce smootiven set of dis-similar points, and(-,-) is a distance

ness on a graph or a similar structure composed fbrmof function for comparing two kernel matrices. We will de-

the data. Like in the unsupervised case, the kernel capturé¥te the set of kernel that satisfy (1) as the set of task-

the manifold and/or cluster structure of the data, and afdependent kernel. Although flexible and effective for vari-

ter integrated a regularized classification model, often pr ous problems, this framework does not account for the un-

vides good generalization performance (Sindhwani et al.labeled data and their geometry. As a result, large amount
2005; Chapelle et al., 2003). of supervision is required to capture the intrinsic stroetu

_ __inthe data.
Our proposed method combines the two kernel learning

paradigms, thereby exploiting the geometry of the datdn this paper, we propose a geometry-aware metric learning
while retaining the task-specific feature. Related work in(G-ML) framework that combines both the data-dependent
this direction is limited and largely focuses on learningand task-dependent kernel learning approaches. Our model
parameters for a specific family of data-dependent kermaintains the flexibility of the metric learning based ap-
nels, e.g, spectral kernels (Zhu et al., 2005; Lafferty & Proach while exploiting the intrinsic structure in the data
Lebanon, 2005). In comparison, our method is based on and as we shall show later, engenders multiple competitive
non-parametric information-theoretic metric/kernelriea machine learning models.

ing method and is more flexible. Furthermore, existing ) )

methods are typically designed for a particular applicatio 3-1- Geometry-aware Metric Learning

only, e.g, sgmi-supervised classi.ficatiom and are not ablg this section, we describe our geometry-aware metric
to hgndle different type of constraints, such as distanne co learning (G-ML) model, where we learn the kerré] as
straints. In contrast, our proposed framework can handle e as the kernelM that explicitly exploits the intrinsic
variety of constraints and is applicable to various machingcture in the data through the optimization problem:

learning tasks (see Section 6). .
g{mj& D(K,M), st KekKk, MeM, (2)

where the seiM is a parametric set of kernels that capture
the intrinsic geometry of the labeled as well as unlabeled
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data andD(-, -) is a distance function over matrices. The
above optimization problem computes keraéthat satis-
fies task specific constraints (1) and is also close to kernel ;¢
M, thus incorporating data geometry into the kerlielsee ’
Figure 1). Later in the section, we give a few interesting ex-
amples of the seM.

Task—dependeﬁf"" oMy

Kernels

. . Data-dependent
A key component of our framework is the distance func- Kernels

tion D(K, M) that is being used. In this work, we

use the LogDet matrix divergence).q(K, M), as the  Figure 1.lllustration of G-ML. The shadowed polygon stands for
distance function, wherd (K, M) = tr(KM~') —  the feasible set of kernels specified by the task dependent pair-
logdet(KM~1) — n. The LogDet divergence is a Breg- wise constraints. The cone stands for data-dependent kernels that
man matrix divergence that is typically defined over posi-exploits the intrinsic geometry of the data. Using a fixk

tive definite matrices and its definition can be extended tovould lead to sub-optimal kernél’, while the joint optimization

the case when the range space of malfixs the same as (asin (2)) over both\/ and K leads to a better solutiok *.

that of M. Previously, (Davis et al., 2007) showed the effi-
cacy of LogDet as a matrix divergence for kernel learning,S€t: ,
and pointed out its equivalence to metric learning (called M=1{S—SU+TS)"'TS|T = ZQ'U'UT
information-theoretic metric learning, or ITML). —

?

Now, we give an important example of the getbased on 61 >--->60,.>0.} (5
spectral learning methods (Zhu et al., 2005) that captures ) ] . )

the underlying structure in the data. First, define a graphvheres is afixed given kernel and the vectarsare eigen-

G over the data points that captures local structure of data/ectors of the graph Laplaciaf This set generalizes the
e.g, ak-NN graph or are-ball graph. LetW be the adja- data-depe_zndent kernel propose_d by (Sindhwani et a_l., 2005)
cency matrix ofg, D be the degree matrix, be the graph by replacing the graph Laplacian with a more flexitile
Laplaciat L = D — W , andV = [v,vs,...,v,] be the ~ Note thatM given by (5) reduces ta1 given by (3) in

1 eigenvectors of., (typically r < n) corresponding to the the limit [[S~'|| — 0. This set of kernel is interesting in
smallest eigenvalues df: \; < --- < \,. Then, the set that, unlike most spectral kernels that are usually evatliat
M we consider is given by: in a transductive setting, the kernel value can be naturally

r extended to unseen samples as
— T
M— {Zaivi'vi |O£1 >a2>...>04r>0.} (3) M(a:,:v’):S(w,a:’)—S(:):,.)(I+TS)_1TS(.,:B')

where the order constraints, > ay > --- > a, > 0  As will be shown in Section 4, the se1 given by (3)
further ensure smoothness (the eigenveetds knownto  as well as (5) both lead to convex sub-problems for find-
be smoother thamn; , ;). ing T with fixed K. In general, the convexity holds if
{v1,- -, v, } are orthogonal, which allows us to extend our
model to other manifold learning models (Bengio et al.,
2004), such as Isomap or LLE. The s#&t can also be

For this particular choice aM, the kernelK is obtained
by solving the following optimization problem:

min Dya(K, M) adapted to perform automatic model selection gaper-
K,on,02,.0500 r vised learning for example we can tune the parameter for
stK ek, M=) awv], (4)  the RBF kernels by letting
a12a22--~22ar20. —x||?
M= {aexp<_”‘“ f]” ) a>00> 0}, (6)
Solving above problem yieldgy;, as, . . ., o, } in the cone 20

oy > ag > -+ >, > 0 and a feasible kernek that is
close toM = Y7 av;v] (see Figure 1). Slack variables
can be incorporated in our framework to ensure that the s
K is always feasible, even under noisy constraints.

wherea ando are parameters to be learned by G-ML.

%, Algorithm

_ In this section, we analyze properties of the proposed op-
3.2. Alternative M timization problem (4) and propose a fast and scalable al-

In the above subsection, we discussed an example! afs gorithm. First, note that although the constraints spetifie
a particular subset of spectral kernels. However our frameln (4) are all linear, the objective functiol,(K, M) is
work is general and depending on the application it can adfot jointly convex ink” and /. However, the problem can

mit other parametric sets also. For example, consider thB€ shown to be convex individually iR andM 1. Here
- and in the remainder of the paper, whenever the inverse of

\We can also use the normalized Laplacian D=2 WD~ 2. a matrix does not exist, we use its Moore-Penrose inverse.
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Algorithm 1 Geometry-aware Metric Learning(G-ML) Step B, to obtainay, as, . . ., a,., we solve the equivalent
Optimization procedure whet is given by (3)  optimization problem:

Input: X: inputd x n matrix,S: similarity constraints . T -1

P D: disp-similarity constraintsg?: in)i/tial a PR Sy} D“(Z Pirvivg, K7)
~: slack parameter,: number of eigenvectors !

Output: K, M St.B. > Br_1 225120,
;j % ;kgl\i-%:}elp)[r/](:)(%,:%;AEme matrix of G Whelreﬂi = 1/0414. This problem can also be solved usiqg
3 M=3" oz(-):v‘v-T R .CyC|IC.prOJECtI0n, where at egch ste_p the curre;nt solution
4 repeat A is p_ropcted onto one of the meqL_laI_lty constraints. Every
5 K —ITML(M, S, D, ~) [(Step A) projection step can be performed in j@3tk) operations.
6: «a = FindAlpha(K, vy, vs,...,v,) //(Step B) In summary, we have presented a highly scalable and easy
7. M=Y, qvv) to implement algorithm (Algorithm 1) for solving (4). Fur-
8: until convergence thermore, the objective function value achieved by our al-

gorithm is guaranteed to converge.
function a = FindAlpha(K, vy, ve,...,v;)

Cyclic projection method to solve (4) with fixed Alternative M As mentioned in Section 3.2, an alternate
1: o =v] Kv,1<i<r set M given by (5) induces an natural out-of-sample ex-
22v=0,i=0 tension. Although it is not further pursued in this paper,
3: repeat we would like to point out that, similar to (4), this alterna-
4 c=min(y;, (p1 — a;)/2) tive setM also leads to a convex optimization problem for
5 U=V —Coyy1 = Qipl — GO =+ ¢ computingM whenK is fixed.

6: i= mod (i+1,n) Lemma 2. AssumingK to be fixed, Probler#) is convex
7: until convergence ino.,0,...,0,.

Proof. Restricting the kernel function to the provided sam-

— —1 H
It is easy to see that on fixing/, the problem is strictly ~Ples, we getM = S — S(I + T'S) T'S. Using the
convex inK as Dyq(K, M) is known to be convex e~ Sherman-Morrison-Woodbury fOfEnUIM_ =57 +T.
(Davis et al., 2007). The following lemma shows that (4) NOW: Dea(£, M) is convex inM ™. Using the property

is also convex in the parametefs, 1 < i < r, whenK is that a functiory(z) = f(a + =) is convex if f is convex,
LU Dyqa(K, M) is convex inT. As T is a linear function of

fixed.

. . ) 0;,1 <i<r, Dy(K,M)is convexindy,--- ,0,. O
Lemma 1. AssumingK to be fixed, Problenfd) is convex . .
in B, = 1/a1, B = 1/as B, =1/ay. Using the above lemma, we can adapt Algorithm 1 to ob-

tain a suboptimal solution to (2) wheye! is given by (5).

Unlike the kernels in (3) and (5), the s&t given by (6)
does not admit a convex subprolem when fixikig How-
ever, since only two parameters are involved, we can still
adapt our alternative minimization framework to obtain a
reasonably efficient method for optimizing (2) using

Proof. SinceM ! = 37, Biv;v], wheres; = -, the fact
that Dyg(K, M) = Dyg(M~1, K—1) is convex inM~!
implies convexity ing;,Vi. Furthermore, the constraints
a1 > ap > -+ > «, > 0 can be equivalently written as a
set of linear constraintg,. > --- > (3, > 8; > 0. O

Now, we describe our proposed alternating minimizationSPecified in (6).
algorithm for solving (4). Our algorithm is based on in- 5 Discussion
dividual convexity of (4) w.r.tk and M. It iterates
by fixing M (or equivalentlya;, as, ..., «,) to solve for
K (denotedStep A), and then fixingK to solve for
a1, s, ..., (Step B). In Step A, to find K, we use the
cyclic projection algorithm where at each step we proje
the current solution onto one of the constraints. The pr

jection problem that needs to be solved at each step is: _
jection b P K=ol + Y 25(ei—ej)(ei—e;)”
7

5.1. Connection to Regularization Theory

Now, we present a regularization theory based interpreta-

tion of our methodology for estimating kern&l (Prob-
Cgem (4)). Using duality theory, it can be shown that the
ogeneral form of the solution to (4) is given by:

I’III}H D[d(K, Kt), s.t. Ki; + ij — QKZJ <u, (i,5)€S
i.e., projection w.r.t. single (dis-)similarity constn&i As - Z 75'(61‘ —ej)(ei — ej)T)71 (7)
shown in (Davis et al., 2007), the above problem can be (i,4)€D

solved in closed form using a one-rank updatdo Fur- . _ _
thermore, the update can be computed in {dgtk) oper-  With 45,77 > 0 and e; being the vector with the
ations, where- < n is the rank of the kernel/. Now in it entry one and rest zeros. Lgt : X — R be
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a real valued function over the feature space gnd=
[f(x1), f(x2), -, f(x,)]T, we then have

FTK =T (Z ;_Ui’UiT> F+Y v fi— 1)
it (i.)€S
= D= £H)? ®
(i,7)€D

semi-supervised case where the test/unlabeled points are
also part of the training. For both the cases, pairwise sim-
ilarity/dissimilarity constraints are obtained using {ive-
vided labels over the data, and th@earest neighbor clas-
sifier with the learned kerndt is used for predicting the la-
bels. In the supervised learning case, we apply G-ML to the
task of automatic model selection by learning the parame-
ters for the baseline kerndll. For semi-supervised learn-

where the first term addresses the overall smoothness 19 G-ML jointly learns the kernek and the eigenvalues

function f on the graph, while the last two terms mea-
sures the violation of pairwise constraints. Formulation
(8) generalizes the joint regularization framework pragubs
by (Sindhwani et al., 2005) to include non-positive defi-
nite term (dis-similarjty t.ernz i./)eD 75(]2 —f)? in_our
case) in the regularization, while the overall positive-def
initeness is still ensured either explicitly through aresth
constraint & > 0) or implicitly through the particular op-
timization algorithm (Bregman projection in our case).

5.2. Connection to Gaussian Processes(GP)

Next, we present an interesting connection of our metho
to that of GP based methods for estimating Let K =
O(X)®(X)T, where®(X) = [p(x1) p(x2) -+ d(a,)]”

ande(x;) € R™ is the feature space representation of point

x;. As in standard GP based methods, assume that each
the feature dimension af(x;)’s are jointly Gaussian with
mean0 and covariancé/ that needs to be estimated. Thus,
the likelihood of the data is given by:

L 1 T -1
(2m)n2 Mz P <_2 tr (2(X)" M @(X))) :

of the spectral kerneM, thereby taking into account the
geometry of the unlabeled data. Note that the optimization
step forM (step B) is similar to the kernel-target alignment
technique for selecting a spectral kernel (Zhu et al., 2005)
However, (Zhu et al., 2005) treat the kernel as a long vector,
while our method respects the two-dimensional structure
and positive definiteness of the matixX.

6.2. Manifold Learning

G-ML is applicable to semi-supervised manifold learning
where the task is to learn and exploit the underlying man-
ifold structure using the provided supervision (pairwise
dis-)similarity constraints). In particular, we apply M=

to the task of non-linear dimensionality reduction and man-
ifold alignment. In contrast to other metric learning meth-
ogs (Xing et al., 2002; Davis et al., 2007) that learns the
Metric over the ambient space, G-ML learns the matric
the manifold where{v;} are the approximate coordinates
of the data on the manifold (Belkin & Niyogi, 2003).

Colored Dimensionality Reduction Here we consider
the semi-supervised dimensionality reduction task where
we want to retain both the intrinsic manifold structure of

Itis easy to see that maximizing the above given likelihooddata and the (partial) label information. G-ML naturally

is equivalent to minimizingDq (K, M) with fixed K. As-
suming a parametric form fav/ = ", a;v;v!, GP based
spectral kernel learning is equivalent to learnifyusing

merges the two sources of information; the learned ker-
nel K incorporates the manifold structure (as expressed in
{«a;} and{wv;}) while reflecting the provided side informa-

our method. Furthermore, typical GP based methods uséon (expressed through constraints). Hence, the leading
one-rank target alignment kernkl = yy”, wherey, isthe ~ €igenvectors of should provide a better low-dimensional
label ofi-th point. In contrast, we use a more robust learnedepresentation of the data. In absence of any constraints,
kernel K that not only accounts for the labels, but also thethis dimension reduction model degenerates to Laplacian
similarity in the data points itself, i.e. our learned kdrie ~ Eigenmaps (Belkin & Niyogi, 2003). Furthermore, com-
is less likely to overfit to the provided labels and is appli- Pared to (Song et al., 2007), our model is able to learn a
cable to a wider class of problems where supervision neefore accurate embedding of the data (Figure 4).

not be in the form of labels. Manifold Alignment  Finally, we apply our method to
6. Applications the task of manifold alignment, where the goal is to align
In this section, we describe a few applications of ourpreviously disconnected (or weakly connected) manifolds
geometry-aware metric learning framework (G-ML) for according to some common property. For example, con-
kernel learning. Besides enhancing existing metric/Kernesider images of different objects under a particular transf
learning methods, our method also extends the applicatiofation,e.g. rotation, illumination, scaling etc, which will
of kernel learning to a few previously inapplicable tasks asform a low-dimensional manifold called Lie group. The
well, e.g., manifold learning tasks. goal is to estimate information about ttransformationof

the object in the image, rather than the object itself. We
6.1. Classification show that G-ML accurately represents the corresponding
First, we describe application of our method to the task ofLie group manifold by aligning the image manifold of dif-
classification in two scenarios: 1) supervised case wherérent objects under the same transformation (captured by a
the test points are unknown in the training phase, and 2jpint graph Laplacian). This alignment is achieved through
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iris wine gories: a) text classification: two standard subsets of 20-
" -G-MLGaussian) ¥ =-G-MLGaussian) newsgroup dataset, namelyaseball-hockey (1993 in-
s 250 stances/ 2 classes), apd-mac (1943/2). b) digit clas-
g g sification: two subsets of USPS digits datagetd-even
g B (4000/2) and ten digits (4000/10)Odd-even involves
L8 W classifying odd “1, 3, 5, 7, 9" vs. even “0, 2, 4, 6, 8” digits,
®  terations™ » ° ® lerations™ 1 while ten digits is the standard 10-way digit classification.
ionosphere scale . e
o 0 To form thek-NN graph, we use cosine similarity over tf-
et i o Lsaals idf representation for text classification datasets and -RBF
§35 £ kernel function over gray-scale pixel values for the digits
530 5% dataset. We compare G-MIE{NN classifier withk = 4)
ol | = with three state-of-the-art semi-supervised kernels: - non
" N 1 """""" ] parametric spectral kernel (Zhu et al., 2005), diffusior ke
neraions ° ° reratons”® ) nel (Kondor & Lafferty, 2002), and maximal-alignment

Figure 2.4-NN classification error via kernels learned using our - -
method (G-ML) and ITML (Davis et al., 2007). The data- kernel (Lanckriet et al., 2004). For all four semi-supeeds

dependent kernel/ is the RBF kernel. Clearly, G-ML is able learning models we use 10-NN unweighted graphs on all

to achieve competitive error rate while learning the kerel widthth€ datasets. The non-parametric spectral kernel uses the
for M, while ITML requires cross validation. first 200 eigenvectors (Zhu et al., 2005), whereras G-ML

uses the first 20 eigenvectors to folth For the three com-
learning the kernel by constraining a small subset of im- petitor semi-supervised kernels, we use support vector ma-
ages with similar transformations to have small distancechines (one-vs-all classification). We also compare agains
7 E . IR | three standard kernels: RBF kernel (bandwidth learned us-

- Experimental Results ing 5-fold cross validation), linear kernel, and quadratic

In this section, we evaluate our method for geometry-awargernel. We use the diffusion kern& = exp(—tL) with
metric learning (G-ML) on the applications mentioned in; — (.1 for initializing our alternating minimization algo-
the previous section. Specifically, we apply our methodrithm. Note that the various parameter values are set arbi-

to the task of classification, semi-supervised classificati  trarily without optimizing and do not give an unfair advan-
non-linear dimensionality reduction, and manifold align- tage to the proposed method.

ment. For each task we compare our method with the re-

spective state-of-the-art methods. We report the classification error of G-ML averaged over
30 random training/testing splits; the results of compgetin
7.1. Classification: Supervised Learning methods are from (Zhu et al., 2005). The first row of Fig-

First, we apply our G-ML framework to the task of clas- ure 3 compares error incurred by various methods on each
sification in a supervised learning scenario (Section 6.1)0f the four datasets, the second row shows the test error rate
For this task, we consider the feasible sdtfor M/ to be  at each iteration of G-ML using 30 labeled examples (ex-
scaled Gaussian RBF kernels with unknown sealend  cept for 10 digits dataset where we use 50 examples), while
kernel widthe, as in (6). Unlike the spectral kernel case, the third row shows the same for 70 labeled examples (100
the sub-problem for finding ando is non-convex and alo- examples for 10 digits). Clearly, on all the four data sets,
cal optimum for the non-convex subproblem is found with G-ML gives comparable or better performance than state-
conjugate gradient descent (Matlab functforinsearch).  of-the-art semi-supervised learning algorithms and $igni
The resultingK is then used fok-NN classification. We ~ cantly outperforms the supervised learning algorithms.
evaluate our method (G-ML) on four standard UCI dataset57 3. Colored Di ionality Reducti

(iris, wine, balance-scale andionosphere). For each 3. Colored Dimensionality Reduction ) .
dataset we us0 points for training and the rest for test- Next, we apply our method to the task of semi-supervised
ing. Figure 2 compare$-NN classification error incurred Non-linear dimensionality reduction. ~We evaluate our
by our method to that of the state-of-the-art ITML method Method on standard USPS digits dataset, and compare it
(Davis et al., 2007). For ITML, the kernel width of Gaus- Fo the state-of-the-art colored Maximum Vanance.UnfoId-
sian RBF M is selected using leave-one-out cross validaNd (colored MVU) (Song et al., 2007) method which also
tion. Clearly, G-ML is able to automatically select a good performs dimensionality reduction for I'abelled data. We
kernel width, while ITML requires slower cross validation &S0 compare our method to ITML (Davis et al., 2007) that

to obtain a similar width parameter. does not take the local geometry into account and Lapla-
cian Eigenmaps (Belkin & Niyogi, 2003) that does not ex-
7.2. Classification: Semi-supervised Learning ploit the label information. For visualization, we reduce

Next, we evaluate our method for classification in thethe dimensionality of the data to two and plot each of the 10
semi-supervised setting (Section 6.1). We evaluate ouglasses of digits with different color (Figure 4). For thepr
method on four datasets that fall in two broad cate-posed G-ML method, we use 200 samples to generate the
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Figure 3.Top row: Classification error for various methods on four standard datasets different number of labeled samples. Note
that G-ML consistently performs comparably or better than the best sgpervised learning methods and significantly outperforms the
supervised learning methodgliddle Row andBottom row: Classification error rate with 30 labeled samples and 70 labeled data (50,
100 for 10 digits) as the number of iterations increase. In both the caddéis i@ proves over the initial (diffusion) kernel .

G-ML colored MVU (Song et al., 2007) ITML (Davis et al., 200ZE (Belkin & Niyogi, 2003)

7

Figure 4. Two dimensional embedding of 2007 USPS digits using different methGdtor of the dots represents different classes of
digits (color coding is provided in the top row). We observe that comptrasther methods, our method separates the respective
manifolds of different digits more accurateé/g.digit 4. (Better viewed in color)

pairwise constraints, while colored MVU is supplied with ding of the images using Laplacian Eigenmaps (Belkin &
all the labels. Note that other than digit 5, G-ML is able to Niyogi, 2003), proposed G-ML method at various itera-
separate manifolds of all the digits in the two-dimensionaltions, and ITML method with RBF kernel as the baseline
embedding. In contrast, colored MVU is unable to clearlykernel (Davis et al., 2007). We observe that G-ML is able
separate manifolds of digits 4, 5, 8, and 2 while using mordgo capture the manifold structure of the Lie group and suc-
labels than the proposed G-ML method. cessfully align them within five iterations. Next, we apply

) ] our method to the task of illumination estimation, where
7.4. Manifold Alignment the goal is to retrieve the image with the most similar illu-
In this experiment, we evaluate our method for the taskmination to the given query image. As shown in the middle
of manifold alignment (Section 6.2) on two datasets, eachow of Figure 5, G-ML is able to accurately retrieve sim-
associated with a different type of transformation. Thejlar illumination images irrespective of the identity ofeth
first dataset consists of images of two subjects sampleg@erson. The ITML method, which does not capture the lo-
from the Yale face B dataset, each with 64 different il- cg| geometry of the unsupervised data, is unable to a|ign
lumination conditions (varying angles of two illumination the data points w.r.t. the illumination transform and hence
sources). Note that the images of each of the subjects lie afinable to accurately retrieve similar illumination images
an arbitrary oriented two-dimensional manifold. In order , _ ) ) ,
to align the two manifolds, we randomly sample 10 must-10 give a quantltatlye gvaluatlon of manifold alignment, we
links for the images with the same illumination conditions. /S0 performed a similar experiment on a subset of COIL-
The top row of Figure 5 shows three-dimensional embed20 data datasets, which contains images of three subjects

with different degree of rotation (72 points uniformly sam-
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Figure 5Manifold alignment results (Yale FaceJop Row: 3-dimensional embedding of the images of two subjects with different
illumination. Middle Row: the retrieval result for two queries based on kernel learned usind-GBldttom Row: the retrieval result

for the same two queries using ITML kernel. We observe that G-ML is ableapture the local geometry of the manifold, which
is further confirmed by the illumination retrieval results, where unlike ITMB-ML is able to retrieve similar illumination images
irrespective of the subject. (Better viewed in color)
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