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Abstract

The k q-flats algorithm is a generalization of
the popular k-means algorithm where q di-
mensional best fit affine sets replace centroids
as the cluster prototypes. In this work, a
modification of the k q-flats framework for
pattern classification is introduced. The ba-
sic idea is to replace the original reconstruc-
tion only energy, which is optimized to obtain
the k affine spaces, by a new energy that in-
corporates discriminative terms. This way,
the actual classification task is introduced as
part of the design and optimization. The pre-
sentation of the proposed framework is com-
plemented with experimental results, show-
ing that the method is computationally very
efficient and gives excellent results on stan-
dard supervised learning benchmarks.

1. Introduction

The k q-flats algorithm, (Kambhatla & Leen, 1993;
Bradley & Mangasarian, 1998; Tseng, 2000; Cappelli
et al., 2001), is a generalization of the k-means algo-
rithm where we consider q-dimensional affine spaces
(“flats”) instead of points as prototypes. Thus, given
a set of n points X ⊂ Rd, we wish to find k q-
dimensional flats {F1, . . . , Fk} and a partition of X
into {K1, . . . , Kk}, minimizing the energy

k∑

j=1

∑

x∈Kj

||x − PFj x||2, (1)

where PFj x is the projection of the point x onto the
affine space Fj . The minimization can be done using
Lloyd’s algorithm (EM):
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• Initialize flats Fj , randomly or otherwise.

• Partition X into sets Kj by assigning each x to

arg min
j

||x − Fj ||.

• Update the Fj by finding the L2 best fit affine
q-flat through the points in Kj.

• Repeat until convergence.

Just as for k-means, the Lloyd algorithm is guaranteed
to converge to a local minimum.

In this paper we propose to learn q-flats in a supervised
fashion, and modify energy (1) to include the task of
classification. Before that, we proceed to present the
interesting connection of k q-flats with sparse model-
ing and piecewise manifold approximation, and discuss
the introduction of supervised learning in these ap-
proaches, further motivating our proposed framework.

1.1. k q-flats and sparse representation

Many signal processing problems are attacked using
transform coding, which leverages the sparsity of the
signals of interest, perhaps images or audio, in special
bases, such as wavelets. In recent years, attention has
been focused on adaptively choosing a basis so that a
given class of signals has sparse coordinates. If such a
basis can be found, the classical signal processing tech-
niques can be applied even though the signals under
study are not well represented by the classical basis
functions.

A standard version of the sparse representation prob-
lem goes as follows: given n vectors x ∈ Rd, which we
consider as columns of a d × n matrix denoted by X ,
find an d × l basis B (again written as columns) and
l × n matrix of coefficients R minimizing the error

||BR − X ||FRO (2)
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given that

||Ri||0 ≤ q, (3)

where || · ||FRO is the Frobenious norm on matrices,
i.e. L2 on the matrix considered as a vector, Ri is the
ith column of R, and || · ||0 is the L0 pseudo-norm, i.e.
the number of nonzero entries. Several authors have
noticed that the sparse representation problem is very
closely related to the clustering problem, for example
see (Tropp, 2004). In fact, if one restricts the entries
of R to be either zeros or ones, and sets q = 1, the
problem as written above is exactly k-means (Aharon
et al., 2006). If we consider only q flats passing through
the origin1, the k-q-flats algorithm is an attempt at a
minimizing (2) subject to (3) and an additional con-
straint forcing R to have a block structure. Each block
corresponds to a Kj, as the elements in Kj are only
allowed coefficients using basis elements in Fj ; in this
case, the number of atoms in B satisfies l = kq.

1.2. Piecewise linear manifold approximation

A recent trend in machine learning has been to use
the fact that data often has an intrinsic dimensionality
which is far smaller than the dimension of the ambi-
ent space in which it is presented. One often speaks
of the data lying on a low dimensional manifold. A
salient feature of a set with manifold structure is that
it should be locally well approximated by affine spaces,
namely the tangent spaces. If we know that there is
some good approximation of the set by affine spaces, it
makes sense to try to find the best one given some in-
formation theoretic constraints. This is exactly the k
q-flats construction; the k (number of planes) and the
q (dimension of each plane) serve as bounds on the ca-
pacity, and “best” is interpreted in the sense of mean
square distance from the approximating secant planes.
From this perspective, the construction can be consid-
ered to perform a locally linear dimension reductions,
where the neighborhoods are chosen jointly with the
projections so that the distortion from the projections
are as small as possible.

Thus the k q-flats construction can be thought of as a
method of building adapted dictionaries, which gives a
notion of the distance from a point to set of points in
such a way that meaningful information is abstracted;
and of finding a best piecewise approximation to a
data manifold, and so parameterizing a given data
set. It thus sits in the intersection of the frameworks

1While this seems to be a big restriction, any q dimen-
sional affine set is contained in a q + 1 dimensional linear
subspace, and so one often does not loose too much intu-
ition by thinking of the Fj as actual subspaces, especially
when the ambient dimension is larger

of sparse representation and manifold learning (for a
nice look at the interplay between these sets of ideas,
see (Wakin, 2006)), two of the most successful signal
processing paradigms in recent years. In this article
we will demonstrate the k q-flats utility for supervised
learning and show how it can be modified to better
serve this purpose.

1.3. Sparse representation and q-flats for
classification

If we have a supervised learning problem where the
classes are expected to have fundamentally different
representations, we can consider using the k q-flats
algorithm for classification by training a dictionary of
planes for each class. Given the set X ⊂ Rd consisting
of n points with labels 1, ..., m (i.e., a partition of X
into m subsets C1, ..., Cm), the simplest supervised k-q
flats algorithm (Cappelli et al., 2001) associates planes
Fij to the sets Kij minimizing the energy

m∑

i=1

k∑

j=1

∑

x∈Kij

||x − PFij x||2. (4)

Here, for a fixed i, the sets Kij , where j ∈ {1, 2, ..., k},
form a partition of Ci. Given a new point to classify,
we assign it to the class associated to its nearest flat.

There are many instances where different classes can
be expected to have different representations, for ex-
ample, sets of patches of different textures in images
and sets of short clips of different musical instruments.
In general, as mentioned above, one might expect
“manifold” type data to be well approximated by the
k-q-flats algorithm, as it would be searching for an
optimal set of k secant planes, given a bound on the
capacity q of each of the planes. The key here for
classification is of course that the different classes are
compressible in different dictionaries, not just that the
data as a whole is compressible. To illustrate what
could go wrong, consider the simplest example of man-
ifold like data, say a line in Rd, and a two class prob-
lem, say everything on one side of the line is class one,
and on the other is class two. This would be a serious
challenge for the above mentioned supervised k q-flats.
However, while in low dimensions we imagine planes
as intersecting, in high dimensions the vast amount of
space makes this unlikely, and thus situations as this
one should be unusual; it is simply a result of the data
being linearly embeddable in a very low dimensional
space.

In contrast, the digit1 data set from (Chapelle et al.,
2006), which consists of various images of the numeral
one at different angles, jittered, and noised, and has
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classes determined by the angular variable (positive
angle is class one, and negative angle is class two), is a
much more realistic example of what data parameter-
ized by a single variable looks like. Although topologi-
cally it is identical to the previous example, as a func-
tion of angle, the curve traces out a “Hilbert spiral,”
that is, each “tangent” line points in a new direction.
In particular, the best fit 1-flats passing through dif-
ferent pieces of the set do not intersect, and the angle
of the 1 is correlated with the local best fit directions.
In many interesting situations, we may even expect
the different classes to be concentrated about different
manifolds. In fact, experimentally, the supervised k q-
flats gives excellent classification results on many data
sets, especially relative to its speed and the simplicity
of the approach (the entire code can be written in just
a few lines in Matlab).

However, there is much room for improvement
over reconstruction-only dictionaries for classification
tasks, as shown for example for the case of sparse mod-
eling in (Mairal et al., 2008). The basic k q-flats al-
gorithm is representational: it does not try to explic-
itly encode the differences between the classes. In this
work we will rectify this by changing the energy func-
tional (4) to punish configurations of the flats passing
through one class that get too close to points in an-
other class. The idea is to get flats that represent
one class well, but the other classes poorly. In ad-
dition to changing the energy functional to make the
k q-flats framework discriminative, we generalize the
affine spaces that are the class representatives in the
k q-flats method, which can be thought of as very
simple positive semi-definite matrices, to Mahalanobis
metrics. We experimentally demonstrate that these
changes greatly improve the classification accuracy of
the method, and in fact lead to a computationally very
efficient classifier with state of the art performance on
several standard learning benchmarks.

2. A discriminative k q-metrics
framework

The energy in Equation (4) does not explicitly see any
information about the differences between the classes;
it strictly measures representation errors. If we want
to use flats for classification, we should modify this
energy so that it penalizes a flat associated to a given
class being too close to points from another class.

We will do this; however we also generalize the pro-
totype we associate to a set of points from a flat to a
positive semidefinite matrix A, or a Mahalanobis met-

ric. If x, y ∈ Rd, a Mahalanobis metric modifies

||x − y||2 = (x − y)T (x − y)

to
||x − y||2A = (x − y)T A(x − y),

where A is a positive semi-definite d × d matrix. The
distance associated to A linearly crushes some direc-
tions more than others. Note that projecting onto a
flat F passing through the origin is a very simple choice
of A, namely A = PF . Several recent papers have
studied methods for finding Mahalanobis metrics to
improve classification by k-nn; see (Weinberger et al.,
2006; Davis et al., 2007; Xing et al., 2003) and the
references therein.

In this work the metrics will be used as representatives
for sets of points rather than a means of comparing
single points with each other directly, as in the papers
mentioned above. We use metrics instead of flats for
two reasons. The first is that it allows a more flex-
ible and richer set of classifiers. The second is that
the constraint that all the eigenvalues of A are one or
zero (as they would be if A = PF is computationally
burdensome in our framework.

If we restrict ourselves to the situation where the flats
are constrained to pass through the origin (the k-
subspaces algorithm), the square distance of a point
x to a plane F is given by

||x − PF x||2 = ||x − FT Fx||2

= ||x||2 − ||Fx||2,

where here and for the rest of this article, we abuse
notation and allow F to refer to both the q-plane and
a set of q vectors spanning the q-plane written as rows.
Because the norm of each x is fixed, minimizing energy
(4) is equivalent to minimizing

m∑

i=1

k∑

j=1

∑

x∈Kij

−||Fijx||2.

This motivates us to consider energies of the following
form:

E(K,F) = (5)

m∑

i=1

k∑

j=1




∑

x∈Kij

g1(||Fijx||2) +
∑

x/∈Ci

g2(||Fijx||2)



 ,

where Ki,· is a partition of class i, K = {Kij} is the
collection of all these sets, Fi,j is the set of basis vectors
associated to Kij , and F = {Fij} is the collection of
all these vectors. We will not force the elements of an
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Fi,j to be orthogonal, and since ||Fx||2 is the norm of
x in the Mahalanobis metric given by A = FT F , “k-
subspaces” is replaced by discriminative “k-metrics”.

We will choose g1 to be large when its argument is
small, penalizing for points far away from their class
representative, and g2 to be large when its argument
is large, penalizing points too close to other classes’
representatives. If {K,F} has small energy, each Fij

well represents points in Kij , but poorly represents
points in other classes. More specifically, for the rest
of this paper, we will set

g1(z) = α1 [(µ1 − z)+]2 ,

and
g2(z) = α2 [(z − µ2)+]2 ,

where

a+ :=
{

a a > 0
0 otherwise,

and µ (the margins) and (α1, α2) are parameters. Al-
though the exact shape of gi does not seem to be cru-
cial, some form of margin seems to be important, as
does the gi tapering to 0 at the margins.

If the F were orthonormalized to actually be sub-
spaces, the use of planes and the margin in the energy 5
recalls SVM’s. However, in this framework, the planes
in question are not separating hyperplanes between
classes; rather, they are exemplars of a class, chosen
so that the distance from a class to its set of planes is as
small as possible, while keeping those planes far away
from the other classes. For planes (in general position)
of dimension greater than one in ambient dimension
larger than three, the decision boundaries are not lin-
ear, or even piecewise linear. On the other hand, in the
zero dimensional “affine” case, where the Fij are just
points, and the algorithm is a discriminative version of
k-means, the decision boundaries are piecewise linear.
In this special case, the F can be considered a conve-
nient device for parameterizing the decision boundary
of an SVM-like classifier where the margin is specified
in advance, rather than optimized.

From the viewpoint presented in Section 1.1, the dis-
criminative k-metrics framework can be though of as
a method of building adapted dictionaries, where the
analysis coefficients of a signal in a given dictionary are
large if the signal is associated with that dictionary,
and are forced to be small otherwise. Interpreted as
in 1.2, the frameworks is that of locally linear (soft)
dimension reduction (to Rq). Rather than trying to
minimize distortion, at each of the k clusters assigned
to a class Ci, we wish for the points in that cluster
be kept far from the origin, and points not in Ci to

be kept close to the origin. The clusters are learned
simultaneously with the mappings, and the dimension
reduction is “soft” because we use metrics instead of
flats.

Finally, we emphasize to the reader the difference
between the approach introduced here and the met-
ric learning approach mentioned earlier: we are not
searching for Aij so that points in different classes
are far from each other and points in the same class
are close, but rather we want Aij so that the norm of
points in Ci belonging to Kij is large with respect to
Aij , and the norm with respect to Aij of points in Cr,
r &= i, is small. In particular, our Aij will not keep
points in the same class or even points in Kij close
together. Instead, as in the simple supervised k q-flats
method, we take an abstraction of a number of points
and collect them into a larger object that test points
can be measured against; before it was an affine set,
now it is a Mahalanobis metric.

3. Computing the discriminative k
q-metrics

To minimize the functional 5, we use a stochastic gra-
dient descent. The gradient of the energy with respect
to a metric Fij is given by:

∂

∂Fij




∑

x∈Kij

g1(||Fijx||2) +
∑

x/∈Ci

g2(||Fijx||2)





=
∑

x∈Kij

2g′1(||Fijx||2)FijxxT +
∑

x/∈Ci

2g′2(||Fix||2)FijxxT .

In all the experiments below, we fix a time step dt = .1,
α1 = 2, and, α2 = 1. We sequentially pass through
each x in the dataset, updating all the Fij as follows:

• Calculate the norm of x in each Fij .

• Place x ∈ Kixjx , where jx maximizes ||Fix·||2.

• If ||Fixjxx||2 < µ1, Fixjx '−→ Fixjx + dt ·(
µ1 − ||Fixjxx||2

)
· FixjxxxT .

• If for some i &= ix, and some j, ||Fijx||2 > µ2,
Fij '→ Fi,j + dt ·

(
µ2 − ||Fijx||2

)
· FijxxT .

• Get the next x from the random order, and repeat.

We always initialize using the (representational only)
k-subspaces algorithm, which is itself initialized taking
neighborhoods of random points.

For each x, the computational complexity of the above
algorithm is at worst O(dkqm) operations, where the
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data lies in d-dimensional space. The cost comes from
the time it takes to compute the square norms of x
in each of the metrics, which requires multiplying a
d vector by a q × d matrix, and then squaring and
summing, and the time it takes to update each metric,
which requires multiplying x by the q× 1 result of the
matrix-vector multiplication above, scaling, and then
adding to each of the affected metrics. This needs to
be done for km metrics. If there are n points, and we
make p passes through the points, the total cost (not
including the initialization) would be O(npdkqm) op-
erations. In all of the experiments below, we obtained
good results before 20 passes through the data. The
memory cost here is only the metrics themselves; the
algorithm as described is “online” in the sense that the
data does not need to be stored in memory.2

Note that although the optimal F for a given problem
will each represent the points in a given class well, and
the points in the other classes not so well, the set of F
for some class are independent of the F for a different
class, so that we may work on the set of F for each
class separately, leading to a trivially parallelized ver-
sion of the algorithm. It could further be parallelized
by sending the computations dependent on different x
to different cores, but here the shared memory man-
agement would have to be more sophisticated, because
each computation on each core would need to access
the metrics as they have been updated by other points.

4. Experimental results

We first test the proposed discriminative k q-
metrics algorithm on three standard machine learning
datasets:

• The MNIST digits, consisting of 70000 28 × 28
images of handwritten digits divided into 60000
training examples and 10000 test examples. The
data is preprocessed by projection onto the first
50 principal components.

• The 20-newsgroups dataset, consisting of 18477
documents from one of 20 newsgroups represented
by its binary term document matrix, with a vo-
cabulary of the 5000 most common words, as in

2In fact, the descent we use in the experiments is “semi
stochastic” in order to speed up Matlab computations. Be-
fore each pass through the data, all the distances are com-
puted, and then the points found to violate the margins
at the beginning of the pass are used in the normal way.
This allows most of the distance computations to be vec-
torized, and does not hurt classification accuracy. On the
other hand, we must store in memory all of the distances
to all of the metrics, and at least after each pass, the data
points.

Table 1. Summary of results on benchmark datasets. The
row marked k q-metrics shows the average errors over 25
runs and over over passes 20 through 40. The row marked
k q-metrics (m) is the same, but with the majority of 5
classifier. In each case, the parameters are determined by
the automatic model selection process as above. The super-
vised k q-flats error is with the best manual choice of k and
q (no model selection). The SVM results for ISOLET are
taken from (Weinberger et al., 2006), and for the 20 news-
groups and MNIST from (Larochelle & Bengio, 2008). All
errors in percent.

MNIST 20 newsgroups Isolet
k q-met. (m) 1.15 24.0 3.4

k q-met. 1.36 24.0 3.5
k q-flats 1.6 33.1 4.3
SVM 1.4 30 3.3

(Larochelle & Bengio, 2008). The data is divided
into the standard 7505/11269 test/train split.

• The ISOLET datset, consiting of 200 speakers
saying each letter of the alphabet twice. 617 au-
dio features have been extracted from each sam-
ple. The data is divided into a standard training
set of the first 150 speakers, and a test set of the
last 50.

All three datasets are projected onto the unit sphere.

From each data set, we extract the last 20% of the
training points as a validation set for model selection.
More specifically, for each data set, we choose k from
{1, 2, 4, 8, 16}, q from {20, 40, 80, 160}, and (µ1, µ2)
from {(1.05, .95), (1.1, .9), (1.2, .8), (1.4, .6)}, by train-
ing a classifier for 40 passes through the first 80% of the
training data with each of the combinations of param-
eters, and then choose parameters by the performance
of the classifier on the held out 20% of the training
data. We fix α1 = 2, α2 = 1, and set the descent
timestep equal to .1 for all the data sets.

Figures 1, 2, and 3 display the results of running the
algorithm on the various datasets with the parameters
chosen as above. In each of the figures, the blue curve
is the average error on the test set over 25 runs at a
given number of passes through the training set, with
each mark on the x axis corresponding to one pass. We
noticed that it is always better to take a vote amongst
sets of F generated by restarting the algorithm. The
red curve is the average majority vote of five restarts.
Note that while the majority vote is always better, for
MNIST it is much better, while for ISOLET and 20
newsgroups it is only marginally better. This is be-
cause for the latter two data sets k was 1. Because we
initialize the F ’s for a given class with the k-subspace
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Figure 1. Misclassification on the 20 newsgroups dataset,
split into 7505/11269 test/train. Each mark on the x axis
corresponds to one pass through the training set, while the
y axis represents the classification error. The blue curve
represents the proposed algorithm, averaged over 25 runs,
and the red is the average majority of five classifiers deci-
sion. Here k = 1, q = 160, µ1 = 1.4, and µ2 = .6. SVM
misclassification (taken from (Larochelle & Bengio, 2008))
is .3.; their best result is .238.4The entire x axis takes 820
seconds for the blue curve, and 5 · 820 seconds for the red
curve.

algorithm, if k is 1, then the initial F for each class
is simply the principal vectors of the points in that
class. In particular, each restart begins with the same
initialization, and so they are not so independent.

In the case of Isolet, the classification error of the algo-
rithm approaches but does not surpass that of SVM’s;
on the other two data sets, the results are better than
SVM. See Table 1 for a recap of the results.

4.1. Graz bikes

We also tested our approach on the Graz Bikes data
set, located at http://www.emt.tugraz.at/~pinz/

4We use a vocabulary of 5000 words to better compare
with (Larochelle & Bengio, 2008), which could not use the
sparsity of the data. If we run our algorithm on the dataset
with a 30000 word vocabulary (but still the same binary
term document data unnormalized except for projection
onto the sphere), we achieve an error of .216, and the train-
ing time only increases to 900 seconds for 40 passes through
the data.

Figure 2. Misclassification on the MNIST dataset, with
the standard 10000/60000 test/train split. Each mark
on the x axis corresponds to one pass through the train-
ing set, while the y axis represents the classification er-
ror. The blue curve represents the proposed algorithm,
averaged over 25 runs, and the red is the average ma-
jority of five classifiers decision. Here k = 8, q = 20,
µ1 = 1.05, and µ2 = .95. For comparison, SVM misclas-
sification rate is .014 without image dependent regulariza-
tion, (see http: // yann. lecun. com/ exdb/ mnist/ ) The
entire x axis takes just over 300 seconds for the blue curve,
and 5 · 300 seconds for the red curve.

data/GRAZ_02/. The Graz data set consists of
640x480 or 480x640 pictures of bikes, cars, and per-
sons in various enviornments. The data set has 300
images of each of the three classes, and 300 additional
“background” images with none of the other objects.
The bikes vs. none pixelwise classification problem
has appeared in several articles, for example (Panto-
faru et al., 2006; Tuytelaars & Schmid, 2007). Given
a pixel from one of the bikes and background images,
the problem is to determine whether or not it is in
a bike using only local information. Each bike image
has been segmented into bike and background, but fol-
lowing the above references, we use the ground truth
segmentations only for testing. We subsample the im-
ages by 4, and to build the training set, we randomly
extract 150000 9 × 9 patches from the odd images la-
beled bike, and 150000 patches from the odd images
labeled background (again, we do not use the pixel-
wise ground truth segmentations, so the majority of
the “bike” patches are not actually from bikes). All
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Figure 3. Misclassification on the ISOLET dataset, with
the standard 25%/75% test/train split. Each mark on the x
axis corresponds to one pass through the training set, while
the y axis represents the classification error. The blue curve
represents the proposed algorithm, averaged over 25 runs,
and the red is the average majority of five classifiers deci-
sion. Here k = 1, q = 20, µ1 = 1.1, and µ2 = .9. SVM
misclassification (taken from (Weinberger et al., 2006)) is
.033. The entire x axis takes 23 seconds for the blue curve,
and 5 · 23 seconds for the red curve.

the patches are projected onto the unit sphere in 243
(rgb times 81) dimensional space.

We train an 80 dimensional discriminative dictionary
i.e. k = 1 and q = 80) on each of the sets of patches
with µ1 = 1.05 and µ1 = .95. To test an image, we cal-
culate the square norms of all of the patches in the im-
age in the two dictionaries, giving us two scalar func-
tions, which are then smoothed with a box filter. In
Figure 4 we show the precision-recall curve obtained,
where the errors are measured using the ground truth
pixelwise segmentation over all the patches 9 pixels or
further from the image boundary in all the even num-
bered images. Our results are better than either of
(Pantofaru et al., 2006; Tuytelaars & Schmid, 2007),
except at the low recall high precision section of the
curve, even though they used image specific tools and
feature extractors (SIFT, etc).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4. Precision-recall curve for the Graz bikes vs back-
ground pixelwise classification. Blue is the proposed
method, red dashed is the method in (Tuytelaars & Schmid,
2007), and green dashed is the method in (Pantofaru et al.,
2006).

5. Conclusions and future work

This article presented a discriminative version of the
k-q flats algorithm for supervised classification prob-
lems. This method gives state of the art error rates on
some standard benchmarks, and is fast enough to be
reasonably applied to datasets with hundreds of thou-
sands of points in hundreds of dimensions on a desktop
computer.

However, there is still much to be done. For exam-
ple, the algorithm presented for minimizing energy 5
is relatively primitive, and could be greatly sped-up
with some care. Following the analogy with SVM’s,
the margin α in the energy should be optimized for
the data rather than taken as a parameter. Kerneliza-
tion could possibly be useful. Finally, we are currently
developing a semi-supervised version of the proposed
framework. Due to the computational efficiency of the
algorithm, this will open the door to the use of very
large available datasets, such as image collections from
flickr.com.
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