
Blockwise Coordinate Descent Procedures for the Multi-task Lasso,
with Applications to Neural Semantic Basis Discovery

Han Liu hanliu@cs.cmu.edu

Machine Learning Department, School of Computer Science, Carnegie Mellon University, PA 15213 USA

Mark Palatucci mpalatuc@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 USA

Jian Zhang jianzhan@stat.purdue.edu

Department of Statistics, Purdue University, 250 N. University St., West Lafayette, IN, 47907 USA

Abstract

We develop a cyclical blockwise coordinate
descent algorithm for the multi-task Lasso
that efficiently solves problems with thou-
sands of features and tasks. The main result
shows that a closed-form Winsorization op-
erator can be obtained for the sup-norm pe-
nalized least squares regression. This allows
the algorithm to find solutions to very large-
scale problems far more efficiently than ex-
isting methods. This result complements the
pioneering work of Friedman, et al. (2007)
for the single-task Lasso. As a case study, we
use the multi-task Lasso as a variable selec-
tor to discover a semantic basis for predict-
ing human neural activation. The learned
solution outperforms the standard basis for
this task on the majority of test participants,
while requiring far fewer assumptions about
cognitive neuroscience. We demonstrate how
this learned basis can yield insights into how
the brain represents the meanings of words.

1. Introduction

The cyclical coordinate descent algorithm has been
proposed to solve the `1-regularized least squares re-
gression (or the Lasso) almost ten years ago (Fu, 1998),
but not until very recently was their power fully appre-
ciated (Friedman et al., 2007; Wu & Lange, 2008). In
particular, Friedman et al.(2007) show that the coor-
dinate descent method, if implemented appropriately,

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

can be used to evaluate the entire regularization path
remarkably faster than almost all the existing state-
of-the-art methods. The main reasons for such a sur-
prising performance of the coordinate descent algo-
rithm can be summarized as: (i) During each itera-
tion, the coordinate-wise update can be written as a
closed-form soft-thresholding operator, thus an inner
loop is avoided; (ii) If the underlying feature vector is
very sparse, the soft-thresholding operator can very ef-
ficiently detect the zeros by a simple check, thus only a
small number of updates are needed. (iii) Many com-
putational tricks, like the covariance update or warm
start, can be easily incorporated into the coordinate
descent procedure (Friedman et al., 2008).

In this paper, we consider the computational aspect of
the multi-task Lasso (Zhang, 2006), which generalizes
the Lasso to the multi-task setting by replacing the
`1-norm regularization with the sum of sup-norm reg-
ularization. A scalable cyclical blockwise coordinate
descent algorithm is designed which can evaluate the
entire regularization path efficiently. In particular, we
show that the sub-problem within each iteration can
be very efficiently solved by aWinsorization operator,1

i.e. a proportion of the extreme values of the given vec-
tor are truncated while the others remain the same.
This extends the result of (Friedman et al., 2007) to
the multi-task setting. A similar result also appeared
in (Fornasier & Rauhut, 2008) under the more general
linear inverse problem framework.

The main contribution of this work is that we formu-
late a non-trivial learning task from the cognitive neu-
roscience community into a multi-task Lasso problem

1After Charles P. Winsor, whom John Tukey credited
with converting him from topology to statistics (Mallows,
1990)

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

and solve it using the obtained blockwise coordinate
descent algorithm. Compared with the most state-
of-the-art results (Mitchell et al., 2008), our solution
outperforms the standard hand-crafted features in the
majority of test participants while using far fewer as-
sumptions. We also discuss how our methods can be
used to refine current theory in cognitive neuroscience.

2. The Multi-task Lasso

In this section, we introduce the multi-task Lasso and
some related work. We start with some notations.
Consider a K-task linear regression, for k = 1, . . . ,K,
Y (k) =

∑p
j=1 β

(k)
j X

(k)
j + ε(k) where Y (k), X

(k)
j , ε(k) ∈

Rnk . The superscript k indexes the tasks, p is the
number of features, and nk is the number of instances
within the k-th task. We assume the data is standard-
ized so the constant terms can be dropped, i.e. X(k)

j

and Y (k) have mean 0 and ‖X(k)
j ‖2 = 1 where ‖ · ‖2 is

the `2-Euclidean norm. Let

βj ≡ (β(1)
j , . . . , β

(K)
j)T (1)

be the vector of all coefficients for the jth feature across
different tasks, the multi-task Lasso estimate is formu-
lated as the solution to the optimization problem

min
β

{
1
2

K∑
k=1

‖Y (k)−
p∑
j=1

β
(k)
j X

(k)
j ‖

2
2+λ

p∑
j=1

‖βj‖∞
}
, (2)

where ‖βj‖∞ ≡ maxk |β(k)
j | is the sup-norm in the

Euclidean space. It has the effect of “grouping” the
elements in βj such that they can achieve zeros simul-
taneously. If all tasks share a common design matrix,
the multi-task regression reduces to a multivariate-
response regression. In this case, Turlach et al. (2005)
proposes the same sum of sup-norm regularization and
name the resulting estimate in (2) as the simultaneous
Lasso. It’s obvious that any solver for the multi-task
Lasso also solves the simultaneous Lasso. Existing
methods to solve (2) from the machine learning and
statistics communities include the double coordinate
descent method from (Zhang, 2006), the interior-point
method from (Turlach et al., 2005), and the geometric
solution path method from (Zhao et al., 2009). These
methods, however, have difficulty scaling to thousands
of features and tasks.

One alternative worth noting is the multi-task fea-
ture selection work of Argyriou, Evgeniou, and Pontil
(2008). Compared with (2), although both methods
can be used to learn features over many tasks, their
work uses a different penalty term in the optimization
problem. Our work, by contrast, focuses on the multi-
task Lasso which uses the sum of sup-norm penalty.

Remark 1. Equation (2) treats all tasks equally,
which can be sensitive to abnormal or outlier tasks.
To address this, we can build an adaptive version of
this algorithm. After obtaining the initial estimate by
treating all the tasks equally, we could calculate the
residual sum of squares for the fit of different tasks. A
second step can then be conducted by weighting these
tasks differently according to their initial fit. This pro-
vides extra performance gain and robustness.

3. Blockwise Coordinate Descent

For a fixed regularization parameter λ, the blockwise
coordinate descent algorithm for the multi-task Lasso
problem in Equation (2) is given in Figure 1, where
〈·, ·〉 denotes the inner product operator of two vectors.
Recall that βj in (1) represents the coefficient vector
of the j-th feature across all the K tasks. We call βj
a block. The algorithm consists of simultaneously up-
dating the coefficients within each block while holding
all the others fixed, then cycling through this process.
Therefore, if the current estimates are β̂`, ` = 1, . . . , p,
then βj is updated by the following sub-problem:

β̂j=arg min
βj

{
1
2

K∑
k=1

∥∥∥R(k)
j −β

(k)
j X

(k)
j

∥∥∥2

2
+λ‖βj‖∞

}
(3)

where R(k)
j ≡ Y (k)−

∑
6̀=j β̂

(k)
` X

(k)
` denotes the partial

residual vector.

If the regularization parameter λ = 0, the problem in
(3) decouples and the least squares solution α

(k)
j is

α
(k)
j = 〈R(k)

j , X
(k)
j 〉, for ∀j, k. (4)

Since 〈R(k)
j , X

(k)
j 〉=〈Y (k), X

(k)
j 〉−

∑
` 6=j β

(k)
` 〈X

(k)
` , X

(k)
j 〉,

we can pre-calculate the quantities c(k)j = 〈Y (k), X
(k)
j 〉

and d
(k)
ij = 〈X(k)

i , X
(k)
j 〉. This is the same covariance

update idea as in (Friedman et al., 2008) and corre-
sponds to the first double loop in the algorithm in
Figure 1. If we have a decreasing sequence of the reg-
ularization parameters λ’s, the initial values of β(k)

j for

each fixed λ comes from the solutions β̂(k)
j calculated

from the previous λ value. This is the same warm start
trick as in (Friedman et al., 2008) and can significantly
speedup the algorithm performance for evaluating the
entire solution path. Since the quantities c(k)j and d(k)

ij

do not depend on λ, they only need to be calculated
once and can serve for the whole pathwise evaluation.

For λ > 0, (3) becomes a sup-norm penalized least
squares regression. If we use the Newton’s method or
coordinate descent procedure to solve it as in (Zhang,

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

2006), an inner loop will be needed. This turns out not
to be scalable if the number of tasks K is very large.
Fortunately, Theorem 2 below shows that the solution
to (3) is equivalent to a closed-form Winsorization op-
eration applied on the previously calculated unpenal-
ized least squares results α(k)

j ’s. This corresponds to
the main loop of the algorithm in Figure 1.

Blockwise coordinate descent algorithm

Input: Data (X
(k)
1 , . . . , X

(k)
p , Y (k)), k = 1, . . . ,K and

the regularization parameter λ;

Iterate over k ∈ {1, . . . ,K} and j ∈ {1, . . . , p}

(1) c
(k)
j ← 〈Y (k), X

(k)
j 〉;

(2) β
(k)
j ← initial values (either 0 or bβ(k)

j for the

previous λ if doing a warm-start);

(3) For each i ∈ {1, . . . , p}: d(k)
ij ← 〈X

(k)
i , X

(k)
j 〉;

End;

Iterate until convergence (Main Loop):

For each j ∈ {1, . . . , p}:
(1) ∀k ∈ {1, . . . ,K}, α(k)

j ← c
(k)
j −

X
i6=j

β
(k)
i d

(k)
ij ;

(2) If
PK

k=1 |α
(k)
j | ≤ λ Then βj ← 0 Else

(a) Sort the indices according to |α(k1)
j | ≥

|α(k2)
j | ≥ . . . ≥ |α(kK)

j |;

(b) m∗← arg max1≤m≤K

“Pm
i=1 |α

(ki)
j |−λ

”
/m;

(c) For each i ∈ {1, . . . ,K}
If i > m∗ Then β

(ki)
j ← α

(ki)
j Else

β
(ki)
j ←

sign(α
(ki)
j)

m∗

"
m∗X
`=1

|α(k`)
j | − λ

#
;

End;

Output: bβ(k)
j ← β

(k)
j for j = 1, . . . , p and k = 1, . . . ,K;

Figure 1. The algorithm for the multi-task Lasso.

Theorem 2. Let α
(k)
j as defined in (4) and order the

indices according to |α(k1)
j | ≥ |α(k2)

j | ≥ . . . ≥ |α(kK)
j |.

Then the solution to (3) is

β̂
(ki)
j =

sign(α(ki)
j)

m∗

[
m∗∑
i′=1

|α(ki′)
j |−λ

]
+

·1{i≤m∗}+α
(ki)
j ·1{i>m∗}

where m∗ = arg max
m

1
m

(
m∑
i′=1

|α(ki′)
j | − λ

)
, 1{·} is the

indicator function, and [·]+ denotes the positive part.

Proof: The proof proceeds by discussing several cases
separately: (i) All the elements in the sup-norm are ze-
ros; (ii) One unique element in the sup-norm achieves
the maximum; (iii) At least two elements in the sup-
norm achieve the maximum. These cases correspond
to Propositions 5, 6, and 8 respectively.

Since the given objective function in (3) is convex, its
solution can be characterized by the Karush-Kuhn-
Tucker conditions as the following(
R

(k)
j − β̂

(k)
j X

(k)
j

)T
X

(k)
j = ληk ∀k ∈ {1, . . . ,K}, (5)

where {ηk}Kk=1 satisfy η ≡ (η1, . . . , ηK)T ∈ ∂‖ · ‖∞
∣∣
βj

.

Here, ∂‖ · ‖∞
∣∣
βj

denotes the subdifferential of the con-
vex functional ‖ · ‖∞ evaluated at βj , it lies in a
K-dimensional Euclidean space. Next, the following
proposition from (Rockafellar & Wets, 1998) can be
used to characterize the subdifferential of sup-norms.

Lemma 3. The subdifferential of ‖ · ‖∞ in RK is

∂‖ · ‖∞
∣∣
x
=

{
{η : ‖η‖1 ≤ 1} x = 0
conv{sign(xi)ei : |xi| = ‖x‖∞} o.w.

(6)

where conv(A) denotes the convex hull, and ei is the
i-th canonical unit vector in RK .

Proposition 4. Let β̂
(k)
j be solution to (3) and α

(k)
j

in (4), if β̂
(k)
j 6= 0, then sign(β̂(k)

j) = sign(α(k)
j).

Proof to Proposition 4: Since β̂(k)
j 6= 0, the result triv-

ially follows from the convexity and continuity of the
objective function in (3). �

Firstly, we consider the case that
∑K
k=1 |α

(k)
j | ≤ λ and

show that 0 must be a solution.

Proposition 5. β̂j = 0 if and only if

K∑
k=1

|α(k)
j | ≤ λ.

Proof to Proposition 5: From (5), we know that β̂j = 0
if and only if ∃η1, . . . , ηK such that

∑K
k=1 |ηk| ≤ 1 and

ληk = R
(k)
j

T
X

(k)
j = α

(k)
j . (7)

If
∑K
k=1 |α

(k)
j | ≤ λ, choosing ηk as in (7) would guar-

antee that
∑K
k=1 |ηk| ≤ 1, therefore β̂j = 0.

On the other hand, If β̂j = 0, from (7), we know that
ληk = α

(k)
j , k = 1, . . . ,K and

∑K
k=1 |ηk| ≤ 1. This

implies that
∑K
k=1 |α

(k)
j | ≤ λ. �

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

Next, we consider the case that
∑K
k=1 |α

(k)
j | > λ and

|α(k1)
j | − λ > |α(k2)

j |. Here we show that β̂(k)
j = α

(k)
j

for ∀k 6= k1, while β̂(k1)
j = sign

(
α

(k1)
j

) [
|α(k1)
j | − λ

]
.

Proposition 6. |β̂(k1)
j | > |β̂(k)

j | for ∀k 6= k1 if and

only if |α(k1)
j | − λ > |α(k2)

j |.

Proof to Proposition 6: If |β̂(k1)
j | > |β̂(k)

j | for ∀k 6=
k1, this implies that ∂‖ · ‖∞

∣∣
βj

= ek1 , where ek1
is the k1-th canonical vector. Therefore, from (5),(
R

(k)
j − β̂

(k)
j X

(k)
j

)T
X

(k)
j = λsign(β̂(k1)

j)1{k=k1}.

Therefore, we know β̂
(k1)
j = α

(k1)
j − λsign(β̂(k1)

j) and

β̂
(k)
j = α

(k)
j for ∀k 6= k1. Combined with the

fact |β̂(k1)
j | > |β̂(k)

j | for ∀k 6= k1 , we get |α(k1)
j −

λsign(β̂(k1)
j)| > |α(k)

j | for ∀k 6= k1.

From Proposition 4, we have sign(α(k1)
j) = sign(β̂(k1)

j).

Further, if β̂(k1)
j > 0, then |α(k1)

j | > λ, we have |α(k1)
j −

λsign(α(k1)
j)| = |α(k1)

j | − λ. Therefore, |α(k1)
j | − λ >

|α(k2)
j |. This is also true for β̂(k1)

j < 0.

On the other hand, assuming |α(k1)
j | − λ > |α(k2)

j | but
for some n > 1, there exist

|β̂(k1)
j | = . . . = |β̂(kn)

j | = ‖β̂j‖∞. (8)

Then, by (6) and (5), there must exist a1, a2 ∈
[0, 1] and a1 + a2 ≤ 1, for h = 1, 2,(
R

(kh)
j − β̂(kh)

j X
(kh)
j

)T
X

(kh)
j = λahsign(β̂(kh)

j).

Combine this result and (8), we get |α(k1)
j −

λa1sign(β̂(k1)
j)| = |α(k2)

j − λa2sign(β̂(k2)
j)|. By

Proposition 4 and |α(k1)
j | > λa1, we have |α(k1)

j −
λa1sign(β̂(k1)

j)| = |α(k1)
j |−λa1. If |α(k2)

j | > λa2, we get

|α(k1)
j | − λ

(
sign(a1β̂

(k1)
j) + a2sign(β̂(k2)

j)
)

= |α(k2)
j |.

Since a1 + a2 ≤ 1, this obviously contradicts with the
assumption that |α(k1)

j | −λ > |α(k2)
j |. The same result

also hold for the case |α(k2)
j | ≤ λa2. �

Lastly, for the case
∑K
k=1 |α

(k)
j | > λ and |α(k1)

j | − λ ≤
|α(k2)
j |. We start with an auxiliary proposition.

Proposition 7. For m > 1, if there are precisely m

entries |β̂(k1)
j |, . . . , |β̂(km)

j | achieve ‖β̂j‖∞ > 0, then

β̂
(ki)
j =

sign(α(ki)
j)

m

[
m∑
`=1

|α(k`)
j | − λ

]
∀i = 1, . . . ,m.

Proof to Proposition 7: Since exactly m entries
|β̂(k1)
j |, . . . , |β̂(km)

j | achieve ‖β̂j‖∞ > 0 , by (6), there
must exist m nonnegative numbers a1, . . . , am, such
that

∑m
`=1 a` = 1 and for each ` ∈ {1, . . . ,m},(

R
(k`)
j − β̂(k`)

j X
(k`)
j

)T
X

(k`)
j = λa`sign(β̂(k`)

j).

Which can be re-written as

α
(k`)
j = λa`sign(β̂(k`)

j) + β̂
(k`)
j ∀` ∈ {1, . . . ,m}. (9)

Using the fact that |β̂(k1)
j | = . . . = |β̂(km)

j |, sum-
ming over the absolute value of both sides of all
the equations in (9), we obtain

∑m
`=1 |α

(k`)
j | =∑m

`=1 |λa`sign(β̂(k`)
j) + β̂

(k`)
j |. Since |λa`sign(β̂(k`)

j) +

β̂
(k`)
j | = λa` + |β̂(k`)

j | and
∑m
`=1 a` = 1, we have

|β̂(ki)
j | = 1

m

[
m∑
`=1

|α(ki)
j | − λ

]
. ∀i ∈ {1, . . . ,m}. (10)

Finally, by Proposition 4, we know that sign(α(ki)
j) =

sign(β̂(ki)
j) for i = 1, . . . ,m, therefore

β̂
(ki)
j =

sign(α(ki)
j)

m

[
m∑
`=1

|α(k`)
j | − λ

]
i = 1, . . . ,m. �

To finish the proof of Theorem 2, we still need to
describe the exact conditions that there are exactly
m > 1 elements that achieve the sup-norm. This is
given in the following Proposition 8. A similar result
was also given in (Fornasier & Rauhut, 2008).

Proposition 8. For m > 1, there exist precisely

m entries |β̂(k1)
j |, . . . , |β̂(km)

j | that achieve ‖β̂j‖∞ >

0 if and only if |α(k1)
j | − λ ≤ |α(k2)

j | and

|α(km)
j | ≥ 1

m−1

(∑m−1
`=1 |α

(k`)
j | − λ

)
and |α(km+1)

j | <
1
m

(∑m
`=1 |α

(k`)
j | − λ

)
.

Proof to Proposition 8: Assume exactly m > 1 entries
|β̂(k1)
j |, . . . , |β̂(km)

j | achieve ‖β̂j‖∞ > 0, from Proposi-
tion 7, we know that for i = 1, . . . ,m,

β̂
(ki)
j =

sign(α(ki)
j)

m

[
m∑
`=1

|α(k`)
j | − λ

]
. (11)

By (9) and Proposition 4, we have

a` =
α

(k`)
j − β̂(k`)

j

λsign(β̂(k`)
j)

=
|α(k`)
j | − |β̂(k`)

j |
λ

` ∈ {1, . . . ,m}.

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

Plugging (11) into am, since am ≥ 0, we get

|α(km)
j | ≥ 1

m− 1

(
m−1∑
`=1

|α(k`)
j | − λ

)
. (12)

Further, since |β̂(km)
j | > |β̂(km+1)

j |, the necessity

follows from |α(km+1)
j | = |β̂(km+1)

j | < |β̂(km)
j | =

1
m

[∑m
`=1 |α

(k`)
j | − λ

]
.

For the sufficiency, we assume that precisely n 6= m

entries |β̂(k1)
j |, . . . , |β̂(kn)

j | achieve ‖β̂j‖∞ > 0, then fol-
low exactly the same argument as the necessity part
to obtain a contradiction. �

To prove Theorem 2, we know from Proposition 8 there
are precisely m∗ entries in β̂j that achieve ‖β̂j‖∞ > 0

if and only if m∗ = arg maxm
1
m

(∑m
`=1 |α

(k`)
j | − λ

)
.

The result follows by combining Propositions 5 and 6.

Remark 9. We also conducted experiments to quan-
titatively compare the performance of the blockwise
coordinate descent algorithm with the Log-barrier
interior-point method in a similar setting as in (Fried-
man et al., 2007). The blockwise coordinate descent
algorithm is significantly faster. Due to the lack of
space, we do not report the simulation details here.

The complexity analysis of the algorithm is straight-
forward. Within the main loop, the most expensive
step is sorting the K elements, which can be done
in O(K logK). This makes the algorithm scalable
to very large number of tasks. From the Winsoriza-
tion operator, we do not need to update a block if∑K
k=1 |α

(k)
j | ≤ λ, which happens frequently if the prob-

lem is sparse. This makes the algorithm scalable to
very large number of features. Furthermore, since
many quantities can be pre-calculated, the algorithm
can be also applied to large sample datasets. The nu-
merical convergence of this algorithm is summarized
in the following theorem.

Theorem 10. The solution sequence generated by
the blockwise coordinate descent algorithm in Figure
1 is bounded and every cluster point is a solution of
the multi-task Lasso defined in (2).

Proof The optimization objective function in (2)
is continuous on a compact level set, and is con-
vex (but not strictly convex) and nondifferentiable.
Furthermore, notice that the nondifferentiable part
λ
∑p
j=1 ‖βj‖∞ is separable, i.e. it can be decomposed

into a sum of individual functions, one for each block of
variables. By Theorem 4.1 in (Tseng, 2001) we obtain
the claimed results. �

4. Neural Semantic Basis Discovery

In this section, we present a case study of the multi-
task Lasso by applying it to a problem in cognitive
neuroscience. Specifically, we consider the task of pre-
dicting a person’s neural activity in response to an ar-
bitrary word in English as described in (Mitchell et al.,
2008). Their approach is to predict the neural image
that would be recorded using functional magnetic res-
onance imaging (fMRI) when a person thinks about a
given word. In their work, the semantic meaning of a
word is encoded by co-occurrence statistics with other
words in a very large text corpus. They use a small
number of training words to learn a linear model that
maps these co-occurrence statistics to images of neu-
ral activity recorded while a person is thinking about
those words. Their model can then predict images for
new words that were not included in the training set
and shows that the predicted images are similar to the
observed images for those words.

Table 1. The semantic basis used in Mitchell et al. (2008)

See Eat Run Say Enter
Hear Touch Push Fear Drive
Listen Rub Fill Open Wear
Taste Approach Move Lift Break
Smell Manipulate Ride Near Clean

In their initial model each word is encoded by a vec-
tor of co-occurrences with 25 sensory-action verbs
(e.g. eat, ride, wear). For example, words related to
foods such as “apples” and “oranges” would have fre-
quent co-occurrences with the word “eat” but few co-
occurrences with the word “wear”. Conversely, words
related to clothes such as “shirt” or “dress” would co-
occur frequently with the word “wear” but not the
word “eat”. Thus “eat” and “wear” are example ba-
sis words used to encode relationships of a broad set
of other words. These 25 sensory-motor verbs (shown
in Table 1) were hand-crafted based on domain knowl-
edge from the cognitive neuroscience literature and are
considered a semantic basis of latent word meaning. A
natural question is: What is the optimal basis of words
to represent semantic meaning across many concepts?

Rather than relying on models that require manual
selection of a set of words, our research tries to build
models that will perform variable selection to auto-
matically learn a semantic basis of word meaning. In
this way, we not only want to predict neural activity
well, but also give insights into how the brain repre-
sents the meaning of different concepts. The hope is
that learning directly from data could lead to new the-
ories in cognitive neuroscience.

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

For our study, we utilize the two datasets described in
(Mitchell et al., 2008). The first dataset was collected
using fMRI. Nine participants were presented with 60
different words and were asked to think about each
word for several seconds while their neural activities
were recorded. The 60 words are composed of nouns
from 12 categories with 5 exemplars per category. For
example, a bodypart category includes Arm, Eye, Foot,
Hand, Leg, a tools category includes the words Chisel,
Hammer, Pliers, Saw, Screwdriver, and a furniture cat-
egory includes Bed, Chair, Dresser, Desk, Table, etc.

The second dataset is a symmetric matrix of text co-
occurrences between the 50,000 most frequent words
in English. These co-occurrences are derived from
the Google Trillion Word Corpus2. The goal is to
use these co-occurrences to construct a feature vector
that represents word meaning. The hope is that two
words that cause similar neural activites would also
have high inner product between their co-occurrence
vectors. One simple representation of each word is
to use the raw 50,000 dimensional feature vector of
co-occurrences (normalized to unit length row norm).
Typically a much smaller representation is desired such
as the hand-crafted 25-word basis described above.

For each participant, there are altogether n = 60 fMRI
images taken3, each one corresponds to one stimulus
word. A typical fMRI image contains over K = 20, 000
different neural responses. Each neural response is
the activity in a voxel (volume-element) in the brain.
Each voxel represents a 1-3 mm3 volume in the brain
and is the basic spatial unit of measurement in fMRI.
Here we show the problem of learning a semantic ba-
sis can be formulated into a multi-task Lasso as in (2).
Since the goal of learning a semantic basis is to find
a common set of predictor variables that will predict
the neural response well across multiple voxels, where
each predictor variable is the text co-occurences with
a particular word from the Google Trillion Word Cor-
pus. Therefore, for each participant, we have roughly
K = 20, 000 tasks, all these tasks share the common
design columns {Xj}pj=1 ∈ Rn, representing the co-
occurrences of n = 60 training words with p = 50, 000
other English words in the Google Corpus. The re-
sponse vector Y (k) for each task contains the neural
activations for a single voxel (volume-element) across
the n = 60 fMRI images. Therefore, this is a multi-
task learning problem with a very large number of
tasks K = 20, 000 and a very large number of fea-
tures p = 50, 000. While the algorithm we develop

2http://googleresearch.blogspot.com/2006/08/all-our-
n-gram-are-belong-to-you.html

3Each image is actually the average of 6 different record-
ings of each word.

can solve a problem of this scale in only a few min-
utes, our primary results use a smaller dataset where
p = 5, 000 and K = 500, so that our experiments are
directly comparable with other published results. We
also provide additional results where K = 4500.

5. Experimental Results

To evaluate our methods and compare them to existing
results, we use exactly the same experimental proto-
cols described in (Mitchell et al., 2008). As a small ad-
ditional step we use the multi-task Lasso to perform
a variable selection. Note that the multi-task Lasso
is used in this context only to learn which variables
should be input into the final model. Specifically, the
leave-two-out-cross-validation procedure is as follows:

a Create a 60× 5, 000 design matrix of semantic features
using co-occurences of the 5,000 most frequent words in
English (minus 100 stop words). A stop word is a high
frequency common word like “the”.

b Select 2 words out of 60 for testing and use the other 58
words for training. Using (2), learn the coefficients β by
setting each Xj to be the 58×1 vector of co-occurences

for each of the 5000 basis words and each Y (k) to be
the 58 × 1 column vector for each of the top K = 500
voxel responses selected using the stability criterion score
described in (Mitchell et al., 2008). In the language of
multi-task Lasso, this problem corresponds to the scale
n = 58, p = 5000,K = 500. The regularization pa-
rameter here can be set to choose the desired number
of non-zero coefficients. We set this parameter to yield
basis sets with 25, 140, and 350 elements so the model
is easier to interpret and compare to existing results.

c Create a new matrix of semantic features that is 58× d,
where d is the number of selected feature blocks in β.
In our case d will be either 25, 140, or 350. Each non-
zero block should correspond to a word selected from
the original set of 5,000. This word shall now become a
semantic feature in the new basis.

d Train a linear model using ridge regularization to predict
each of the 500 voxels from the semantic feature basis.
The solution can be obtained using the standard normal
equations for ridge regression.

e For each of the two test examples, predict the neural
response of the 500 selected voxels. Compute the cosine
similarity of each prediction with each of the held out
images. Based on the combined similarity scores, choose
which prediction goes with each held out image. Test if
the joint labeling was correct. This leads to an output
of 0 or 1. For more details, see (Mitchell et al., 2008).

f Repeat steps b-e for all
`
60
2

´
possible pairs of words

(1,770 total). Count the number of incorrect labelings
in step e to determine the accuracy of the basis set.

Figure 2. The leave-two-out-cross-validation protocols

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

Table 2. Accuracies for 9 fMRI Participants. Learned per-subject

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

Handcraft 0.749718 0.705085 0.726554 0.715254 0.792655 0.771751 0.684746 0.729379 0.787006
MTL25 0.863842 0.713559 0.718079 0.608475 0.787006 0.649153 0.714124 0.730508 0.679661
MTL140 0.863842 0.741243 0.727119 0.545763 0.831638 0.654237 0.733333 0.751977 0.717514
MTL350 0.881921 0.757627 0.754802 0.567232 0.840678 0.69209 0.762147 0.784746 0.738983

Table 3. Accuracies for 9 fMRI Participants. Learned with combined fMRI

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

MTL25 0.815254 0.718079 0.679096 0.588701 0.732203 0.661017 0.737288 0.755932 0.690960
MTL140 0.849718 0.736158 0.733333 0.553107 0.810734 0.678531 0.761017 0.753107 0.732768
MTL350 0.880791 0.761017 0.758757 0.575141 0.845198 0.691525 0.762712 0.783051 0.738983

We repeat this experiment for each of the nine differ-
ent participants in the fMRI study and use the same
method in Mitchell et al. (2008) to ensure consistency
while testing various semantic features. The regular-
ization parameter for the ridge regression in step d is
chosen automatically using the cross-validation error
score described in (Hastie et al., 2001, Page 216).

We performed several experiments using the above
protocols to compare the performance of the semantic
feature sets learned using the multi-task Lasso with the
hand-crafted features described earlier. Using these
results we now pose and answer several questions:

Q1: Can we automatically learn a semantic basis?

As in Figure 2, we use the multi-task Lasso to learn a
semantic basis from the 5,000 most frequent words in
English and adjust the regularization parameter to ob-
tain different basis sizes. We denote MTL25, MTL140,
MTL350 as models that have 25,140, and 350 words
respectively in their basis sets each time they were
trained. Note that we train the models on each itera-
tion of the cross-validation and keep the regularization
parameter the same between iterations. As a result,
there can be a slight variation in the actual number of
features selected on each iteration.

We see in Table 2 the results of the 4 models. The re-
sult for the 25 features hand-crafted by cognitive neu-
roscientists is also reported. Chance accuracy for this
prediction task is 0.5 and statistically significant accu-
racy at the 5% level is 0.61 (Mitchell et al., 2008). We
see that in 8 of 9 subjects, all three multi-task Lasso
models learn a semantic basis that leads to statisti-
cally significant accuracies. This suggests that we can
indeed learn a semantic basis directly from data.

The MTL140 and MTL350 models achieve higher ac-
curacies than the hand-crafted features in 6 of 9 par-
ticipants. It is exciting that the model can often meet
or exceed the performance of the hand-crafted features
using far fewer assumptions about neuroscience. It is

also useful that our learned basis is different than the
handcrafted features, which suggests potential bene-
fits from a model averaging approach. For the MTL25
model, we report accuracies higher than the hand-
crafted features in 4 of 9 participants. We also see
that two larger basis sets outperform the MTL25 set,
suggesting that more than 25 features are necessary to
capture the variance of the data.

An interesting observation comes from participant 4.
On this participant all three learned models performed
worse than the hand-crafted model. The very abnor-
mal behavior of the learned models on this participant
versus the other participants suggests that this par-
ticular participant might be an outlier or a very noisy
observation (as is common in fMRI studies). However,
the hand-crafted feature does not suffer from this case.
More investigation is suggested to study this.

Q2: Is there any advantage to learning the basis across
multiple subjects simultaneously?

An interesting question is whether we could amelio-
rate this problem by learning the basis simultaneously
across all subjects at once. Table 3 shows the results
of learning the basis by combining the fMRI data for
all participants (thereby yielding a 58 x 4500) target
matrix. This corresponds to a multi-task Lasso where
K = 4500. On average, we found a slight advantage
on the MTL140 and MTL350 models, and slight disad-
vantage for the MT25 model. Although encouraging,
this is hardly conclusive evidence, and we feel this is
an interesting direction for future work. In particular,
it would be worth studying the impact of noisy data
by removing an outlier such as participant 4.

Q3: What is the learned semantic basis?

Table 4 shows one example of 25 basis words learned
using the MTL25. It is easy to see relationships be-
tween many of the words in the basis set and the 60
stimulus words described before. For example, the
model learned Tools as a basis word, which is interest-

Blockwise Coordinate Descent Procedures for the Multi-task Lasso

ing because 5 different instances of tools were shown
(e.g. Screwdriver, Hammer, etc.). The basis word Bed-
room clearly refers to words in the furniture category
(Bed, Dresser, etc.) and Arms is related to body parts
(Leg, Hand, etc.).

Table 4. An example of 25 learned semantic basis words.

Tools Car Dog Wine Pottery
Model Station Bedroom Breakfast Cup
Mad Rentals Fishing Cake Tip
Arms Walk Cleaning Cheese Gay
Right White Front Contents Result

For a given basis word, we can train a simple linear
model to predict neural activations across all 20,000
voxels in the brain from this single basis word. Note
that this is a multiple output regression and each
learned coefficient corresponds to a physical location
in the brain. By plotting the coefficients, we can dis-
cover how different basis words activate different re-
gions of the brain. Figure 3 shows a 3D map of these
coefficients for the basis word Tools. We see strong
activation (red) in the superior temporal sulcus which
is believed to be associated with the perception of bi-
ological motion. We also see strong activation in the
postcentral gyrus which is believed to be associated
with premotor planning.

Figure 3. Regression weights to each voxel for word Tools.

6. Conclusion

We present a blockwise coordinate descent algorithm
to fit the entire regularization path of the multi-task
Lasso in a highly efficient way. This algorithm uses
a closed-form Winsorization operator which allows it
easy to implement and perform far more efficiently
than prevous methods. We believe that the multi-task
Lasso is useful for a large class of sparse, multi-task
regression problems and demonstrated its power on a
neural semantics discovery problem.

References

Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Con-
vex multi-task feature learning. Machine Learning,
73, 243–272.

Fornasier, M., & Rauhut, H. (2008). Recovery algo-
rithms for vector valued data with joint sparsity con-
straints. SIAM Journal of Numerical Analysis, 46,
577–613.

Friedman, J., Hastie, T., Hüdotofling, H., & Tibshi-
rani, R. (2007). Pathwise coordinate optimization.
The Annals of Applied Statistics, 1, 302–332.

Friedman, J. H., Hastie, T., & Tibshirani, R. (2008).
Regularized paths for generalized linear models via
coordinate descent. Technical report, Stanford Uni-
versity.

Fu, W. J. (1998). Penalized regressions: The bridge
versus the lasso. Journal of Computational and
Graphical Statistics, 7, 397–416.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001).
The elements of statistical learning: Data mining,
inference, and prediction. Springer-Verlag.

Mallows, C. L. (Ed.). (1990). The collected works of
john w. tukey. volume vi: More mathematical, 1938–
1984. Wadsworth & Brooks/Cole.

Mitchell, T., et al. (2008). Predicting human brain
activity associated with the meanings of nouns. Sci-
ence, 320, 1191–1195.

Rockafellar, R. T., & Wets, R. J.-B. (1998). Varia-
tional analysis. Springer-Verlag Inc.

Tseng, P. (2001). Convergence of a block coordi-
nate descent method for nondifferentiable minimiza-
tion. Journal of optimization theory and applica-
tions, 109, 475–494.

Turlach, B., Venables, W. N., & Wright, S. J. (2005).
Simultaneous variable selection. Technometrics, 27,
349–363.

Wu, T. T., & Lange, K. (2008). Coordinate descent al-
gorithms for lasso penalized regression. The Annals
of Applied Statistics, 2, 224–244.

Zhang, J. (2006). A probabilistic framework for multi-
task learning (Technical Report CMU-LTI-06-006).
Ph.D. thesis, Carnegie Mellon University.

Zhao, P., Rocha, G., & Yu, B. (2009). The grouped
and hierarchical model selection through composite
absolute penalties. The Annals of Statistics (to ap-
pear).

