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Abstract ting, especially when combined with early stopping of the
boosting process (Zhang & Yu, 2005). The empirical suc-
cess of Boosting algorithms helped popularize the view that
boosting algorithms are resilient to overfitting. However,
several researchers have noted the deficiency of forward-
greedy boosting algorithms and suggest alternative coordi
nate descent algorithms, such as totally-corrective boost
ing (Warmuth et al., 2006) or Zhang's forward/backward
algorithms (2008). The algorithms that we present in this
paper build on existing boosting and other coordinate de-
scent procedures while incorporating, throughout their ru
regularization of the weights of the selected features. The
added regularization terms influence both the selection of
new features and the weight assignment steps. Moreover,
as we discuss below, the regularization may eliminate (by
assigning a weight of zero) previously selected features.
The result is a simple procedure that includes forward in-
duction, weight estimation, backward pruning, entertains
convergence guarantees, and yields sparse models. We are
also able to group features and impose structural sparsity
1. Introduction and problem setting on the learned weights, which is a focus and one of the
main contributions of this paper.

We derive generalizations of AdaBoost and re-
lated gradient-based coordinate descent methods
that incorporate sparsity-promoting penalties for
the norm of the predictor that is being learned.
The end result is a family of coordinate descent
algorithms that integrate forward feature induc-
tion and back-pruning through regularization and
give an automatic stopping criterion for feature
induction. We study penalties based on the

£5, and/., norms of the predictor and introduce
mixed-norm penalties that build upon the initial
penalties. The mixed-norm regularizers facilitate
structural sparsity in parameter space, which is a
useful property in multiclass prediction and other
related tasks. We report empirical results that
demonstrate the power of our approach in build-
ing accurate and structurally sparse models.

Boosting is a highly effective and popular method for ob-
taining an accurate classifier from a set of inaccurate preOur starting point is a simple yet effective modification to
dictors. Boosting algorithms construct high precisiorsela AdaBoost that incorporates d@n penalty for the norm of
sifiers by taking a weighted combination of base predictorsthe weight vector it constructs. The update we devise can
known as weak hypotheses (see Meir aritseh (2003) be used both for weight optimization as well as for induc-
and the numerous references therein). Many boosting akion of new accurate hypotheses while taking the resulting
gorithms can also be viewed as forward-greedy feature ini-norm into account. A closely related approach was sug-
duction procedures. In this view, the weak-learner pro-gested by Duik et al. (2007) in the context of maximum
vides new predictors which perform well either in terms of entropy, though our analysis for classification is a special
their error-rate with respect to the distribution that homs  case of an abstract saddle-point theorem that we prove.
maintains or in terms of their potential in reducing the em-This general theorem is also applicable to other norms and
pirical loss. Once a feature is chosen, typically in a greedyosses, in particular thé,, norm, which serves as a build-
manner, it is associated with a weight which remains intacing block for imposing structural sparsity.

through the reminder of the boosting process. For simplicity, we assume that the class of weak hypothe-

The aesthetics and simplicity of AdaBoost and other for-ses is finite and contains different hypotheses. We
ward greedy algorithms, such as LogitBoost (Friedmarthus map each instance to an n dimensional vector

et al., 2000), also facilitate a tacit defense from overfit-(h1 (), ..., h,(z)), and we overload notation and sim-
ply denote the vector a8 € R™. Though omitted due

to the lack of space, our framework can be used in the
presence of countably infinite features, also known as the
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task of feature induction. Each instaneg is associated and multitask boosting-based procedure withi¢,, reg-

with a labely; € {—1,+1}. The goal of learning is then ularization. We then shift our focus to an alternative appa-
to find a weight vectomw such that the sign ofv - x; is  ratus for coordinate descent with the log-loss that does not
equal toy;. Moreover, we would like to attain large inner- stem from the AdaBoost algorithm. In this approach we up-
products so long as the predictions are correct. Formallyper bound the log-loss by a quadratic function, terming the
given a samples = {(x;,v;)}™,. the algorithm focuses resulting update GradBoost as it updates coordinates in a
on findingw for which the empirical logistic losd,(w) = fashion that follows the gradient. Similar to the genegsliz
> log (1 + exp(—y;(w - x;)), is small. Our derivation  tion of AdaBoost, we study; and/., penalties byeusing

also applies to the exp-loss. We first adapt AdaBoost tdhe fixed-point theorem, and we derive GradBoost updates
incorporate the;-norm of the weight vector into the em- for both¢, /4., and/; /¢ mixed-norm regularization.

pirical l0ss,3 i, log (1 + exp(—yi(w - ;))) + Al|w]. It is clearly impossible to cover related work in depth and

This problem is by no means new. It is often referred towe give here a very brief overview. Our derivation follows
as/i-regularized logistic regression and several advancethe template-based algorithm of Collins et al. (2002), in-
optimization methods have been designed for the probeorporating regularization in a way analogous to uet
lem (Koh et al., 2007)/; -regularization has many advan- al.'s maximum-entropy framework (2007). The base Grad-
tages, including its ability to yield sparse weight vectorsBoost algorithm we derive shares similarity with Logit-
w and, under certain conditions, to recover the true sparBoost (Friedman et al., 2000) while our bounding tech-
sity of w (Zhao & Yu, 2006). We extend this by replac- nique was first suggested by Dekel et al. (2005). Learn-
ing the ¢;-norm with a mixed-norm regularizer (denoted ing sparse models through regularization is the focus of
¢1/¢,) to achieve structural sparsity. Mixed-norm regular-a voluminous amount of work in different research areas,
ization is used when there is a partition or structure over th from statistics to information theory (Zhao & Yu, 2006;
weights that separates them into disjoint groups of paramKoh et al., 2007; Zhang, 2008). Multiple authors have stud-
eters, and ad,-norm ties each group. For concretenessied the setting of mixed-norm regularization, which is of
and in order to leverage existing boosting algorithms, wegreat interest in the statistical estimation literatuheuigh
specifically focus on settings in which we have a matrixthe focus is typically on consistency for linear regression
W = [w; - - -wy] € R™** of weight vectors, and we regu- rather than efficient algorithms. Negahban and Wainwright
larize the weights in each row 6F (denotedw,) together  (2008) recently analyzed sparsity througty/,, mixed-
through arv,-norm. We derive updates for two important norms, and Obozinski et al. (2007) analyz¢/(,.
settings that generalize binary logistic-regression. firse
is multitask learning (Obozinski et aI.,_2007), in which we 2. AdaBoost with ¢,
have a set of task§l, . .., k} and a weight vectotw;, for
each task. Our goal is to learn a matvx minimizing We now outline our;-infused modification to AdaBoost,
providing only a sketch, since the algorithm can be ob-

n tained as a special case of the analysis presented in Sec. 3.
D log (1 + 67“”(%%)) +AD_ll@ill, - (1) we build on existing analyses of AdaBoost, which all de-
i=lr=1 J=1 rive upper bounds on the loss which the booster then min-

The other generalization we describe is the multiclass oA MIZES. We can then rely on the fact that each round of

- : . boosting is guaranteed to decrease the penalized loss. In
gistic loss. We again assume there areveight vectors . . : .
. . the generalized version of boosting (Collins et al., 2002),
that operate on each instance. Given an exarsplehe
O L the booster selects a vectarfrom a set of templatest
classifier’s prediction is a vectow, - x;, . .., wy, - ;], and :
: . . . ._on each round of boosting. The template selects the set of
the predicted class is the index of the inner-product attain .
. ) base hypotheses whose weight we update. Moreover, the
ing the largest of thé values,argmax, w, - x;. In this . :
case, the regularized lo61V') is template vector can specify a different budget for each fea-
' ture update so long as the vecwsatisfies the condition
m n >_jajlzij| < 1. Classical boosting sets a single coordi-
Zlog (1 + Z#%ewwwi—wy;wi) + )\Z [w,||, (2) natein the vecton to a non-zero value. We start by re-
i=1 j=1 calling the progress bound for AdaBoost with the log-loss
when using a template vector. Define importance weights
We also give a new upper bound for the multiclass lossq?(;) = 1/(1+eyiwf~wi), which are the probability the cur-
Previous multiclass constructions for boosting assumee thaent classifier assigns to the incorrect label for exaniple
each base hypothesis provides a different prediction pesnd weighted correlations
class, so they are not directly applicable to the multiclass
setting discussed in this paper, vvhmh aIIo_ce_1tes adeqﬂcate M;r = Z q' ()| ] ; py = Z q'(i)|zi 4| -
predictor per class. Our result is an efficient multiclass

regularization
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Let w'™ = w' + &', 6! = a;d}, and a satisfy &
>, ajlai ;| < 1. Then the change in the log-los&, = m;anj(dj) +Ald] - 5)
. . . . j=1
L(w') — L(w"*"), between two iterations of boosting is The following theorem characterizes the solutigh of
lower bounded by (Collins et al., 2002) Eq. (5), and leads to efficient algorithms for specific func-
n tions f;. We usgk| as a shorthand for the sgt, 2, . .., k}.
A= a (Hf (1 - e_dj) + py (1 - 6dj)> . Theorem 1. Letd; satisfyf/(d;) = 0. The optimal solu-

j=1 tion d* of Eq. (5) satisfies ﬂ/]ce following properties:

Since the/; penalty is an additive term, we incorporate the (E:)) gor a”O ,If a?(%)qui'féyn:dl |’f(jc§9))cll*_<)\.0

change in thé-norm ofw to bound the overall decreasein I f].- *J' - T3(d5)d; < 0.

the loss when updating’ to w® + 6" with A, — Aot + (i) Let B={j:|d}| = ||d"|| .} andU = [k]\ B:

w'||; + AJw?||,. By construction, this bound is additive in (a) Forallj € U, d; = dj and fj(d}) = 0.
;. Thus, we omit the indey, eliminate constants, and are (b) Forallj € B,|d;| > |d5| = [ld"]|
left with the following minimization problem in: (c) Whend* + 0, ZjeB |£5(d5)] = A

Sketch of Proof ~ We sketch a proof of the theorem using
subgradient calculus (Bertsekas, 1999). For point (i), we
note that the subgradient setfd|| _ evaluated atl = 0

is the set of vector$z : ||z||; < A}. Thus, we look at the
£1-norm of the gradient of the sum of functionsdit= 0,
Lemma 2.1 If yte®/® — p=e=®/* > 0, then the min-  and ifS>%_, £(0)] < Athend* = 0 and vice versa. Point
imizing 6* of Eq. (3) satisfies* + w > 0. Likewise, if  (ji) is a consequence of the monotonicity of the derivatives

H%in apte™® % fap=e® + N6+ w)| . 3)

We state two lemmas that aid us in finding the optimum of.
Eqg. (3). The lemmas are special cases of Thm. 1 later.

ptren/® — e/ < 0, thend* +w < 0. (or subgradient sets) of convex functions (the derivatives
Lemma 2.2. The solution of Eq. (3) with respect fois  are non-decreasing). For point (iii), we note thatff =
§* = —w if and only if|'u+ew/a _ lfefw/a| <\ 0, then (a), (b), and (c) are trivially satisfied. If not, then

consider the subgradient set of the norm:
Equipped with the above lemmas, the updateuﬁfﬁ1 is Al = A on(d e  ldl = lld
straightforward to derive. Let us assume without loss of Mo Co {sign(di)ei : |dif = lldfl o} -
generality thap;eww% — Mj—e—w;'/%' > A, so thats? # For part (a), any € U must have derivativg;(d;) = 0 to
—w; and§s + w; > 0. We need to solve the equation satisfy the subgradient conditions for optimality. Fortpar
_M;’e—éj/aj +M;e5j/aj A= Ooru;ﬁ%r)\ﬁ—uf —o, (b),we note thcjit iffi € B a_md\dj| < |d3], We can move
where = ¢%/% . Sinceg is strictly positive, it is equal to  ¢; towardd; while decreasing or not changitig”|[ ., and

the positive root of the above quadratic equation, yielding We decreasg;(d;). Part (c) is another consequence of the
subgradient conditions for optimality. O

6; =ajlog <—)\ + /A + 4#;#}/(2/@-_)) NG In Fig. 1, we present a general algorithm for minimizing
>_; 1i(d;) + A||d]|, that builds directly on Thm. 1. The

In the symmetric case, wheif + w; < 0, we get that algorithm flips signs so that al; > 0 (see part (ii) of the
theorem). It then iteratively adds points to the bounded set

07 = ajlog(\+ (/N +4pfpy /(27)). Finally, when 5 starting from the point with largest unregularized solu-

|uj+ew;/% - u;e—wa‘/m < ), Lemma 2.2 implies that tion J(l) (see part (iii)). When the algorithm finds a g&t

§* = —w'. Wheny is zero anm{rew;/aj ~ )\ the solu- gn_d boun@ = |d|| ., so that parF“(iii) of the th_eorem is sat-

tijon is5*.J: Tog( JJF/A) and anailo ously fort — 0 isfied (which is guaranteed by (iii.b)), it terminates. The a
j T 4308, ’ gously ot ' gorithm navely has runtime complexit@)(k?), which we

] o bring down toO(klog k) in the sequel by exploiting the

3. Incorporating /., regularization specific structure of;.

We now begin to lay the framework for multitask and mul- Revisiting AdaBoost with ¢, -regularization Lemmas 2.1
ticlass boosting with mixed-norm regularizers. The mainand 2.2 are special cases of the theorem. Recallthe
theorem in this section can be used to derive and anaegularized minimization problem we faced for the expo-
lyze the algorithm of previous section. Before deriving nential loss in Eq. (3). We had to minimize a function of
updates for boosting, we consider a more general framethe formaute=%/* 4+ au~e%/* + \|§ + w|. Replacing
work of minimizing a sum of one-dimensional, convex, § + w with 0, this minimization problem is equivalent to
bounded below and differentiable functiofifd) plus an  minimizingapte®/?e=%/% + ap~e="/2%e%/% 1 \|6|, a one
{-regularizer. We want to solve dimensional version of the problem considered in Thm. 1.



INPUT: Functions{ f, }F_,, regularizatiom Define the importance-weighted correlations as

IESF_ £2(0)] < A

RETURNd* = 0 ph, = th(i,r)\zi,ﬂ + Z(l —q' (i, 41))|i 41

/I Find sign of optimal solutions Gy #r,wi ;<0 iy =r,24,5>0
— 3 / — . .

SeT sy = —sign(f.(0) | py = 2 d @l + Y00 — 'yl
/I Get ordering of unregularized solutions Giyitrms ;>0 Giyimrims; <0
SOLVE d,. = argminy f,(s,d)
/I We havel ) > di) > ... > dg the update to rowj of W* to beﬁ?rl = w' + &', and
SORT {d, } (descending) intdd, }; d(x+1) =0 leta satisfymaxi{zj aj\xi,j|} < 1. The change in the
FORI =110k . multiclass lossA; = L(W'!) — L(W?), is bounded by

SoLVE for ¢ such thay ., f(’i)(sig) =-A

IFE>dgg - st Ja _ -

BREAK( : aj ) (Mj,j(l — ™%/ %) (1 — 66”/‘”))

RETURN d* such thatl* = s, min{d,., ¢} g=t =t

The boosting bounds we derived for the multitask and mul-

ticlass losses are syntactically identical, differingyom

4. AdaBoost with 51/500 regularization their computation of the importance weights and correla-
tions. These similarities allow us to attack the update for

In this section we present generalizations of AdaBoost tgoth problems together, deriving one efficient algorithm fo

regularization given in Eq. (1) and Eqg. (2). We start by _ o )

deriving boosting-style updates for the mixed-namlti-  Adding (. -regularization terms to the multiclass and mul-

taskloss of Eq. (1) withp = oco. The multitask loss is titask losses, we have that the change in the objective is

decomposable into sums of losses, one per task. Hence, fér — A 2_j—1 ||ﬁ§ + &l + AT szHoo For sim-
each separate task we obtain the same bound as that in tRACity of our derivation, we focus on updating a single row
binary classification case. However, we now need to updaté N W, and we temporarily assume thaf = 0. We make
rowss; from the matrixi¥” while taking into account the the substitution;d, = ¢;,,. The update tav; is now given
mixed-norm penalty. Given a royj we calculate impor- by the solution to the following minimization problem:
tance weightg! (i, r) for each examplé and task- as the k

ptro.bability the current weights assign the incorrect. label minzuje*dr et 4 a|d|, (6)
q'(i,r) = 1/(1 4+ exp(y; ,w, - ;)), and the correlations d =

ﬂfj for each task- asy,!; = im0 4 (67) |z ]

Figure 1. Algorithm for minimizing>_, f-(d-) + A||d||...

First, we note that the objective function of Eq. (6) is sep-

- _ t(; - ini - : : N
and i, ; = Yiy, .z ;<04 (7)|2i . Defining 8; = araple ind; with an (..-regularization term. Second, the
[6j1--- ;] and applying the progress bound for binary gerivative of each of the terms, dropping the regularizer, i
classification, we see when we perform the upditite! = —pFe=d + p=e. Third, the unregularized minimizers
Wt +[8---6"]T we can lower bound the change in the ared, — Llog(uf/py7) (where we allowd, = £00). We
loss,A; = L(W'™) — L(W*), with immediately have the following corollary to Thm. 1.

ai [ (1 — e=%50/a5y £ = (1 — eShr/aiy) Corollary 4.1. The minimizingd* of Eq. (6) isd* = 0

Z ! (#”7( AR )) if and only if S-F_, |t — u| < A Assume w.l.o.g that

r + > u7. Whend* # 0, there are set®3 = {r : |d*| =

As before, the template vector should satisfy the condtrain|g*|| } andU = [k] \ B such that

that) . a;|lz; ;| <1 for all <. N .
25 51wl < ! (@) Forallr € U, ufe % — pu-ed =0

For the multiclass objective from Eq. (2), we change the(b) Forall r € B, |d,| > |d}| = ld*]|,
definition of the importance weights and correlatiqm;f%, © 3 eIl — yelld®l — ) =0,
which gives us a new bound on the change in the multiclass reB i "

loss. The following lemma extends the boosting boundszase on the corollary, we can derive an efficient procedure
of Collins et al. (2002). that first sorts the indices ift] by the magnitude of the un-
Lemma 4.1 (Multiclass boosting progress bound). Let  regularized solutiom, (we can assume thatt > - and
¢'(i,r) denote the importance weight for each example inlip signs at the end as in Fig. 1), then solves the following
dexi and class index € {1,...,k}, where equation for each € [k]:

exp(w, - @;) et Y b et > ur-A=0. (@)

t .
1,7)—m ——F— . ~ ‘ E ‘
q'(i,r) Yo exp(w! - ;) rid,>d ) ridr>d



|NPL|JQT1 Trlair_win%sref: {gnﬁyfi)};lhg_‘ quadratic upper bounds based on those of Dekel et al.
egularizatiomk, number ot roun
Update templatest C R” s.t. (2005). Concretely, we use bounds of the form
Va € A max; ZT'L:1 aj\asi,j\ < % 1
FOR? — 110 T { ! } L(w + de;) < L(w) + VL(w) -ej5+§éej - De;9,
CHoosEj € {1,...,n}
FORi=1tomandr =1tk where D upper boundsV?L(w) (in the binary case,
SETq'(i,r) = $TBris D = diag(1/4 Y"1, 22,)). We term these methods Grad-
ForRr=1tok Boost for their use of gradients and bounds on the Hes-
phi= D (=g Gy)|wisl+ Y a'(i,7)|wisl sian. We make no claim about whether the resulting algo-
BYi=r24 ;>0 . 1’=yz‘¢ﬂ1i-,jt<0 rithms entertain the weak-to-strong learnability projesrt
py = (L=q"(iy)leisl+ > q"6,r)|al of AdaBoost. The quadratic bounds allow us to perform
G0 Gy, >0 boosting-style steps with, and /2 regularization in addi-
MiNImizE ffr {]6611% Sucﬁth?hf/ 7.0 (usif‘lg' D tion to the regularizers studied above. We start with the
Zj,raj[p"r',je P e J] @] +a;0,] binary logistic loss. GradBoost, similar to AdaBoost, can
UPDAJrEl , . use a template vectar to parameterize updates. We focus
W =W+ 61+ 6n] on single-coordinate updates for cleanliness, howeves. Th
Figure 2.AdaBoost for¢; /£..-regularized multiclass. following lemma gives a progress bound for GradBoost.
This process continues until we find an indesuch that Lemma 5.1 (GradBoost Progress Bound).+Letg_denote
the solutiond* of Eq. (7) satisfies* > d(, 1), whered,,, ~ the gradient of the logistic losgy; = —u; + py. Let

is the p" largest unregularized solution. To develop an% = 1/ zf;andw'™ = w' +d'e; W_ith ot = a_jd.t-
efficient algorithm, definé/;- = 3=, ; ;15" To solve IThenbthe change), = L(v%ués) —dLB(wtﬂ),lln theblogls(;[ilc(—]I ]
Eq. (7) for eachy, applying the reasoning for Eq. (4) gives '°SS etween iterations of GradBoost is lower bounded by
—A /A2 +4AMF M, e (@)Y _ ¢, (6%
d* = log S P (8) Ar 2 —a; | gjd + —¢ = —|gd + 8a,
P

When M, = 0, we getd* = log(\/M;). We can
use Eq. (8) successively in the algorithm of Fig. 1 by se
ting M\, = M7 + ). To recap, by sortingl, =

t.Jo derive a usable bound for GradBoost with-
regularization, we replace the progress bound in lemma 5.1
with a bound dependent aw?t! andw? by substituting
w't! — w! for §°. Incorporating/;-regularization, we get
thatQ(w'*!) — Q(w?) is upper bounded by

p
Llog(p;t /p;) and incrementally updating/, we can
use the algorithm of Fig. 1 to solve the extensions of Ad-
aBoost with?; /{,-regularization in time) (k log k).

(wiH —wh)?+ Mw! = AJw!| (10)

i 1
It remains to show how to solve the more general updategj (w;+1_wt_)+7 .

whenw # 0. In particular, we would like to find the mini- 77 8a;
mum of

az (whre ™ +pre™) + Alw+ad|,, . (9)
r=1

We can make the transformatiop = w,./a+d,., which re-
duces our problem to the problem of finding the minimizerwe can use Eq. (11) to derive a GradBoost algorithm for the
of S, (utewr/oe= 4 pme=r/ae7) + X |y, with  ¢,-regularized logistic loss. The algorithm is omitted as we
respect toy. This minimization problem can be solved give a general multiclass version in the sequel. It is also
by using the same sorting-based approach, then recoverimpssible to use Thm. 1 to obtain new coordinate descent
d =~ —w/a. methods for losses withy /¢, regularization. Due to lack

Combining our reasoning for the multiclass and muItitaskOf space we omit details but report the performance of these

losses, we obtain an algorithm that solves both problems bya“ams in Sec. 6.

appropriately settingcjfj and using the algorithm of Fig. 1 One form of regularization that has not been considered
to update rows ofV’. As they are so similar, we present the in the standard boosting literature 4 or ¢3 regulariza-

The bound above is separable, so Thm. 1 gives the update

Wil

= Sign(w;i —4da,g;) Hw; —4da,g;| — 4a.7-)\]+ (11)

algorithm only for the multiclass loss in Fig. 2. tion. The lack thereof is a consequence of AdaBoost's ex-
ponential bounds on the loss. GradBoost, however, can
5. GradBoost with ¢, & 61/62 Regularization straightforwardly incorporaté;-based penalties, since it

instead uses linear and quadratic bounds on the decrease in
In this section we shift our attention to a lesser used apthe loss. We focus on multiclass GradBoost, as modifica-
proach and derive additive updates for the logistic-logk wi tions for multitask follow the lines of derivation discusise



INPUT: Tralnlng setS = {(m“ y7)}:’;1 : MCAT Loss Rates CCAT Loss Rates

Smooth-train|

Regularizatior\; number of roundd” o Smooih-test
FoOrRt=1toT T ew
CHOOSEj € {1,...,n}
SETa; =1/, 23,
FOrRi=1tomandr =1tok
/l Compute importance weights for each class
SET qt(Z, 7”) = Z;;lpe(xp(wz-)wi)
FOR T — 1 '[O k ECAT Loss Rates ) GCAT Loss Rates
/I Compute gradient terms
SET grj = >oimy (¢*(6,7) = 1{r = i)z
9; =915 9rl

—t+1 (ot ) _ 2a; A
w;" = (W) - 2a;9,) [1 |w§_2;_jgj|2]+

Figure 3.GradBoost for; /£>-regularized multiclass. - T e

] ) Figure 4.Results on the 4 top-level classes from RCV1.
thus far. We focus particularly on mixed-norf //¢s-

regularization (Obozinski et al., 2007), in which rows from 6. Experiments
the matrix/W = [w - - - wy] are regularized together in an
£s-norm. This leads to the following modification of the
multiclass objective) (W) from Eq. (2):

One of the objectives of this section is to demonstrate em-
pirically that the proposed algorithms are effective in ob-
taining sparse and accurate models. In our first series of
m " experiments, we focus on boosting and feature induction,
ZIOg (1 + Z#yiewrmi—wy,ma + )\Z [w;]l, (12) !nvestlgatmg the effect ofl-_regul_anzatlon and its a_bll-

ity to automatically cease inducing new features in the
presence of regularization. We examined both classifica-

Generalizing the GradBoost progress bound while usingﬂ{on and regression tasks. I_:or classification, we used_ the

the normalizations; = 1/, Sﬂ?j as before (omitting de- euters RCV1 Corpgs (Lewis et al., 2004), which consists

tails), we upper boun@(W*1) — Q(W*) b of 804,414 news articles and aro_und_lO0,000 words that
) PP @ ) — QW) by constitute our features. Each article is labeled by at least

i=1 j=1

one label from the set MCAT, CCAT, ECAT, and GCAT,
k t k t4+1\2 . L
Z (g_ o wm> witl 4 1 Z (wir) (13) and we train a classifier for each e_ach class. We show av-
" 2a; o4 ; erage logistic loss rates over a series of tests using 30,000
L P randomly chosen articles with a 70/30 training/test split i
+ Z ((wdvr) — grjuwl T) + A ([@t ), — [w@h,) Fig. 4 (error rates are similar and we omit them for space).
4a; ’ As a baseline for comparison, we used boosting regularized
with a smooth¢, penalty (Dekel et al., 2005), an approx-
whereg,. ; is the derivative of the multiclass loss w.r.t the imation to the/;-norm. We also compared our approach
jth weight for class. The above bound is evidently a sep- to ¢»-regularized logistic regression with features chosen
arable quadratic function witfy-regularization. We would using mutual information with the target (details omitted)
like to use Eq. (13) to perform block coordinate descentThe regularization parameters were chosen using 5-fold
on the?; /¢5-regularized los<) from Eq. (12). Defining cross validation. For both boosting algorithms, we ran the
the gradient vectog; = [g1; - gr,;]T and using basic “totally corrective” variant (Warmuth et al., 2006). Con-
properties from convex analysis, we obtain that the updateretely, we added th&0 top-scoring features on every iter-
performed to minimize Eq. (13) with respect to raw is ation for the/; booster and the single top-scoring feature
for the smooth¥; regularized booster, then reoptimized the
weights of all the features previously selected. The graphs
] (14)  inFig. 4 suggest an interesting story. In all of them, ¢he
+ regularized booster actually ceased adding features droun
iteration 30, including about700 features with non-zero
To recap, we obtain an algorithm for minimizing the’/>-  weights after the back-pruning/optimization steps. There
regularized multiclass loss by iteratively choosing imdic fore, the plots for/;-AdaBoost terminate early, while the
4 and then applying the update of Eq. (14). The algorithmsmooth¢; booster keeps adding features and starts over-
is given in Fig. 3. fitting to the training set as early as iterati2®0.

r=1

—t+l (= . _ 2aj)\
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gﬁosling Ileraliorg
Figure 6. Left: test set coverage versus overall sparsity/iof
Right: test set coverage versus row sparsityiaf

We also performed comparisons on regression tasks. \Weiructured regularization. As our datasets are singletlab
describe here results for the Boston housing data set frofye omit experiments with multitask losses. For all multi-
the UCI repository and an F16 aircraft control datasetclass experiments, we focus on two error metrics. The first
where the goal is to predict an action on the ailerons ofs misclassification rate. The secondcisverage which

the aircraft given its state. We used thénsensitive re- measures how wrong a classifier is. Givemeight vec-
gression loss (Dekel et al., 2005) to learn a predietor torsw, and an exampler; with label y;, the coverage is

In this case, our objective 57" | log (1 + ew®:—vi—) 4+ the correct weight vector's position in the sorted list of in
log (1 + e¥i—w=i—¢)  which approximatess-insensitive  ner productaw,. - x;. For example, itw,, - z; is the largest,
hinge regression. Far-insensitive regression, an analy- the coverage is 0, if it is third, the coverage is 2.

sis similar to+that for_standard boosting can be performed,, begin with the StatLog LandSat dataset (Spiegelhalter
to computey™ and ™ for every feature, which allows us ¢ ai0r, 1994), which consists of spectral values of pixels

to perform boosting as a]ready desgrlbed. For these testg, 5 5 neighborhoods in a satellite image. We expanded
we compared unregularized clas.,5|cal (forward-grgedy)the data by taking products of all features, giving 1296 fea-
seque_ntlal AdaBoogt, ouy -regularized total_ly-correctlve tures per example. The goal is to classify a pixel (a piece of
boosting, Zl-regular|zgd Iegst squares _(Fnedman et al"ground) as one of six ground types. In Fig. 6, we plot cov-

2007), and(,-regularizede-insensitive hinge 10ss. The o a4 ag a function of sparsity and as a function of the num-
boosters used a countably infinite set of features by eXpe of features actually used (trained with GradBoost). The
amining all products of features and were started With &, ot on, the left shows the test set coverage as a function of

single t_)ias feature. The algorithms could thus construc,o proportion of zeros in the learned weight matfix(we
arbitrarily many products of raw features as base hypoth€s ot vegyits for a training set of 240 examples per class as

ses and explore correlations between the features. For theg s are similar for smaller and larger sets). On therigh
¢1-regularized least squares and the hinge loss, we simplye sho\y test set coverage as a function of the actual num-
trained on the base regressors. ber of features that need to be computed to classify a piece
Fig. 5 shows the results for these tests with the Housing reof ground—that is, the proportion @fll zero rows in V.

sults on the left. Each plot contains the root-mean-squar&rom the plots, we see that for a given performance level,
error on test (the absolute error on test is qualitativaty-si the ¢1-regularized solution is sparser in terms of the abso-
ilar). The/;-regularized booster stopped after inducing anlute number of zeros. However, theregularized classifier
average of under 35 features, marked with a star in théequires at least 50% more features be computed than does
graphs, after which a dotted line indicates the boostershe ¢ /(>-regularized classifer for the same test accuracy.
intact performance. We see that even when classical AdThe results for misclassification rates are similar, and the
aBoost is allowed to run for 1,000 iterations, its perfor- variance for each point in the plots is smaller tharm?.

mance on test does not meet the performance foBihe \ye 4150 ran tests using the MNIST handwritten digits

features induced by thg-regularized model. In fact, even y,iahaqe The dataset consists of 60,000 training examples
after 3,000 iterations, the smoothvariant was notableto i o 10,000 example test set and has 10 classes. Each

outperform the35 feature model built by thé, -penalized image is a gray-scal28 x 28 image, which we represent
version. Furthermore, the latter trains at least an orde&swi c R, Rather than directly use the inpat, how-
of magnitude faster than the classical forward greedy reaver, we learned weights ; using Kernel-based weak hy-
gressor and results in a significantly simpler modéj- pothesess, (z) = K (; ;) K(,2) = - llz—zI? for
penalized AdaBoost also outperformis-penalized least . g whjr S 276Jé I’ m nt’ it set w nerat
squares and thé,-regularized hinge loss with respect to J € >, WheTes 1S a element support Set we generate
both the squared and absolute errors. by do_mg one pass through the data Wlth the perceptro_n and
keeping examples on which it makes mistakes. This gives a
In the next set of experiments, we compare the differen27,660 dimensional multiclass problem. On the left side of
structured regularizers with multiclass logistic lossesn-  Fig. 7, we plot the coverage rate for each algorithm on the
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of Statistics28, 337-374.

Friedman, J., Hastie, T., & Tibshirani, R. (2007). Pathwise
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o Koh, K., Kim, S., & Boyd, S. (2007). An interior-point
10,000 example test set versus the number of training ex- method for large-scal -regularized logistic regression.

amples used per class (we choose regularization values by j Machine Learning Research, 1519-1555.
cross-validation). Each improves as the number of train-

ing examples grows; however, it is clear that the sparsity-ewis, D., Yang, Y., Rose, T, & Li, F. (2004). RCV1:
inducing regularizers, specifically the structutgl/,. and A new benchm.ark colleguon for text categorization re-
(4 /5 regularizers, give better performance than the others. search.J. Machine Learning Research, 361-397.

The error rate on the test set is roughly 50% the coveraggeir R | & Ratsch, G. (2003). An introduction to boosting
and qualitatively similar. and leveraging.Advanced Lectures on Machine Learn-
We conclude with a direct comparison of AdaBoost and ing (pp. 119-184). Springer.

GradBoost with, /(.-regularization. On the left side of Negahban, S., & Wainwright, M. (2008). Phase transitions
Fig. 7 and in Fig. 8, we plot the training objective, test erro for high-dimensional joint support recovenadvances

rate, and sparsity of the classifiers as a function of train- . . :

ing time for both AdaBoost and GradBoost on the LandSat in Neural Information Processing Systems 22

dataset and MNIST dataset. From Fig. 8, we see that bot@bozinski, G., Taskar, B., & Jordan, M. (2007)Joint
AdaBoost and GradBoost indeed leverage induction during covariate selection for grouped classificatiffechnical
the first few thousand iterations, adding many features that Report 743). Dept. of Statistics, University of California
contribute to decreasing the loss. They then switch to a Berkeley.

backpruning phase in which they remove features that arg_. . .
not predictive enough without increasing mistakes on thegp|egelhalter, D". &. Taylor, C (19'94)\/|.ach|ne learning,
neural and statistical classificatiorkllis Horwood.

test set. We saw similar behavior across many datasets,
which underscores the ability of the algorithms to performwarmuth, M., Liao, J., & Ratsch, G. (2006). Totally correc-
both feature induction and backward pruning in tandem. tive boosting algorithms that maximize the margfvo-

Though this paper omits the following, we note that our al- ce_edmgs Of. the 23rd International Conference on Ma-
gorithms all enjoy convergence guarantees, provide sgorin chine Learning(pp. 1001-1008).

mechanisms for induction of features in boosting, and givezhang, T. (2008). Adaptive forward-backward greedy algo-
termination criteria for boosting based on the sparsifying rithm for sparse learning with linear model&dvances
regularizers. These results and full proofs are available i in Neural Information Processing Systems 22

the long version of the paper on the the first author's web- _ ) _
site: http://www.cs.berkeley.edu/jduchi. Zhang, T., & Yu, B. (2005). Boosting with early stopping:
Convergence and consistencinnals of Statistigs33,

1538-1579.
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Figure 8. Left: MNIST/LandSat error rate. Right: Sparsity.

References
Zhao, P., & Yu, B. (2006). On model selection consistency

Bertsekas, D. (1999).Nonlinear programming Athena of Lasso.J. Machine Learning Research, 2541-2567.

Scientific.



