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Abstract

We consider the problem of selecting a subset
of m most informative features where is the
number of required features. This feature selec-
tion problem is essentially a combinatorial op-
timization problem, and is usually solved by an
approximation. Conventional feature selection
methods address the computational challenge in
two steps: (a) ranking all the features by certain
scores that are usually computed independently
from the number of specified features and (b)
selecting the topn ranked features. One major
shortcoming of these approaches is that if a fea-
ture f is chosen when the number of specified
features ign, it will always be chosen when the
number of specified features is larger thanWe
refer to this property as thefonotonié property

of feature selection. In this work, we argue that
it is important to develop efficient algorithms for
non-monotonic feature selection. To this end, we
develop an algorithm for non-monotonic feature
selection that approximates the related combina-
torial optimization problem by a Multiple Ker-
nel Learning (MKL) problem. We also present a
strategy that derives a discrete solution from the
approximate solution of MKL, and show the per-
formance guarantee for the derived discrete so-
lution when compared to the global optimal so-
lution for the related combinatorial optimization
problem. An empirical study with a number of
benchmark data sets indicates the promising per-
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formance of the proposed framework compared
with several state-of-the-art approaches for fea-
ture selection.

1. Introduction

Feature selection is an important task in machine learn-
ing and has been studied extensively. It is often used to
reduce the computational cost or save storage space for
problems with high dimensional data for problems with ei-
ther high dimensionality or limited computational power.

It has also been used for data visualization. Feature se-
lection has found applications in a number of real-world
problems, such as natural language processing, computer
vision, bioinformatics, and sensor networks.

One of the important issues in feature selection is to set the
number of required features. It is important to note that
determining the number of selected features is a model se-
lection problem, and is beyond the scope of this study. In
this work, we assume that an external oracle decides the
number of selected features. It should also be noted that
the number of required features usually depends on the ob-
jective of the task, and there is no single number of features
that are optimal for all tasks.

Given the number of required features, denotedrhthe
goal of feature selection is to choose a subset ééatures,
denoted byS, that maximizes a generalized performance
criterion Q. It is cast into the following combinatorial op-
timization problem:

S* =argmax 9(S) s.t. |S|=m. (1)

feature selection, including mutual information (Koller &



Sahami, 1996), maximum margin (Weston et al., 2000;To see the monotonic property of most existing algorithms
Guyon et al., 2002), kernel alignment (Cristianini et al., for feature selection, first note that these algorithms rank
2001; Neumann et al., 2005), and the Hilbert Schmidt in-features according to their weights/scores that are com-
dependence criterion (Song et al., 2007), etc. Among thenputed independently from the number of selected features
the maximum-margin-based criterion is probably one of then. Hence, if a featurgf is chosen when the number of
most widely used criteria for feature selection due to itsselected features i, it will also be chosen if the num-
outstanding performance. ber of selected features is larger thark. In other words,

. . . . fe S — feS,if k< m,and therefores, C S,,.

The computational challenge in solving the opt|m|zat|onAs argued in (Guyon & Elisseeff, 2003), since variables

problem in (1) arises from its combinatorial nature, i.e., . . .
. . o that are less informative by themselves can be informa-
a binary selection of features that maximizes the perfor-. : . .
o . . tive together, a monotonic feature selection algorithm may
mance criterionQ given the number of required features.

A number of feature selection algorithms have been prolOe suboptimal in identifying the set of most informative

osed to approximately solve (1). Most of them first Com_features. To further motivate the need of non-monotonic
P AP y ' feature selection, we consider a bi-category problem with
pute a weight/score for each feature, and then select fea- three featurest, Y, Z. Fig. 1 (a)-(c) show the projection
tres Wi.th th? largest weights. For instance,la cﬂommon aPof data points (;n i’nd'ividuél features, Y andZ, respec-
pr_oach is tofirstlearn an SVM model,_and € ."’“”Te.s . tively. We clearly see thaf is the most informative fea-
with the largest absolut_g vyelghts. T.hls idea WaSJUSt'f.I.ed "ure to the two classes. Fig. 1 (d)-(f) show the projection
(Vapnik, 1998) by sensitivity analysis and was also utdize of data distribution on the plane of two joint featurEs”
for feature selection. A similar idea was used in SVM- '

Recursive Feature Elimination (SVM-RFE) (Guyon et aI.,XZ’ andy'Z, respectively. We observe thaly” are the

2002) where features with smallest weights were removectszf’i\:1 ° Irgonit;:tf?r:g ?;;\;?i\jza;teuggjsr'eNi?;ecghggﬁ:g%ﬂhsv:&ean
iteratively. In (Fung & Mangasarian, 2000; Ng, 2004); 9 ' y

. other feature are not as informative %", which justifies
norm of weights was suggested to repldgenorm for fea- ; )

. . the need of non-monotonic feature selection.
ture selection when learning an SVM model. Another fea-
ture selection model related th;-norm is lasso (Tibshi- In this paper, we proposersn-monotonic feature selec-
rani, 1996), which selects features by constraininglthe  tion method that solves the optimization problem in (1)
norm of weights. By varyind.;-norm of weights, a unique approximately. In particular, we alleviate the monotonic
path of selected features can be obtained. A similar modgdroperty by computing scores for individual features that
is LARS (Efron et al., 2004), which can be regarded as undepend on the number of selected featune§Ve first con-
constrained version of lasso. In addition to the optimaati vert the combinatorial optimization problem in (1) into a
on Ly-norm andL;-norm, several studies (Bradley & Man- formulation that is closely related to multiple kernel lear
gasarian, 1998; Weston et al., 2003; Neumann et al., 200%ng (MKL) (Lanckriet et al., 2004; Bach et al., 2004; Son-
Chan et al., 2007) explorell;-norm when computing the nenburg et al., 2006; Rakotomamonjy et al., 2007; Xu et al.,
weights of features. In (Bradley & Mangasarian, 1998),2009; Cortes et al., 2008). The key idea is to first construct
the authors proposed Feature Selection Concave meth@dseparate kernel matrix for each feature, and then find the
(FSV) that uses an approximakg-norm of the weights. binary combination of kernels that minimizes the margin
It was improved in (Weston et al., 2003; Neumann et al. classification error. We relax the original combinatorial
2005) via an additional regularizer or a different approx-optimization problem into a convex optimization problem
imation of Ly-norm. In addition to selecting features by that can be solved efficiently by expressing it as a Quadrat-
weights, in (Vapnik, 1998; Weston et al., 2000; Rakotoma-ically Constrained Quadratic Programming (QCQP) prob-
monjy, 2003), the authors proposed to select features basdgin. We present a strategy that selects a subset of features
on R?||w||?, whereR is the radius of the smallest sphere based on the solution of the relaxed problem. We further-
that contains all the data points. more show th@erfor mance guar antee, which bounds the

. difference in the value of objective function between using
Although the above approximate approaches have beepn ;

) L the features selected by the proposed strategy and using
successfully applied to a number of applications of featur

selection, they are limited by theonotonic property of he global optlmal_ §ubset of features found by exhaustive
: . ' ) search. Our empirical study shows that the proposed ap-
feature selection that is defined below:

proach performs better than the state-of-the-arts foufeat

A feature selection algorithm is monotonic if and only selection. Finally, we would like to clarify that although
if it satisfies the following property: for any two different our work involves the employment of MKL, the focus of
numbers of selected features, ilegndm, we always have our work is not to develop a new algorithm for MKL, but
S, C S, if & < m, wheresS,,, stands for the subset aof an efficient algorithm for non-monotonic feature selection

features selected by. The rest of this paper is organized as follows. We present
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Figure 1.A failed example for monotonic feature selection. (a)-{@ws the projection of data distribution on individual fels.X, Y,
andZ, respectively. (d)-(f) show the projection on the planevad foint features, respectively. The two classes are denmesymbols
o andx, respectively.

the non-monotonic feature selection in Section 2. Section 3th feature is selected, angd= (p1,...,pq). As revealed
presents experimental results with a number of benchmaria (2), to selectn features, we need to find optimal binary

data sets. We conclude our work in Section 4. weightsp; to combine the kernels derived from individual
features. This observation motivates us to cast the feature

2. Non-monotonic Feature Selection via selection problem into a multiple kernel learning problem.

Multiple Kernel Learning Following the maximum margin framework for classifica-

. . ) . __tion, given a kernel matri¥(p) = Zle p;K;, the classi-
In this section, we f'rSt. fShOW that multiple ker_nel leaming fiation model is found by solving the following optimiza-
approaches can be utilized for non-monotonic feature s

ion problem:
lection. We then present an efficient algorithm to approxi- P

mately solve the related discrete optimization problem. Fi. max 2a'e—(aoy)” (K(p)+7I)(aocy) (3)
nally, we prove the performance guarantee of the approxi- @
mate solution for the discrete optimization problem. sit. a'ly=0,0<a<C,

Let IV denote the number of training examples. We denot§yherel is the identity matrixix is the dual variable for the
by x; € RY the vector of theth attributes for all the train- margin error; bothC' andr are manually set constants;

. T : .

ing examples. LeX = (xi,...,xq) wheredisthe total  stands for the element-wise product between two vectors.
number of features. We denote the feature indexX&et , Notation0 < a < C'is a shorthand fob < a; < C,i =
asP. We denotee; € R? as ad-dimensional vector with 1,...,N.If p = e, then (3) reduces to a standard SVM.

all elements being one. We also omit the suffix when the o o
dimensionalityd of e, can be easily inferred from the con- We denote byv(p) the value of the objective function in

text. For a linear kernel, the kernel matiiikis written as: ~ (3), which represents the overall margin errors of the élass

K=X"X=Y% xx/ =%, K, where a kernel fication model. The subset @f most informative features
1= 7 1= ! e .

K; = x;x, is defined for each feature. To select a subsef® chosen by minimizing(p), i.e.,

of d features, we modifK as:
e K min w(p) s.t. ple=m. 4)
pe{0,1}4

d d
K = iXiXZT = iKiu 2
) ;p ;p @ Evidently, the challenge with solving the above problem is
the constrainp € {0,1}¢. We thus relaxp; in (4) into
wherep; € {0,1} is a binary variable that indicates if the a continuous variable, and have the following continuous



optimization problem: We denote by, . .., iq the ranked features, and By,
) T and k..« the smallest and the largest indices such that
min  w(p) S.t. p'e=m. (5) _ o ;
0<p<1 Ti, = Ti,, forl < k < d. We divide features into three

sets:
Remark It is important to note that although the objec-
tive function in (3) appears to be a linear functionpn A = A{ix]l <k < kmin}, (10)
w(p) is NOT a linear function op because of the maxi- B = {ig|kmin <k < Ekmax}, (12)
mization. As a result, (5) may have a non-discrete solution. C = {iglkmax < k < d}. (12)
To see this, consider the problem
Corollary 2. We have the following properties farand

i 2p 'x — ||x|3. 6
popluin - omax 2p x =12 ©®
Sincemax, 2p " x — ||x||2 = ||p||3, the optimal solution to ) 1, i€ A, 13
(6)isp: — 1/d, which is definitely not discrete. € Methuae Tmls Pi = o) e (13)

Below, we will discuss how to solve the relaxed min-max
problem in (5) efficiently, followed by the algorithm that The following corollary shows the relationship between (8)
derives a discrete solution for (4) based on the optimal soand the dual problem of SVMin (3).

lution to (5). Corollary 3. Whenm = d, i.e., when all the features are
It can be shown that (5) is equivalent to the following prob_gelected, (8) is reduced to the dual problem of a linear SVM
lem according to (Lanckriet et al., 2004): in (3).
. T
o 200 e (") Proof. First, we combine these two constraints- y; >
T(K; o (yy"))a andy; > 0, and express; asy; =
K T 4 540 a’ (Kio(yy i 20, press; asy;
s. t. ( (e(g)_)ljﬁyg;)@;)? et t6+ Y ) =0, max(0,7; — ). We then rewrite (8) as follows:

v>0,6>0,p e=m,0<p<l. d

o o max 2a'e—71a'a+ Ad—m)— Z max(\, ;) (14)
However, the above formulation is a semi-definite pro-«*- Py

gramming (SDP)_ problem and is therefore expensive tog ¢ aTy=0,0<a<C, A>0, ~>0.

solve. The following theorem shows that (7) can be refor-

mulated into a Quadratically Constrained Quadratic Proywhenm = d, we havel = 0 since the linear term

gramming (QCQP) problem, which is also justified in ), — 4) = 0, andmax (A, ;) = 7; sincer; > 0. Sub-

(Bach et al., 2004). stituting A\ = 0 andmax(\, 7;) = 7; in (14), we have the
Theorem 1. The dual problem of (7) is formulation of a linear SVM in (3). O
2a"e—Tala—mA—~" 8 . .
«Ixn% @ emTa ammaATy e ®) Remark The desired number of selected features, .,
s.t. a'ly=0,0<a<C, controls the sparseness of features. It is related ta-the
(@oy) Ki(aoy) <A+, Vi€ P, SVM (Scholkopf et al., 2000), which bounds the ratio of
support vectors.
Yi > 0, Vi e P. . .
N The following theorem shows how to derige from the
The KKT conditions are solution of the dual problemin (7).
(K(p)oyy' +7Da=e+v -5+ 0y, Theorem 4. Given the solution to the dual problem in (8),

denoted byy, v, and ), the solution to the primal problem
in (7) can be found by solving the following linear pro-
gramming problem:

t=a'(e+v—3+0y),

voa=0, aod =C9, '7o(e—p):()7

pi A+ — (o y)TKZ—(OL oy))=0,Vi € P.
min o' (K(p)oyy' +7Ia+2Ce’s (15)

. . . p,v,0
We can now derive properties of the primal and dual solu-

T _
tions using the KKT conditions in Theorem 1. Beforewe S & (K(P)oyy +7la=e+v -4 +40y,
state the results, we first rank the features in the descgndin voa=0,a0d=C0 6>0, v>0,

order of 0<p<l e'p=m,yo(e—p)=0,
ri=a'(Kio(yy)ea. 9) piA+7 = (aoy) Ki(aoy)) =0, Vie P.



Proof. The problem in (15) can be verified directly using Algorithm 1 Non-monotonic feature selection via MKL
the KKT conditions in Theorem 1. O Input:

o X e RN y ¢ {—1,41}": training data

e m: the number of selected features
Algorithm:

e Solvea for (8)

Although (15) is a linear programming problem, the solu-
tion for p may be not completely discrete due to the con-

straint e Computer; = (31, Xi;0;9;)°
Select the firstn feat ith the | 3
(K(p) o ny i TI)a —edty_ 5 n 6‘y, (16) e Selec e TIrs eatures wi e largest
The following theorem shows the optimal solution to (15) h
is discrete if constraint (16) is dropped. where
Theorem 5. Consider the following problem: M=K(p)o(yy" )+, B=> piK;.
B
min o' (K(p)oyy' +7I)a+2Ce’s a7) ’ ]
p,v,0 The operatow,,.« () calculates the largest eigenvalug®
s.t. voa=0,a0d=0C0,§>0,v>0, is the optimal solution to the relaxed optimization problem
0<p<l e p=m, yo(e—p)=0, in (5), andp* is the global optimal solution to the combi-

piA+7i — (aoy) Ki(aoy)) =0, Vi e P natorial optimization problem in (4).
where), v, anda are the optimal solution to (8). An opti- Thg pr.oof can be found in the long version of this paper.
mal solutionp to (17) can be obtained by selecting the first AS indicated by Theorem 6, the bound for the suboptimal-

m features with the largest (defined in (9)) and assigning ity of the approximate solution depends on t_he number of
p; = 1 for the selected features. selected features through the #et Thus, by incorporat-

ing the required number of selected features, the resulting
approximate solution could be more accurate than without
it. This suggests that the proposed algorithm produces a
better approximation to the underlying combinatorial opti
mization problem (4).

Proof. First, notice that an optimal solution férandv to
(17)isd = v = 0. Since (13) gives binary solutions for
p; if i € AU C, the only remaining undecided variables
for (17) are{p;|¢ € B}. Second, notice that the objective
function in (17) remains the same no matter which subset

of s = m + 1 — ky;, features are selected froth This 3. Experiment
because; = o' (K; oyy')a = A foranyj € B. This
implies the selection of: features with the largest pro-
vides an optimal solution to (17). O

We denote byNMMKL the proposed algorithm for non-
monotonic feature selection. The greedy algorithm that
selects the features with the largest absolute weighs

) ] _ . computed by SVM is used as our baseline method, and is
The above theorem suggests a simple algorithm of derivingafarred to aSVM-LW. We also compare our algorithm to

. . n
a discrete solution fop based on the value of ' (Ki o the following state-of-the-art approaches for featuresel
(yy"))a, which is summarized in Algorithm 1. tion:

Remark We can rewriter; as followsr; = o (K; o e Fisher (Bishop, 1995) that calculates a
yya = (Z{\f_l ay;Xi,)? = w?, wherew; is the Fisher/Correlation score for_each feature. _
weight computéd for theth feature. Hence, the algorithm ~ ® FSV (Bradley & Mangasarian, 1998) that approxi-
described in Algorithm 1 essentially selects the features ~ Mates thely-norm ofw by a summation of exponen-
with the largest absolute weights. Compared with the sim- t'8‘2| fuyctlons. , ,
ple greedy algorithm that selects features with the largest ® £~ W~ (Weston et al., 2000) that adjusts weighiby
absolute weights computed by SVM, the key difference is ~ cOmputing gradient descents on a bound of the leave-
thato used in our algorithm is computed by (8), not by (3). one-outerror. _

e Lg-appr (Weston et al., 2003) that approximates the
The following theorem shows that the performance guaran-  ,,-norm by minimizing a logarithm function.
tee of the discrete solution constructed by Algorithm 1 for o 1,,-SVM (Fung & Mangasarian, 2000) that replaces
the combinatorial optimization problem in (4). Ly-norm ofw with L;-norm in SVM.
Theorem 6. The discrete solution constructed by Algo-
rithm 1, denoted bp, has the following performance guar-
antee for the combinatorial optimization problem in (4):

For all the methods, features with the largest scores are
selected. Forl;-SVM, we use the implementation in
(Fung & Mangasarian, 2000); for other baseline algo-
w(p) < 1 rithms, we adopt the implementations in Spidemy.

w(*) 1 — omax(M-1/2BM-1/2)’ kyb. t uebi ngen. npg. de/ bs/ peopl e/ spi der/).

=




Table 1.The test accuracy4) for the toy data set. #SF stands for the number of selectddrtes.
#SF | NMMKL SVM-LW  Ly-appr Fisher R*W? FSV L1-SVM

1 939+1.9 86.4:3.2 85429 939+19 90.3t44 86.3:t2.7 86.33.3
2 99.7+0.5 99.7£0.5 997405 94A1.8 97.5:2.8 99.4t1.4 99.74+0.5

3.1. Experiment on Toy Data lists the size for each data set.

We first run our experiments over the toy dataset that is il-Note that the two microarray data sets are rather challeng-
lustrated in Fig. 1. We randomly seletfi0 examples from ing compared to the other data sets since they contain a
the toy dataset as the training data and the remaitdg small number of data points but have very high dimension-
examples are used as the test data. We repeat the expealities. Therefore, it is important to study the effect adife
ment30 times. To avoid any side effects caused by scalegure selection when the number of features is very large
of different dimensions, we normalize each feature to bewhile the number of instances is modest.

a Gaussian distribution with zero mean and unit standar
deviation, based on the training data. The regularizatio
parametelC in all SVM-based feature selection methods
is chosen by &-fold cross validation. Parameterin our

%or all the data set30% of the examples are randomly
"Lelected as the training data and the remainder are used as
the test data. Every experiment is repeated @&ithandom

o S trials. The same procedure, which was applied to the toy
formulation is also tuned by &fold cross validation. The data set, is also applied to the nine real-world data sets to

gl\J/TAber.Of rtehqullcredt featurels 'St V;Eed df][fdrm % ,lo\ Im.(ter?r . normalize data and decide paramet€randr. To speed
using Ine features selected by difierent algontinms 13, , y,q computation for the two microarray data sets (i.e.,

o P u
uset(:]astth(ta gla}[ssmewr o comtptjr:e the c:?ssﬁmatlonda;;ura%%lon and Lymphoma), Fisher is first used to select the
on the test data. YVe report the resulls average € 1000 features with the largest Fisher scores as the candi-
runs in Table 1. When selecting one feature, we observ

. . ""Hates for feature selection. Features selected by differen
that both t-he proppsed NMMK.L and Fisher could identify algorithms are fed into a linear SVM for training, and the
the most informative feature, i.eS; = {Z}, for the toy

data. | trast. the other fi loorith alas th classification accuracy of test data is used as the evatuatio
ata. in contrast, tne other five aigorithms r S e hetric. The number of selected features is set to(bend
least informative feature, which leads to relatively loasl

N _ 20 for the four UCI data sets, arid), 20, 40, and60 for the
sification accuracy. When selecting two features, NMMKL other five data sets. This is because Bci, Digitl, Usps, and

and most of the comparison algorithms are able to |dent|f3{he two micro-array data sets contain examples with signif-

]tchﬁ" btesj[dfeatt-ure ;u?/ség :th{X’ Yb}. :n ?(t)\;traSt' I?ghfer icantly higher dimensionality than the UCI data sets, and
ails to 1den ity {X, ; }-as € subset of tWo most INor~ 4, q efore allow for larger numbers of selected features.
mative features. This is because according the monotonic

property of FisherS, selected by Fisher must be a super-We present the classification results for the four UCI data
set ofS;, and as a resulf € S, for Fisher. In conclusion, sets in Table 3 and the results of the remaining data sets
NMMKL successfully identifies the best feature subsets inin Figure 2! First, we compare the proposed feature se-
both cases. This shows the importance of non-monotonitection method to SVM-LW. We observe that for almost all
feature selection, which requires the ranking procedure ithe cases, the proposed approach outperforms SVM-LW.
feature selection to be dependent on the number of selectdwr several data sets with different number of selected fea-

features. tures (e.g., Colon and Sonar with and20 features), the
improvement is significant. As revealed in Corollary 3, the
3.2. Experiment on Real-World Data Sets proposed algorithm is similar to SVM-LW except that the

. ] . weightsa are computed differently. Thus, this result indi-

The data sets well studied from previous literatures of-gtes that computed by the proposed approach is more ef-
feature selection (Guyon et al., 2002; Weston et al.factive for feature selection than those computed by SVM.
2003) are employed in our experiments. We seleCigecond, we compare the proposed method to the other
data sets from three different data repositories for OUgiate-of-the-art approaches for feature selection. Among
evaluation: (a) four binary data sets from the UCI g the competitors, we found that methofis-appr and
repository Qittp://archive.ics.uci.edu/m/), 1 _gym overall deliver good performance across all the
namely lonosphere, Sonar, Wdbc, and Wpbc; (b) thregiaia sets. We find that overall the proposed approach per-
data sets from_ the Semi-supervised Learning bookg,ms slightly better tharL.o-appr andL;-SVM for most
(wwv. kyb. t uebi ngen. npg. de/ ssl - book/), of the cases. For data sets Sonar and Bci, the improvement

namely Digitl, Usps, and Bci; and (c) two microarray datamade by the proposed algorithm is statistically significant
sets (ww. kyb. t uebi ngen. npg. de/ bs/ peopl e/

west on/ | 0/), namely Colon and Lymphoma. Table 2  'SinceR*W? and F'SV are time consuming on high dimen-
sional data sets, we do not include their results.



Table 2.Data sets used in the experiments oratory for Human-centric Computing and Interface Tech-
Data [ dim Num [ Data | dim  Num nologies.

lono 34 351 Wdbc 30 569
Wpbc | 33 198 |[[ Sonar | 60 208
B | 117 400 || Digtl | 241 1500 References
ng’;n 22;010 1220 (L:Or'r'] 3;216 1320 Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004).
y Multiple kernel learning, conic duality, and the SMO al-
gorithm. Proc. Int. Conf. Mach. Learr(pp. 41-48).

(student-t) when compared fo)-appr andZ;-SVM. Note  Bishop, C. (1995).Neural networks for pattern recogni-
that although the proposed algorithm does not always de- tion. London: Oxford University Press.

liver the best performance, it consistently performs well )

across all the data sets for different numbers of selecte§radley, P. S., & Mangasarian, O. L. (1998). Feature selec-
features. In contrast, we observe that bbgrappr andZ. ;- tion via concave minimization and support vector ma-
SVM could have poor performance for certain data sets. chines.Proc. Int. Conf. Mach. Learn(pp. 82-90).

For instance, when the number of selected fea_tureﬁ,is Chan, A. B., Vasconcelos, N.. & Lanckriet, G. R. G.
Ly-appr does not perform well on Colon and Bci, ahg
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Table 3.The classification accuracy4) on real-world data sets. The best result, and those noifisgmtly worse than it (achieved by
t-test with95% confidence level), are highlighted by the bold font in eacteca
Data | #SF NMMKL SVM-LW  Lg-appr Fisher R°W?  FSV L1-SVM

Sonar 10 | 75.0+£2.3 71.44.6 69.859 69.3t5.9 64.3t7.1 71.45.1 70.Gt6.0
20 | 75.0+£5.8 72158 74448 72434 70446 73.H42 T72.HA44
lono 10 | 86.1+£3.7 853+5.2 856+5.0 84.3t5.0 86.0+4.3 82.4:5.6 86.6+4.0
20 | 87.3+4.1 86.4+4.7 85447 85H4H3.8 85HH4.8 86.7+3.4 86.6+ 3.8
Wdbc 10 | 97.0£1.0 95408 96.6:t0.8 94.6t1.7 93.5:1.2 94.2t1.0 96.3:0.4
20 | 974406 974405 97.2+1.0 97.4+0.6 94.6t1.0 96.5:1.0 97.0+£0.5
Wpbc 10 | 795+4.8 78.3t4.7 79.8+6.0 78252 78.0£5.1 78.0t5.1 79.0+6.4
20 | 81.245.0 80.7£5.2 804+4.7 80.H4.7 79.3:3.9 78.6:4.6 78.0t6.7
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Figure 2.The classification accuracy of feature selection algorithm
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