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Abstract

This paper presents a theoretical framework
for ranking, and demonstrates how to per-
form generalization analysis of listwise rank-
ing algorithms using the framework. Many
learning-to-rank algorithms have been pro-
posed in recent years. Among them, the
listwise approach has shown higher empiri-
cal ranking performance when compared to
the other approaches. However, there is no
theoretical study on the listwise approach as
far as we know. In this paper, we propose a
theoretical framework for ranking, which can
naturally describe various listwise learning-
to-rank algorithms. With this framework,
we prove a theorem which gives a generaliza-
tion bound of a listwise ranking algorithm,
on the basis of Rademacher Average of the
class of compound functions. The compound
functions take listwise loss functions as outer
functions and ranking models as inner func-
tions. We then compute the Rademacher
Averages for existing listwise algorithms of
ListMLE, ListNet, and RankCosine. We also
discuss the tightness of the bounds in differ-
ent situations with regard to the list length
and transformation function.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).
*The work was performed when the first author was an
intern at Microsoft Research Asia.

1. Introduction

Ranking is an important problem in various applica-
tions, such as information retrieval, natural language
processing, computational biology, and social sciences.
In many real scenarios, the ranking problem is de-
fined as follows. Given a group of objects, a rank-
ing model sorts the objects with respect to each other
in the group, according to their degrees of relevance,
importance, or preferences. For example, in informa-
tion retrieval, a ”group” corresponds to a query, and
”objects” corresponds to documents associated with
the query. In recent years, machine learning technolo-
gies have been developed to learn ranking models, and
a new research branch named “learning to rank” has
emerged. In the training phase, several groups of ob-
jects are given to facilitate the creation of a ranking
model, and in testing, the ranking model is used to pre-
dict the ranked list for a new group of objects. Many
learning-to-rank algorithms have been proposed in the
literature, which can be categorized into three groups:
the pointwise, pairwise, and listwise approaches. The
pointwise and pairwise approaches (Li et al., 2007;
Herbrich et al., 1999) respectively transform ranking
into (ordinal) regression or classification on single ob-
ject and object pairs. The listwise approach solves the
problem of ranking by minimizing a loss function de-
fined on object lists. Representative listwise ranking
algorithms include ListMLE (Xia et al., 2008), ListNet
(Cao et al., 2007), and RankCosine (Qin et al., 2007).
According to previous studies (Cao et al., 2007; Qin
et al., 2007; Xia et al., 2008), the listwise approach
can outperform the other two approaches on bench-
mark datasets.
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Although some works have discussed the generaliza-
tion bound for pairwise ranking algorithms, such as
(Agarwal & Niyogi, 2005) and (Freund et al., 2003),
these studies are not sufficient especially for handling
the real settings in applications like information re-
trieval. Ranking in these real applications employs a
special data structure of two layers: group and object
(e.g., in information retrieval, query and document).
While the ranking model operates at the object level,
the evaluation of a ranking model is usually performed
at the group level. Due to these key differences from
conventional learning tasks, many existing generaliza-
tion theories in machine learning may not be directly
applied.

Without loss of generality, we take information re-
trieval as an example application in this paper. In
such a scenario, a meaningful generalization bound
on a learning to rank algoirthm should be defined at
query level. As far as we know, (Lan et al., 2008) was
the only work that investigates the query-level gener-
alization ability of learning-to-rank algorithms. The
problem with their approach, however, was that the
proposed framework could only be used in the gen-
eralization analysis of pairwise approach, but not the
listwise approach1. Therefore, how to conduct gen-
eralization analysis of listwise ranking algorithms was
still an open issue. The goal of this paper is exactly to
tackle the challenge.

First, to conduct generalization analysis of listwise
ranking algorithms, we extend the query-level rank-
ing framework proposed in (Lan et al., 2008). In our
framework, a query is directly assumed to be a random
variable, represented as the set of documents associ-
ated with it. However, there is no further assumption
on stochastic generation of documents from the set,
once it is given and fixed. In this way, it can more
naturally characterize the listwise ranking algorithms.

Second, with the extended framework, we further em-
ploy the Rademacher Average technique (Mendelson,
2001; Bartlett & Mendelson, 2003; Mendelson, 2003;
Bousquet et al., 2004) to perform the generalization
analysis. Specifically, in this paper, we prove that if
we define a compound function, whose outer function
is the listwise loss function and inner function is the
ranking model of a listwise algorithm, then the gen-
eralization bound of the listwise algorithm will be a
function of the Rademacher Average of this compound

1The authors claimed that their framework can handle
the listwise case. However, their “listwise” formulation is
more like an extension of the pairwise approach in which
m-document subset is utilized, and thus it is not the same
as the conventional listwise approach.

function class. We then demonstrate how to compute
the Rademacher Average, by taking the existing algo-
rithms of ListMLE, ListNet, and RankCosine as exam-
ples. We also discuss the tightness of the generaliza-
tion bounds in different situations, in order to provide
guidelines on algorithm design and parameter tuning.
For instance, we discuss how to set the parameters
of an algorithm, how to select a transformation func-
tion2, and how to choose the most suitable algorithm
in a given setting.

To our knowledge, this paper is the first study on the
generalization ability of listwise ranking algorithms.
Major contributions of the paper include:

1) the proposal of the extended query-level ranking
framework, which enables theoretical analysis on the
listwise approach;

2) the proof of the theorem that gives a generalization
bound of listwise ranking algorithm on the basis of the
Rademacher Average;

3) the derivation of the Rademacher Averages for three
listwise ranking algorithms;

4) the investigations on the tightness of generalization
bounds, with respect to different listwise loss functions
and transformation functions.

2. Query-Level Ranking Framework

Given the special characteristics of ranking when com-
pared with classification and regression (e.g., the no-
tion of ‘query’ exists in learning and evaluation), a
new framework is needed to facilitate theoretical re-
search on the problem. The framework proposed in
(Lan et al., 2008) was based on the same motivation.
Unfortunately, it can only explain the pointwise and
pairwise approaches, but not the listwise approach in-
cluding ListNet (Cao et al., 2007) and ListMLE (Xia
et al., 2008). In this work, we extend their frame-
work, and provide a more reasonable formalization of
the listwise ranking algorithms.

For ease of explanation, let us first look at the query-
level ranking framework proposed in (Lan et al., 2008).

Let Q be the query space, D be the document space,
and X (= Rd) be the d-dimensional feature space. We
use the mapping Φ : Q × D → X to create a feature
vector from a query-document pair. Let q be a random
variable defined on the query space with an unknown

2In the existing listwise ranking algorithms, a transfor-
mation function is first applied to the ranking scores of
documents, and then a liswise loss is defined based on the
transformed scores and the ground truth.
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probability distribution PQ. Let f denote the real-
valued ranking function, which assigns each document
a score f(x). The scores of the documents associated
with the same query are used to rank the documents.
We measure the loss of ranking documents for query q

using function f with a loss function L(f ; q).

The goal of ranking is to minimize the expected risk of
f as defined below:

R(f) =

∫

Q
L(f ; q)PQ(dq).

As the distribution PQ is unknown, we use the em-
pirical risk to approximate the expected risk, which is
defined as follows:

R̂(f) =
1

n

n∑

i=1

L(f ; qi),

where q1, · · · , qn are i.i.d observations of q.

Different ways of defining the loss function L(f ; q) lead
to different formalizations. Lan et al.(2008) gives a
definition of L(f ; q) for the pointwise approach, pair-
wise approach, and ‘listwise’ approach. Specifically,
L(f ; q) is defined as a function based on a probabil-
ity distribution of documents, document pairs, or m-
document subset. We point out that this might not
be appropriate, because for the existing listwise algo-
rithms such as ListNet and ListMLE, once a query is
given, the set of all the documents associated with the
query is fixed. There is no further random sampling of
documents from the set and the query-level loss func-
tion does not need to be dependent on such a random
sampling. Therefore, it would be more accurate to de-
fine the loss function L(f ; q) as a function of the fixed
set of all the associated documents. This is exactly
the way in which we define the loss function L(f ; q) in
this paper.

For each query, the number of all the documents asso-
ciated is assumed to be m. This is for simplicity and
it is exactly the case when we perform re-ranking of
the top-ranked m documents in practice. The goal of
learning in the listwise approach is to best predict the
ranked list of m documents given a query.

We actually represent query q by (z, y), where z =
(x1, · · · , xm) and y stands for the ground-truth per-
mutation of m documents. Let Z = Xm be the in-
put space, whose elements are m feature vectors cor-
responding to the m documents, where y(i) stands for
the index of the document whose rank is i in the per-
mutation y. We call m the list length and assume that
m ≥ 3. Let Y be the output space, whose elements are
permutations of the m documents. Then we regard
(z, y) as a random variable on the space Z × Y ac-
cording to an unknown probability distribution P (·, ·).

Let l(f ; z, y) denote a listwise loss function (e.g., the
likelihood loss in (Xia et al., 2008), the cross entropy
loss in (Cao et al., 2007), and the cosine loss in (Qin
et al., 2007)) defined on the random variable (z, y)
and the ranking model f ∈ F , where F is the real-
valued function class. Then in our extended frame-
work, L(f ; q) and PQ can be set as L(f ; q) = l(f ; z, y)
and PQ = P (·, ·) respectively.

In this way, the expected risk of the listwise approach
with respect to the loss function l is defined as:

Rl(f) =

∫

Z×Y
l(f ; z, y) P (dz, dy).

The empirical risk of the listwise approach with re-
spect to the loss function l is defined as:

R̂l(f ; S) =
1

n

n∑

i=1

l(f ; zi, yi),

where (zi, yi), i = 1, · · · , n denotes the training data
sampled i.i.d. with (z, y) from the space Z × Y, S =

{(z1, y1), · · · , (zn, yn)} and zi = (x
(i)
1 , · · · , x

(i)
m ).

With the theoretical framework above, one can per-
form various theoretical analysis on the listwise ap-
proach. One of the most important analyses is about
the generalization ability of the listwise ranking algo-
rithms. Mathematically, it is to find a tight upper
bound of supf∈F (Rl(f) − R̂l(f ;S)), which is called
generalization bound in this paper.

3. Generalization Analysis on Listwise

Ranking Algorithms

In this section, we give the generalization bound of
a listwise algorithm using the ranking framework and
Rademacher Average3. To the best of our knowledge,
this is the first generalization analysis on the listwise
approach to learning to rank.

3.1. Rademacher Average based

Generalization Bound

Rademacher Average measures how much the func-
tion class F can fit random noise. The definition of
Rademacher Average is as follows.

Definition 1. For a function class G, the empirical
Rademacher Average is defined as:

R̂(G) = Eσ sup
g∈G

1

n

n∑

i=1

σig(Xi),

3There are two types of Rademacher Averages: the
empirical and expected Rademacher Averages (Bartlett &
Mendelson, 2003). We use the empirical Rademacher Av-
erage in this paper.
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where Xi, i = 1, · · · , n are i.i.d. random variables,
and σi, i = 1, · · · , n are i.i.d. random variables,
with probability 1

2 to take value 1 or -1, σ stands for
{σ1, · · · , σn}.

According to (Bartlett & Mendelson, 2003), there are
three properties with Rademacher Average, as sum-
marized below.

1) ∀c ∈ R, where R stands for the space of real num-

bers, cG , {h : ∃g ∈ G, s.t.h = cg.}, then,

R̂(cG) = |c|R̂(G). (1)

2) If λ is a Lipschitz function with Lipschitz con-
stant Lλ (i.e., ∀x1, x2 within the domain of λ, |λ(x1)−

λ(x2)| ≤ Lλ|x1 − x2|) and λ(0) = 0, λ ◦ G , {h : ∃g ∈
G, s.t.h = λ◦ g.}, where λ◦ g stands for the compound
function, whose outer function is λ and inner function
is g. Then,

R̂(λ ◦ G) ≤ LλR̂(G). (2)

3) Given Gi, i = 1, · · · , n,
∑n

i=1 Gi , {g : ∃gi ∈ Gi, i =
1, · · · , n, s.t.g =

∑n

i=1 gi.}, then,

R̂(
n∑

i=1

Gi) ≤
n∑

i=1

R̂(Gi). (3)

Applying the theory of Rademacher Average (Bartlett
& Mendelson, 2003)(Bousquet et al., 2004) to the list-
wise approach, we can get the generalization bound of
the approach as shown in the following theorem. For
the detailed proof, please refer to (Liu & Lan, 2008).

Theorem 1. Let A denote a listwise ranking algo-
rithm, and let lA(f ; z, y) ∈ [0, 1] be its listwise loss,
given the training data S = {(zi, yi), i = 1, · · · , n},
with probability at least 1 − δ, the following inequality
holds:

sup
f∈F

(RlA(f) − R̂lA(f ; S)) ≤ 2R̂(lA ◦ F) +

√
2 ln 2

δ

n
,

where R̂(lA ◦ F) = Eσ supf∈F
1
n

∑n

i=1 σilA(f ; zi, yi).

Theorem 1 shows that the generalization bound of
a listwise ranking algorithm is related to R̂(lA ◦ F),
i.e., the Rademacher Average of the class of com-
pound functions, whose outer functions are the list-
wise loss functions and inner functions are the ranking
models. In order to apply this theorem to a specific
listwise ranking algorithm, we need to compute the
Rademacher Average of the corresponding compound
function class.

3.2. Rademacher Averages of Listwise

Ranking Algorithms

We demonstrate how to compute the Rademacher Av-
erages for three existing listwise ranking algorithms,
ListMLE, ListNet and RankCosine.

3.2.1. Listwise Ranking Algorithms

We first show the listwise loss functions of the three
algorithms:

ListMLE :l(f ; z, y) = − log P (y|z; f),

P (y|z; f) =
m∏

i=1

φ(f(xy(i)))∑m

j=i φ(f(xy(j)))
.

ListNet :l(f ; z, y) = −
∑

∀π∈Y
P (π|z; gy) log P (π|z; f),

P (π|z; gy) =
m∏

i=1

φ(gy(xπ(i)))∑m

j=i φ(gy(xπ(j)))
,

P (π|z; f) =

m∏

i=1

φ(f(xπ(i)))∑m

j=i φ(f(xπ(j)))
.

RankCosine :l(f ; z, y) =
1

2

(
1 − φ(gy(z))T φ(f(z))

‖φ(gy(z))‖‖φ(f(z))‖

)
.

Where gy(x) is the score of x given in the ground-
truth, φ(·) is the transformation function, which is an
increasing and strictly positive function. In this paper,
we assume φ to be differentiable4.

These algorithms actually minimize the following em-
pirical risk to learn the ranking model:

R̂l(f ; S) =
1

n

n∑

i=1

l(f ; zi, yi).

To conduct meaningful comparison among the al-
gorithms, we normalize their listwise loss functions
to the same range, e.g., [0, 1]. We further make
two assumptions on the feature vector and the rank-
ing model. Let x be the feature vector of a query-
document pair, we assume that ∀x ∈ X , ‖x‖ ≤ M .
Furthermore, following the common practice as in
(Bartlett & Mendelson, 2003), we assume that the
ranking model f to be learned is from the linear func-
tion class F = {x → w · x : ‖w‖ ≤ B.}5. Therefore,
we have ∀x ∈ X ,∀f ∈ F , |f(x)| ≤ BM . Then, for a
listwise ranking algorithm A (e.g., ListMLE, ListNet
or RankCosine), we normalize its original listwise loss

function l(f ; z, y) to be lA(f ; z, y) = l(f ;z,y)
ZA

, where

ZListMLE = ZListNet = m(log m + log φ(BM)
φ(−BM) ), and

ZRankCosine = 1. With the normalization, the algo-
rithms actually minimize the following empirical risk
in learning:

R̂lA(f ; S) =
1

n

m∑

i=1

lA(f ; zi, yi).

Note that since the normalizer is a constant, the nor-
malization only changes the empirical and expected

4Most transformation functions used in the literature,
such as the linear, exponential and sigmoid functions, sat-
isfy this requirement.

5In this paper, we take the linear ranking model as an
example, and leave the investigations on more complicated
ranking models to future work.
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risks of an algorithm, but does not change their opti-
mal solutions.

3.2.2. Upper Bounds of R̂(lA ◦ F)

According to Theorem 1, the generalization ability of a
listwise ranking algorithm depends on its Rademacher
Average R̂(lA ◦ F). Hereafter, we discuss the upper

bound of R̂(lA◦F) for each algorithm we are concerned
with. The results are summarized in Theorem 2.

Theorem 2. The upper bounds of R̂(lA ◦ F) of
ListMLE, ListNet, and RankCosine can be represented
as the following form:

R̂(lA ◦ F) ≤ CA(φ)N(φ)R̂(F),

where A stands for a listwise ranking algorithm,
N(φ) = supx∈[−BM,BM ] φ

′(x), and CA(φ) is defined
as follows:

CListMLE(φ) =
2

φ(−BM)(log m + log φ(BM)
φ(−BM)

)
,

CListNet(φ) =
2m!

φ(−BM)(log m + log φ(BM)
φ(−BM)

)
,

CRankCosine(φ) =

√
m

2φ(−BM)
.

Proof. Due to space limitations, we take ListMLE as
an example to illustrate the proof sketch.

Substituting the listwise loss function of ListMLE into

the definition of R̂(lA ◦ F), and using the properties
of Rademacher Average (Eq. 1 and Eq. 3), we obtain
the following inequality:

R̂(lListMLE ◦ F) (4)

≤
∑m

j=1 Eσ[supf∈F
1
n

∑n

i=1 σi log(φ(f(x
(i)

yi(j)
)))]

m(log m + log φ(BM)
φ(−BM)

)

+

∑m

j=1 Eσ[supf∈F
1
n

∑n

i=1 σi log(
∑m

s=j φ(f(x
(i)

yi(s)
)))]

m(log m + log φ(BM)
φ(−BM)

)
.

First, let us consider the term

Eσ[supf∈F
1
n

∑n

i=1 σi log(φ(f(x
(i)
yi(j)

)))]. Define

ϕ(t) = log(1 + t), t ∈ [φ(−BM) − 1, φ(BM) − 1],
then ϕ(0) = 0, and ϕ′(t) = 1

1+t
≤ 1

φ(−BM) . With

the property of Rademacher Average (Eq. 2), the
following inequality holds:

Eσ[sup
f∈F

1

n

n∑

i=1

σi log(φ(f(x
(i)

yi(j)
)))]

≤ 1

φ(−BM)
Eσ[sup

f∈F

1

n

n∑

i=1

σi(φ(f(x
(i)

yi(j)
)) − 1)].

Furthermore, we have Eσi = 0 from the definition of
σi. Therefore,

Eσ[sup
f∈F

1

n

n∑

i=1

σi log(φ(f(x
(i)

yi(j)
)))]

≤ 1

φ(−BM)
Eσ[sup

f∈F

1

n

n∑

i=1

σiφ(f(x
(i)

yi(j)
))], (5)

Second, let us consider the term

Eσ[supf∈F
1
n

∑n

i=1 σi log(
∑m

s=j φ(f(x
(i)
yi(s)

)))]. With a

similar technique to that used for the first term and
the property of Rademacher Average (Eq. 3), the
following inequality holds:

Eσ[sup
f∈F

1

n

n∑

i=1

σi log(
m∑

s=j

φ({f(x
(i)

yi(s)
)}))]

≤ 1

(m − j + 1)φ(−BM)
Eσ[sup

f∈F

1

n

n∑

i=1

σi(

m∑

s=j

φ(f(x
(i)

yi(s)
)))]

≤ 1

φ(−BM)

m∑

s=j

Eσ[sup
f∈F

1

n

n∑

i=1

σiφ(f(x
(i)

yi(s)
))]. (6)

Here x
(i)
yi(s)

are i.i.d. since they are actually docu-

ments from different queries with same positions in the
ground-truth permutations. Combining Eq. 4, Eq. 5
and Eq. 6, we obtain the following inequality:

R̂(lListMLE ◦ F)

≤ 2

φ(−BM)(log m + log φ(BM)
φ(−BM)

)
R̂(φ ◦ F)

= CListMLE(φ)R̂(φ ◦ F),

where R̂(φ ◦ F) = Eσ[supf∈F
1
n

∑n

i=1 σiφ(f(xi))].
Furthermore, using the fact that φ is differentiable,
and the property of Rademacher Average (Eq.2),

we have R̂(φ ◦ F) ≤ N(φ)R̂(F), where N(φ) =
supx∈[−BM,BM ] φ

′(x). Therefore we can conclude the
theorem.

The theorem shows that R̂(lA ◦ F) of an algorithm A
is determined by the following three factors:

1. CA(φ), an algorithm-dependent factor, which is a
function of both the listwise loss function and the
transformation function φ. CA(φ) is also related
to the range of φ(x), x ∈ [−BM,BM ]. More de-
tailed discussions on CA(φ) will be given in the
next section.

2. N(φ), an algorithm-independent factor, which
measures the smoothness of the transformation
function φ. We will discuss this factor in the next
section.
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3. R̂(F), the Rademacher Average of the ranking
function class. According to (Bartlett & Mendel-
son, 2003), in the case of a linear ranking function,

we have R̂(F) ≤ 2BM√
n

.

3.3. Discussion

Combining Theorem 1 and Theorem 2, we obtain that
with probability at least 1−δ, the following inequality
holds6:

sup
f∈F

(RlA(f) − R̂lA(f ; S)) ≤ 4BM√
n

CA(φ)N(φ) +

√
2 ln 2

δ

n
.

From the above inequality, we can see that the gen-
eralization bound depends on CA(φ), N(φ), and num-
ber of training samples n. Since CA(φ) and N(φ) are
independent of n (according to Theorem 2), when n

approaches infinity, the generalization bound vanishes
at the rate of O( 1√

n
).

Furthermore, in general, smaller CA(φ)N(φ) leads to
tighter generalization bound. With some derivations,
we obtain the concrete forms of N(φ) and CA(φ) as
shown in Table 1, with respect to different transfor-
mation functions. We first look at the bounds of dif-
ferent algorithms when the transformation function φ

is fixed. Then we discuss the bound of a given algo-
rithm when the following transformation functions are
used,

� Linear Function:
φL(x) = ax + b, x ∈ [−BM,BM ].

� Exponential Function:
φE(x) = eax, x ∈ [−BM,BM ].

� Sigmoid Function:
φS(x) = 1

1+e−ax , x ∈ [−BM,BM ].

Note that in the above definitions, we assume that
a > 0 and b > aBM + ∆ (where ∆ > 0 is a constant),
to guarantee that the transformation function is an
increasing and strictly positive function. Furthermore,
a should not be too small. Otherwise, ∀x, ax ≈ 0,
which will make the learning process unreasonable.

3.3.1. Generalization Bounds of Different

Algorithms

For the same transformation function φ, the gener-
alization bounds of the algorithms only depend on
CA(φ). According to Table. 1, we have the follow-
ing results with regard to the factor.

6The notations are the same as in Theorem 1 and The-
orem 2.

• The generalization bound of ListMLE is much
tighter than that of ListNet, especially when m,
the length of list, is large.

Actually, the listwise loss for ListNet can be re-
garded as the weighted sum of the losses for
ListMLE with respect to different targeted per-
mutations. In this regard, it is easy to prove that
CListNet(φ) = m!CListMLE(φ).

• The bound of ListMLE decreases monotonically,
while the bounds of ListNet and RankCosine in-
crease monotonically, with respect to m.

For RankCosine, m can be regarded as the dimen-
sion of list representation (each dimension cor-
responds to a document). When the dimension
is high, there are many terms to sum up when
computing the Rademacher Average. Consider-
ing Eq. 3, the bound of RankCosine will increase
monotonically with respect to m. For ListMLE,
m determines ZListMLE . From the property of
Rademacher Average (Eq. 1), we can clearly
see that the bound will decrease monotonically
with respect to m. For ListNet, CListNet(φ) =
m!CListMLE(φ). Since m! increases faster than
ZListMLE , the bound eventually increases mono-
tonically with respect to m.

• When m ≥ 6, the generalization bound of
ListMLE is always tighter than that of RankCo-
sine; otherwise, certain conditions need to be sat-
isfied to ensure that the generalization bound of
ListMLE is still tighter than that of RankCosine.

It has been shown above, when m becomes larger
the generalization bound of ListMLE will become
tighter while that of RankCosine will become
looser. More precisely, when m ≥ 6, ListMLE
will have a tighter bound than RankCosine.

If m < 6 and we still want the bound of ListMLE
to be tighter, then we need to carefully choose φ

and other parameters. The corresponding con-
ditions7 are as follows: for φL, 1 < b

aBM
<

exp 4√
m

+m

exp 4√
m

−m
; for φE , aBM > 1

2 ( 4√
m

− log m); and

for φS , aBM > 4√
m

− log m. Otherwise, the

bound of RankCosine will be tighter.

In practice, when we employ the listwise ranking al-
gorithms, the average length of list (e.g. the number
of training documents per query) is usually not small.
Take the benchmark LETOR dataset as an example,
the average length of lists in TD2003 and TD2004

7Simpler but stronger conditions: for φL, 1 < b
aBM

< 3
2
;

for φE , aBM > 3
4
; for φS , aBM > 3

2
.
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Table 1. N(φ) and CA(φ) for Listwise Ranking Algorithms

φ N(φ) CListMLE(φ) CListNet(φ) CRankCosine(φ)

φL a 2

(b−aBM)(log m+log b+aBM

b−aBM
)

2m!

(b−aBM)(log m+log b+aBM

b−aBM
)

√
m

2(b−aBM)

φE aeaBM 2eaBM

log m+2aBM
2m!eaBM

log m+2aBM

√
meaBM

2

φS
aeaBM

(1+e−aBM )2
2(1+eaBM )
log m+aBM

2m!(1+eaBM )
log m+aBM

√
m(1+eaBM )

2

Table 2. Results of Different φ for RankCosine
(Where K = e−aBM )

Condition Result

b − aBM > K2(1 + K) φL � φS � φE

K2 < b − aBM < K2(1 + K) φS � φL � φE

0 < b − aBM < K2 φS � φE � φL

datasets is about 1000, and the average length of lists
in OHSUMED dataset is about 150. In this case, the
upper bound on the generalization ability of ListMLE
will be the best among the three listwise ranking algo-
rithms under investigation.

3.3.2. Generalization Bounds w.r.t.

Different Transformation Functions

By jointly considering N(φ) and CA(φ), we get the
results presented in Tables 2 and 3. Here we use φ1 �
φ2 to represent the case in which the generalization
bound of an algorithm with transformation function
φ1 is tighter than that with transformation function
φ2. Due to space limitations, we omit the detailed
proofs and only make some discussions here.

• For RankCosine, the sigmoid transformation
function is always better than the exponential
transformation function in terms of the general-
ization bound.

As seen from Table 1, CRankCosine(φE)N(φE) =
(1+eaBM )CRankCosine(φS)N(φS). Since aBM >

0, 1 + eaBM > 2. Therefore, we always have: for
RankCosine, φS � φE .

• For RankCosine, the linear transformation func-
tion is better than the sigmoid transformation
function in terms of the generalization bound in
most cases.

Table 3. Results of Different φ for ListMLE and ListNet
When b > K2(1 + K) + aBM (Where K = e−aBM ,

N = log b+aBM
b−aBM

)

Condition Result

log m >
2aBMK2−(b−aBM)N

b−aBM−e−2aBM φL � φE

log m <
2aBMK2−(b−aBM)N

b−aBM−e−2aBM φE � φL

log m >
aBMK2(1+K)−(b−aBM)N

b−aBM−K2(1+K)
φL � φS

log m <
aBMK2(1+K)−(b−aBM)N

b−aBM−K2(1+K)
φS � φL

log m > aBM(eaBM − 1) φS � φE

log m < aBM(eaBM − 1) φE � φS

Note that B and M are fixed, and a is not very
small (as discussed above). In this case, aBM

will not be very small either. Since e−u de-
creases rapidly as u increases, both e−2aBM and
e−2aBM (1 + e−aBM ) will be very close to zero.
Therefore, given b > aBM + ∆, it is very likely
that we also have b > e−2aBM (1+e−aBM )+aBM .
Referring to the results in Table 2, we obtain that
for RankCosine φL � φS holds in such a case.

• For ListMLE and ListNet, the linear transforma-
tion function is the best choice in terms of gener-
alization bound in most cases.

For ListMLE and ListNet, when b > e−2aBM (1 +
e−aBM )+aBM (which is likely to be true in most
cases as discussed above), we have the results as
listed in Table 3. Generally speaking, when m

is not very small (which is true in practice as dis-
cussed above), we have φL � φS � φE . For exam-
ple, suppose a = 1,M = 1, B = 10, b = 11, then
as long as m ≥ 1, we will have φL � φS � φE .
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In summary, the above discussions imply that for all
the three algorithms the use of linear transformation
function will result in tighter generalization bounds in
most cases. Actually, the compound function of the
transformation function φ and the ranking function f

can be viewed as a new ranking function class. For
the same f , φ determines the complexity of the new
ranking function. Intuitively, the use of simpler rank-
ing functions will result in better generalization abil-
ity. Obviously the linear transformation function is the
simplest among all the three transformation functions.
Therefore we can make the conclusion.

4. Conclusions and Future Work

In this paper, we have proposed a framework for rank-
ing, and analyzed the generalization ability of listwise
ranking algorithms with the framework. The analy-
sis is based on the theory of Rademacher Average. We
have proved a generalization bound for a listwise rank-
ing algorithm that depends on the Rademacher Aver-
age of the class of compound functions. The com-
pound functions take listwise loss functions as outer
functions and ranking models as inner functions. We
have computed the Rademacher Averages for three
listwise ranking algorithms: ListMLE, ListNet, and
RankCosine, and discussed the tightness of generaliza-
tion bounds in different situations. To our knowledge,
this is the first work that has formally discussed the
generalization ability of listwise ranking algorithms.

The major findings in this work are as follows: (1)
when the number of training samples approaches in-
finity, the generalization bounds of the three listwise
ranking algorithms will all converge to zero at the
same rate of O( 1√

n
); (2) when the length of the list

is larger than or equal to six, the generalization abil-
ity of ListMLE is possibly the best among the three
algorithms; (3) in most cases, a linear transformation
function is the best choice, in terms of generalization
ability.

As future work, we plan to investigate the approxima-
tion error, and thus the generalization bound between
the true expected risk (based on a true loss of ranking)
and the empirical risk (based on the listwise loss).
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