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Abstract

Information theoretic based measures form
a fundamental class of similarity measures
for comparing clusterings, beside the class of
pair-counting based and set-matching based
measures. In this paper, we discuss the ne-
cessity of correction for chance for informa-
tion theoretic based measures for clusterings
comparison. We observe that the baseline
for such measures, i.e. average value between
random partitions of a data set, does not take
on a constant value, and tends to have larger
variation when the ratio between the num-
ber of data points and the number of clus-
ters is small. This effect is similar in some
other non-information theoretic based mea-
sures such as the well-known Rand Index.
Assuming a hypergeometric model of ran-
domness, we derive the analytical formula for
the expected mutual information value be-
tween a pair of clusterings, and then propose
the adjusted version for several popular in-
formation theoretic based measures. Some
examples are given to demonstrate the need
and usefulness of the adjusted measures.

1. Introduction

Clustering is the “art” of dividing data points in a data
set into meaningful groups. The usefulness of this tech-
nique has been proven through its widespread applica-
tion in virtually all fields of science. Over the past few
decades, there have been thousands of papers propos-
ing hundreds of clustering algorithms. The endeavor
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to find better clustering methods will be hardly feasi-
ble without the development of effective measures for
clusterings comparison, an open research area which
has also received much attention. Various cluster-
ing comparison measures have been proposed: besides
the class of pair-counting based measures including the
well-known Adjusted Rand Index (Hubert & Arabie,
1985), and set-matching based measures, such as the
H criterion (Meilǎ, 2005), information theoretic based
measures, such as the Mutual Information (Strehl &
Ghosh, 2002) and the Variation of Information (Meilǎ,
2005), form another fundamental class of clustering
comparison measures.

In this paper, we aim to improve the usability of the
class of information theoretic-based measures for com-
paring clusterings. We first observe that such mea-
sures either do not have a fixed bound, or do not have
a constant baseline value, i.e. average value between
random partitions of a data set. Since a measure is
meant to provide a comparison mechanism, it is gen-
erally preferable that it lies within a predetermined
range and has a constant baseline value, so as to facil-
itate comparison and enhance intuitiveness. For infor-
mation theoretic-based measures, the former has often
previously been accomplished through a normalization
scheme, e.g. division by the maximum value of the in-
dex, while the latter, i.e. baseline adjustment, to our
knowledge, has not been addressed. As will be seen
shortly, unadjusted information theoretic based mea-
sures have a considerable inherent bias attributable
solely to chance, which potentially reduces their use-
fulness in a number of common situations, such as
measuring the distance from a set of clusterings with
different number of clusters to a “true” clustering. In
this paper, by assuming a hypergeometric model of
randomness, we derive the analytical formula for the
expected mutual information value between a pair of
clusterings, and then propose the adjusted version for
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several popular information theoretic based measures.
While the assumption of a well specified randomness
model is needed for theoretical analysis, our experi-
mental results suggest that the adjusted measures also
work well in more realistic scenarios where such an as-
sumption is usually violated.

The paper begins by reviewing some well-known clus-
tering comparison measures in section 2, and dis-
cussing the need for baseline adjustment for the class
of information theoretic based measures in section 3.
The derivation of the adjusted measures is presented
in section 4. Selected demonstrations for the new mea-
sures are given in section 5 while section 6 concludes
the paper.

2. Background and Related Work

Let S be a set of N data points {s1, s2, . . . sN}. We
consider the case of hard clustering. Given two clus-
terings of S, namely U = {U1, U2, . . . , UR} with R
clusters, and V = {V1, V2, . . . , VC} with C clusters
(∩R

i=1Ui = ∩C
j=1Vj = ∅, ∪R

i=1Ui = ∪C
j=1Vj = S), the

information on cluster overlap between U and V can
be summarized in the form of a R × C contingency
table M = [nij ]i=1...R

j=1...C as illustrated in Table 1, where
nij denotes the number of objects that are common to
clusters Ui and Vj . Based on this contingency table,
various cluster similarity indices can be built.

Table 1. The Contingency Table, nij = |Ui ∩ Vj |
U/V V1 V2 . . . VC Sums
U1 n11 n12 . . . n1C a1

U2 n21 n22 . . . n2C a2

...
...

...
. . .

...
...

UR nR1 nR2 . . . nRC aR

Sums b1 b2 . . . bC

∑
ij nij = N

2.1. Indices based on Pair Counting

An important class of criteria for comparing cluster-
ings is based upon counting the pairs of points on
which two clusterings agree or disagree. Any pair of
data points from the total of

(
N
2

)
distinct pairs in S

falls into one of the following 4 categories: (1) N11:
the number of pairs that are in the same cluster in
both U and V; (2) N00: the number of pairs that are
in different clusters in both U and V; (3) N01: the
number of pairs that are in the same cluster in U but
in different clusters in V; (4) N10: the number of pairs
that are in different clusters in U but in the same clus-
ter in V. Explicit formulae for calculating the number
of the four types can be constructed using entries in
the contingency table (Hubert & Arabie, 1985), e.g.
N11 = 1

2

∑R
i=1

∑C
j=1 nij(nij − 1). Intuitively, N11 and

N00 can be used as indicators of agreement between U

and V, while N01 and N10 can be used as disagreement
indicators. A well known index of this class is the Rand
Index (Rand, 1971), defined straightforwardly as:

RI(U, V) = (N00 + N11)/
(

N

2

)
(1)

The Rand Index lies between 0 and 1. It takes the
value of 1 when the two clusterings are identical, and
0 when no pair of points appear either in the same
cluster or in different clusters in both clusterings, i.e.
N00 = N11 = 0. This happens only when one cluster-
ing consists of a single cluster while the other consists
only of clusters containing single points. However this
scenario is quite extreme and has little practical value.
In fact, it is desirable for the similarity index between
two random partitions to take values close to zero, or
at least a constant value. The problem with the Rand
index is that its expected value between two random
partitions does not even take a constant value. Hubert
and Arabie (1985), by taking the generalized hyperge-
ometric distribution as the model of randomness, i.e.
the two partitions are picked at random subject to
having the original number of classes and objects in
each, found the expected value for (N00 + N11). They
suggested using a corrected version of the Rand index
of the form:

Adjusted Index =
Index− Expected Index

Max Index− Expected Index
(2)

thus giving birth to the (Hubert and Arabie) Adjusted
Rand Index (ARI):

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(

N
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(

N
2

)
(3)

where nij ’s are entries in the contingency table and
ai, bj ’s are its marginal sums. The ARI is bounded
above by 1 and takes on the value 0 when the in-
dex equals its expected value (under the generalized
hypergeometric distribution assumption for random-
ness). Besides the Adjusted Rand Index, there are
many other, possibly less popular, measures in this
class. (Albatineh et al., 2006) discussed correction for
chance for a comprehensive list of 28 different indices
in this class, a number which is large enough to make
the task of choosing an appropriate measure difficult
and confusing. Their work, and subsequent extension
of (Warrens, 2008), however, showed that after cor-
rection for chance, many of these measures become
equivalent, facilitating the task of choosing a measure.

2.2. Information Theoretic based Indices

Another class of clustering comparison measures,
which are information theoretic based, have also been
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employed more recently in the clustering literature
(Banerjee et al., 2005; Strehl & Ghosh, 2002; Meilǎ,
2005). Although there is currently no consensus on
which is the best measure, information theoretic based
measures have received increasing attention for their
strong theoretical background. Let us first review
some of the very fundamental concepts of informa-
tion theory (Cover & Thomas, 1991) and then see how
those concepts might be used toward assessing cluster-
ings agreement.

Definition 2.1 The information entropy of a discrete
random variable X, that can take on possible values in
its domain X = {x1, x2, . . . , xn} is defined by:

H(X) = −
∑
x∈X

p(x) log p(x) (4)

Definition 2.2 The mutual information between two
random variables X and Y with respective domains X
and Y is defined by:

I(Y, X) =
∑
x∈X

∑
y∈Y

p(y, x) log
p(y, x)

p(x)p(y)
(5)

The mutual information is a symmetric measure that
quantifies the mutual dependence between two random
variables, or the information that X and Y share. It
measures how much knowing one of these variables
reduces our uncertainty about the other. This prop-
erty suggests that the mutual information can be used
to measure the information shared by two clusterings,
and thus, assess their similarity. For this purpose, we
need to put the clusterings in a statistical context. Let
us first define the entropy of a clustering U. Suppose
that we pick an object at random from S, then the
probability that the object falls into cluster Ui is:

P (i) =
|Ui|
N

(6)

We define the entropy associated with the clustering
U as:

H(U) = −
R∑

i=1

P (i) log P (i) (7)

H(U) is non-negative and takes the value 0 only when
there is no uncertainty determining an object’s cluster
membership, i.e. there is only one cluster. Similarly,
the entropy of the clustering V can be calculated as
H(V) = −

∑C
j=1 P ′(j) log P ′(j) where P ′(j) = |Vj |/n.

Now we arrive at the Mutual Information (MI) be-
tween two clusterings:

I(U, V) =
R∑

i=1

C∑
j=1

P (i, j) log
P (i, j)

P (i)P ′(j)
(8)

where P (i, j) denotes the probability that a point be-
longs to cluster Ui in U and cluster Vj in V:

P (i, j) =
|Ui ∩ Vj |

N
(9)

MI is a non-negative quantity upper bounded by
both the entropies H(U) and H(V), i.e. I(U, V) ≤
min{H(U), H(V)}. It quantifies the information
shared by the two clusterings and thus can be em-
ployed as a clusterings similarity measure as in (Baner-
jee et al., 2005). (Meilǎ, 2005) suggested using the so-
called Variation of Information (VI), which she proved
to be a true metric on the space of clusterings:

V I(U, V) = H(U) + H(V)− 2I(U, V) (10)

(Strehl & Ghosh, 2002) on the other hand, employed a
normalized version of the Mutual Information defined
as :

NMI(U, V) =
I(U, V)√
H(U)H(V)

(11)

The VI is lower bounded by 0 (when the two clus-
terings are identical) and always upper bounded by
log(N), though tighter bounds are achievable depend-
ing on the number of clusters (Meilǎ, 2005). The
Normalized Mutual Information (NMI), on the other
hand, has a fixed lower bound of 0 and upper bound
of 1. It takes the value of 1 when the two clus-
terings are identical and 0 when the two clusterings
are independent, i.e. share no information about each
other. In the latter case, the contingency table takes
the form of the so-called “independence table” where
nij = |Ui||Vj |/N for all i, j. It can be seen that this
scenario is quite intuitive (larger clusters are expected
to share more data points), and less extreme than the
one where the Rand Index takes on a zero value as de-
scribed earlier, i.e. a clustering contains only 1 cluster
while the other contains only singleton clusters.

3. Information Theoretic Measures: is a
Correction for Chance Necessary?

Depending upon the specific type of application, it
might be preferable for a clustering comparison mea-
sure to have fixed bounds. This is accomplished with
a normalization scheme such as (11) for the Normal-
ized Mutual Information. The baseline value of such a
measure attributable solely to chance agreement is also
of interest. For information theoretic based measures,
the latter has received less attention. Let us consider
the following two motivating examples:

1) Example 1 - Distance to a “true” clustering: given
a set of N data points and a clustering U with R clus-
ters being the “true” clustering. Suppose an algorithm
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generates a clustering V with C clusters, another gen-
erates a clustering V′ with C ′ clusters. We need to
assess the goodness of the two clustering algorithms,
that is, find out whether V or V′ is closer to the true
clustering U. If C = C ′ then the situation would be
quite simple. Since the setting is quite the same for
both V and V′, we expect the comparison to be “fair”
under any particular measure. However if C 6= C ′ the
situation would be more complicated. If a measure
without fixed bounds, such as the Variation of Infor-
mation (VI) were employed, its upper bound would
not be the same for V I(U, V) and V I(U, V′), and
the conclusion that a VI value of, says, 0.3, is better
than a VI value of 0.5, might be misleading without
knowing the respective upper bounds. In this context,
it is preferable to employ a normalized measure such
as the Normalized Mutual Information (NMI), with
fixed bounds 0 and 1.

The NMI however, is not totally problem-free. We
construct a small experiment as follows: consider a
set of N data points, let the number of clusters vary
from 2 to Kmax and suppose that the true clustering
has Ktrue = [Kmax/2] clusters. Now for each value
of K, generate 10,000 random independent clustering
solutions (by assigning each data points to a random
clusters with equal probability), and calculate the av-
erage NMI (of the form given by (11)), Rand Index
(RI) and Adjusted Rand Index (ARI) between those
clusterings to the true clustering. The results for var-
ious combinations of (N, Ktrue) are given in Figure 1.
It can be observed that the unadjusted measures such
as the RI and NMI have a monotonic increasing pat-
tern as K increases. For the NMI, the variation is more
markedly visible at smaller values of the ratio N/K.
Thus even by selecting totally at random, a 7-clusters
solution would have a greater chance to defeat a 3-
clusters solution, although there isn’t any difference
in the clustering generation methodology. A measure
which has been corrected for chance such as the Ad-
justed Rand Index, on the other hand, has a baseline
value always close to zero, and appears not to be bi-
ased in favor of any particular value of K. Thus for
this example, an adjusted version of the Mutual Infor-
mation with correction for chance will be necessary for
our purpose.

2) Example 2 - Determining the number of clusters
via Consensus Clustering: We start by first provid-
ing some background on Consensus Clustering. In an
era where a huge number of clustering algorithms ex-
ist, the Consensus Clustering idea (Monti et al., 2003;
Strehl & Ghosh, 2002; Yu et al., 2007) has recently re-
ceived increasing interest. Consensus Clustering is not
just another clustering algorithm: it rather provides a
framework for unifying the knowledge obtained from
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Figure 1. Average distance between sets of random cluster-
ings to a “true” clustering.
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Figure 2. Average pairwise distance within a set of random
clusterings, each with the same number of clusters K.

the other algorithms. Given a data set and a single or
a set of clustering algorithms, Consensus Clustering
employs the clustering algorithm(s) to generate a set
of clustering solutions on either the original data set
or its perturbed versions. From those clustering solu-
tions, Consensus Clustering aims to choose a robust
and high quality representative clustering. Although
the main objective of consensus clustering is to dis-
cover a high quality cluster structure in a data set,
closer inspection of the set of clusterings obtained can
often give valuable information about the appropriate
number of clusters present. More specifically, we em-
pirically observe that the set of clusterings obtained
when the specified number of clusters coincides with
the true number of clusters tends to be less diverse,
an indication of the robustness of the obtained cluster
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structure. To quantify this diversity we have recently
developed a novel index (Vinh & Epps, 2009), namely
the Consensus Index (CI), which is built upon a suit-
able clustering similarity measure. Given a value of K,
suppose we have generated a set of B clustering solu-
tions UK = {U1, U2, . . . , UB}, each with K clusters.
We define the Consensus Index (CI) of UK as:

CI(UK) =

∑
i<j AM(Ui, Uj)
B(B − 1)/2

(12)

where the agreement measure AM is a suitable clus-
terings similarity index. Thus, the Consensus Index
CI quantifies the average agreement between all pairs
of clustering solutions in a clustering set UK . The op-
timal number of clusters K∗ is chosen as which that
maximizes CI:

K∗ = arg max
K=2...Kmax

CI(UK) (13)

In this setting, it is easily seen that a normalized index
is preferable, since the comparison is performed across
a wide range of K.

Let us again try the NMI of the form given in (11). We
performed a small experiment as follows: given N data
points, randomly assign each data point into one of the
K clusters with equal probability and check to ensure
that the final clustering contains exactly K clusters.
Repeat this 200 times to create 200 random cluster-
ings of N data points and K clusters. The average
values of NMI, RI and ARI between all 19,900 pairs of
clusterings corresponding to this particular value of N
and K, i.e. averageNMI(N, K), averageRI(N, K) and
averageARI(N, K) are recorded. Typical experimen-
tal results can be seen in Figure 2. It can be observed
that with the same number of data points, the average
value of the NMI and RI between random partitions
tends to increase as the number of clusters increases,
while the average value of the Adjusted Rand Index is
always kept very close to zero. When the ratio of N/K
is larger, the average value for NMI is reasonably close
to zero, but grows as N/K becomes smaller. This is
clearly an unwanted effect, since the Consensus Index
built upon the NMI would be biased in favour of a
larger number of clusters. Thus in this situation, an
adjusted version of the MI with correction for chance
will be also necessary for our purpose.

4. Correction for Chance

4.1. Model for Randomness

To correct the measures for randomness it is necessary
to specify a model according to which random parti-
tions are generated. A common model for randomness

is the “permutation model” (Lancaster, 1969, p. 214),
in which clusterings are generated randomly subject to
having a fixed number of clusters and points in each
clusters. This model was adopted by Hubert and Ara-
bie when they derived the adjusted version of the Rand
Index. We shall also adopt this model to derive the ad-
justed version for various information theoretic based
measures for comparing clusterings.

Now let us elaborate on the permutation model. Given
N data points and two clusterings U and V with the
number of points in each cluster of the two clusterings
fixed, i.e. |Ui| = ai, |Vj | = bj , i = 1 . . . R, j = 1 . . . C,
then the two marginal sum vectors a = [ai] and b = [bj ]
are constant, satisfying

∑R
i=1 ai =

∑C
j=1 bj = N (the

fixed marginals condition). As all the objects and the
clusters are distinguishable, there are

Ω1 =
(

N

a1

)(
N − a1

a2

)
. . .

(
N − a1 − . . .− aR−1

aR

)
(14)

different ways to assign the N data points into Ui’s,
and similarly

Ω2 =
(

N

b1

)(
N − b1

b2

)
. . .

(
N − b1 − . . .− bC−1

bC

)
(15)

different ways to assign the N data points into Vj ’s.
Thus the total number of ways to jointly assign N data
points into Ui’s and Vj ’s is the product of Ω1 and Ω2,
which can be simplified as:

Ω = Ω1.Ω2 =
(N !)2∏R

i=1 ai!
∏C

j=1 bj !
(16)

Associated with each joint assignment of data points
into clusters in the two clusterings is a contingency ta-
ble M = [nij ]i=1...R

j=1...C . Some joint assignments of data
points will actually result in identical contingency ta-
bles. Indeed, given a (feasible) contingency table M
there are:

ω =
N !∏R

i=1

∏C
j=1 nij !

(17)

different ways of assigning the data points into Ui’s and
Vj ’s that will actually result in this particular contin-
gency table. It follows that the probability of encoun-
tering a particular contingency table from a random
clustering formation, subject to the fixed marginals
condition is:

P{M = [nij ]i=1...R
j=1...C |a, b} =

ω

Ω
=

∏R
i=1 ai!

∏C
j=1 bj !

N !
∏R

i=1

∏C
j=1 nij !

(18)

Let M be the set of all the feasible contingency ta-
bles M with marginals a and b. The probability dis-
tribution of M in M as specified by (18) is known as
the Generalized Hypergeometric distribution (Hubert
& Arabie, 1985; Lancaster, 1969).
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ω(nij) =
(

N
nij

)(
N−nij

ai−nij

)(
N−ai

bj−nij

)∏R
i′=1,i′ 6=i

(
N−ai−

∑i′−1
t=1,t 6=i at

ai′

)∏C
j′=1,j′ 6=j

(N−bj−
∑j′−1

t=1,t6=j bt

bj′

)
(23a)

E{I(M)|a, b} =
∑R

i=1

∑C
j=1

∑min(ai,bj)

nij=(ai+bj−N)+
nij

N
log(

N.nij

aibj
)

ai!bj !(N−ai)!(N−bj)!

N !nij !(ai−nij)!(bj−nij)!(N−ai−bj+nij)!
(24a)

4.2. Expected Mutual Information

In this section we shall calculate the expected value
of the Mutual Information between two random clus-
terings generated by the permutation model described
above. Specifically, given two clusterings U and V
we would like to know the average mutual informa-
tion between all clustering pairs that have the same
number of clusters and data points in each cluster as
in U and V respectively. The mutual information of
such a pair of clusterings can be calculated from the
associated contingency table. In fact, let I(M) denote
the mutual information between (any) two clusterings
associated with the contingency table M . Clearly we
have:

I(M = [nij ]i=1...R
j=1...C |a, b) =

R∑
i=1

C∑
j=1

nij

N
log

N.nij

aibj
(19)

Thus the average mutual information value between all
possible pairs of clusterings is actually the expected
value of I(M) over the set of the associated contin-
gency tables M. This value is given by:

E{I(M)|a, b} =
∑

M∈M

I(M)P{M |a, b} (20)

=
∑

M∈M

R∑
i=1

C∑
j=1

nij

N
log

N.nij

aibj
P{M = [nij ]i=1...R

j=1...C |a, b}

By reordering the sums in (20) we can obtain:

E{I(M)|a, b} =

R∑
i=1

C∑
j=1

∑
M∈M

nij

N
log

N.nij

aibj
P{M = [nij ]i=1...R

j=1...C |a, b}

=

R∑
i=1

C∑
j=1

∑
nij

nij

N
log

N.nij

aibj
P{M |nij , a, b} (21)

where the sum
∑

nij
(·) runs over all possible values

of nij , and P{M |nij , a, b} denotes the probability of
obtaining a contingency matrix with marginal sums
equal to a and b and the cell at the i-th row and j-th
column equals to nij . Let us now calculate how many
different joint assignments of the data points into the
two clusterings will result in such a contingency table.
We start by picking up the nij data points that are
shared by the clusters Ui and Vj for which there are
(N
nij

) choices. Next we choose the remaining aj − nij

data points to be assigned to cluster Ui, for which

there are (N−nij

ai−nij
) choices. After that, the remaining

bj − nij data points also need to be chosen for clus-
ter Vj , but those points must not have been chosen
for cluster Ui, since Ui and Vj share only exactly nij

points. The number of remaining choices thus reduces
to (N−ai

bj−nij
) instead of (N−nij

bj−nij
). After having chosen the

data points for Ui and Vj , points can be assigned to
all the other clusters in the two clusterings without
any restriction. The total number of joint assignments
that would result in cluster Ui and Vj sharing exactly
nij data points, denoted by ω(nij), is therefore given
in (23a).

It follows that the probability of encountering a con-
tingency table, with the cell at the i-th row and j-
th column equals to nij from random clusterings is
P{M |nij , a, b} = ω(nij)/Ω or:

P{M |nij , a, b} =

(
N
nij

)(
N−nij

ai−nij

)(
N−ai

bj−nij

)(
N
ai

)(
N
bj

) (22)

Next we investigate the set of feasible values for nij .
Clearly nij can not exceed min(ai, bj). Furthermore,
by observing (22) we can see that the value of N − ai
must be larger than or equal to bj−nij , or equivalently
ai + bj − N ≤ nij , for the validity of the expression
(N−ai

bj−nij
). Thus nij can take on values in the range

[(ai + bj −N)+, min(ai, bj)] where (ai + bj −N)+ de-
notes max(0, ai +bj−N). Putting everything together
and simplifying, we finally obtain the formula for the
expected mutual information given in equation (24a),
with the usual conventions 0 log 0 = 1 and 0! = 1.
Similarly, the expectation for I2(M |a, b) can be ob-
tained by replacing the term nij

N log(N.nij

aibj
) in (24a) by

(nij

N log(N.nij

aibj
))2. The variance of I(M |a, b) can then

be calculated as:
V {I(M)|a, b} = E{I2(M)|a, b} − (E{I(M)|a, b})2 (23)

Having calculated the expectation and variance of the
mutual information, and assuming that I(M |a, b) has
an approximate normal distribution then a one-sided
significance test for the value of I(M |a, b) can be built
based upon the Z-score:

Z =
I(M |a, b)− E{I(M)|a, b}

V {I(M)|a, b}
(24)

4.3. The Proposed Adjusted Measures

As suggested in (Hubert & Arabie, 1985), the gen-
eral form of a (similarity) index corrected for chance is
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given in (2), which is bounded above by 1 and takes on
the value 0 when the index equals its expected value.
Having calculated the expectation of the Mutual Infor-
mation, we propose the Adjusted Mutual Information
(AMI) as follows:

AMI(U,V) =
I(U,V)− E{I(M)|a, b}√
H(U)H(V)− E{I(M)|a, b}

(25)

where a and b are the marginals of the contingency
table of U and V. Note that it is also possible to define
other forms of the AMI, such as:

AMI(U,V) =
I(U,V)− E{I(M)|a, b}

max {H(U), H(V)} − E{I(M)|a, b} (26)

or:

AMI(U,V) =
I(U,V)− E{I(M)|a, b}

1
2
(H(U) + H(V))− E{I(M)|a, b}

(27)

since
√

H(U)H(V), max{H(U), H(V)} and
1
2 (H(U) + H(V)) are all valid upper bounds of the
Mutual Information. It is interesting to note that the
adjusted-for-chance forms of the Mutual Information
are all normalized in a stochastic sense. Specifically,
the AMI takes a value of 1 when the two clusterings
are identical, and 0 when the mutual information
between the two clusterings equals its expected value.

For the Variation of Information (VI), since this is a
distance measure, an adjustment can be made based
on the general formulation (Hubert & Arabie, 1985):

Adjusted Index =
Expected Index− Index

Expected Index−Min Index

Therefore the Adjusted Variation of Information (AVI)
is given by:

AV I(U, V) =
2I(U, V)− 2E{I(M)|a, b})

H(U) + H(V)− 2E{I(M)|a, b}
(28)

which turns out to be equivalent to the AMI of the
form given in (27). One can also think of using
E{V I(U, V)} = H(U) + H(V) − 2E{I(M)|a, b} as
a stochastic upper bound for the VI, so as to provide
a normalization for this distance measure following the
form Normalized Index = Index/Max Index. The
Normalized Variation of Information (NVI) is given
by:

NV I(U, V) =
H(U) + H(V)− 2I(U, V)

H(U) + H(V)− 2E{I(M)|a, b}
(29)

but this in turn can be shown to be equivalent to
1−AV I(U, V). Therefore, if adjustment or normaliza-
tion were performed on the Variation of Information,
we effectively come back to one of the forms of the
Adjusted Mutual Information, i.e. that given by (27).

5. Experiment

We repeat the experiments corresponding to the two
examples in section 3 with the Adjusted Mutual Infor-
mation (AMI) of the form in (25), the Adjusted Vari-
ation of Information (AVI) (or equivalently the AMI
of the form in (27)), and the Adjusted Rand Index
(ARI). Results are presented in Figure 3 and Figure 4.
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Figure 3. Average adjusted measure values from a set of
random clusterings to a fixed, “true” clustering. The values
are kept close to zero with negligible variation.
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Figure 4. Average pairwise adjusted measure values within
sets of random clusterings (each with the same number
of clusters K). The values are kept close to zero with
negligible variation.

It can be observed that, just like the ARI, the average
value of the AMI and AVI between random partitions
is now kept close to zero. The difference between the
AMI and AVI (which is in fact another form of the
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AMI) is hardly discernible in these scenarios. Further-
more, there seems to be a strong correlation between
the average values of ARI and AMI. Discovering the
subtle similarities and dissimilarities between the AMI
and other non-information theoretic based measures
such as the ARI is the subject of our another work,
of which results are expected to be published in (Vinh
et al., 2009).

6. Discussion and Conclusion

In this paper, we have discussed the need for provid-
ing correction for chance for some information theo-
retic based measures for comparing clusterings. Based
on the assumption of a hypergeometric model of ran-
domness, we derived the analytical formula for the ad-
justed measures. We discussed two examples where
the adjusted measures are more preferable. Experi-
mental results suggest that the adjusted versions of the
information theoretic measures are most useful when
the number of data points in each cluster is relatively
small, where the variation of the unadjusted measures
is markedly recognizable. An example of such a sit-
uation is the case of sample clustering for microarray
data, where each cluster might contain as few as only
5-7 samples (Monti et al., 2003; Yu et al., 2007).

It should be noted that while the model of randomness
assumes that the clusterings must have a fixed number
of clusters and fixed number of points in each cluster,
the clusterings generated in our experiments do not
need to follow such a requirement. The assumptions
are needed for the derivation of the analytical results,
while in practice, the clusterings generated by cluster-
ing algorithms almost never satisfy such assumptions.
Nevertheless, the adjusted measures derived under the
hypergeometric model of randomness still have a base-
line close to zero with negligible variation as observed
in various experiments. Although there exist criticisms
about the artificiality of the randomness model (Meilǎ,
2005), in our opinion, the expected value of the mea-
sures obtained under such model still conveys more
practical information than a theoretical upper bound
or lower bound, such as that for the Variation of Infor-
mation (Meilǎ, 2005). While the upper/lower bound is
generally a single extreme case, the expectation value,
on the other hand, tells us on average how a bad clus-
tering, not necessarily very extreme, would score.
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