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Preface

This volume contains the papers accepted to the 26t International Conference on Machine
Learning (ICML 2009). ICML is the annual conference of the International Machine Learn-
ing Society (IMLS) and provides a venue for the presentation and discussion of current
research in the field of machine learning. These proceedings can also be found online at
http://www.machinelearning.org.

ICML 2009 was held June 14-18 on the downtown campus of McGill University in Montréal,
Canada. It was co-located with COLT-2009, the 22nd Annual Conference on Computational

Learning Theory, and UAI-2009, the 25th Conference on Uncertainty in Artificial Intelli-
gence.

Including papers that were ultimately withdrawn, 595 papers were submitted to the confer-
ence. The review process was managed by two programme co-chairs, 39 Area Chairs, and
480 dedicated reviewers. A novel review process was instituted in 2009 to further encourage
innovative papers on a variety of topics. First, we experimented with “inverse bidding”. In
this scheme, Area Chairs described their area descriptors on a webpage and recruited 10 or
so reviewers to help them handle papers on these topics. As part of the submission process,
authors indicated preferences for Area Chairs to handle their papers. The goal here was to en-
sure each submission was considered by reviewers most appropriate to the paper’s intended
contribution. Aside from a few special cases, papers were assigned to one of the top three
Area Chairs selected by the authors.

The next innovation was to use an explicit multi-round reviewing process. Each submitted
paper received two first-round reviews. As in recent years, authors had the opportunity to
see and respond to these reviews. Papers that garnered at least one positive review in the
first round received one or more additional reviews specifically selected to provide definitive
feedback for deciding whether to accept the paper. Unfortunately, due to the early schedul-
ing of the conference, there was no time for authors to respond to these additional reviews.
Final decisions were made using the input from all reviewers, the author feedback, the Area
Chair’s comments, any discussion between the reviewers to try to reach consensus, and, in
some cases, close examination by the Programme co-chairs and a secondary Area Chair as-
signed to help decide borderline cases. Reviewing was blind to the identities of the authors.
Conditional accepts were not used this year.

Apart from the length restrictions on papers and the compressed time frame, the review pro-
cess for ICML resembles that of many journal publications. In total, 160 papers were ac-
cepted to ICML this year, including a small number of papers accepted as “food for thought”
papers that presented intriguing ideas in spite of some apparent flaws. The overall acceptance
rate of of 27% matched that of last year’s conference.

ICML authors presented their papers both orally and in an evening poster session, allow-
ing time for detailed discussions with any interested attendees of the conference. One oral
session was dedicated to the memory of Paul Utgoff, a machine-learning pioneer and chair



of ICML 1993, who died this year. Each day of the main conference included an invited
talk by a prominent researcher. We were very fortunate to be able to host Corinna Cortes,
Google Research, NY, Emmanuel Dupoux, Centre National de la Recherche Scientifique, and
Yoav Freund, University of California, San Diego. In addition to the technical talks, ICML
2009 also included nine tutorials held before the main conference, presented by top-notch
researchers Alina Beygelzimer, John Langford, and Bianca Zadrozny; Eyal Even-Dar and
Vahab Mirrokni; Volker Tresp and Kai Yu; Manfred K. Warmuth and S.V.N. Vishwanathan;
Yael Niv; Paul Bennett, Misha Bilenko, and Kevyn Collins-Thompson; Sanjoy Dasgupta and
John Langford; Jure Leskovec; and Noah Smith. We were delighted to be able to organize
our workshops once again jointly with COLT and UAI as part of a special “overlap day,” con-
sisting of nine workshops selected and arranged collaboratively by the respective workshop
chairs of the three conferences. This day provided a rich opportunity for interaction among
the attendees of the conferences.

This year, ICML continued its award offerings to help build our community, celebrate our
advances, and encourage applications and long-term thinking. In addition to our previously
traditional “Best Paper” and “Best Student Paper” awards, we also gave awards for “Best
Application Paper” and “10-year Best Paper” (for the best paper of ICML 1999). We thank
Springer, publisher of Machine Learning, for sponsoring our student paper awards.

The organization of ICML 2009 involved efforts from many people, to whom we are ex-
tremely grateful. As programme co-chairs, we worked closely with the general chair, Andrea
Danyluk, who brought her positive attitude and her experience from for serving as program
co-chair of the highly successful ICML 2001 conference. Doina Precup handled local ar-
rangements, including venue, budgeting, website, refreshments, registration, banquet, and
a million other things. The tutorials chair, Jennifer Neville, and the workshop chair, Chris
Williams, pulled together excellent offerings. The publications chair, Kiri Wagstaff, han-
dled the critical and relatively thankless job of working with authors to edit the accepted
papers into a unified volume. We thank Lise Getoor for her remarkable efforts as the funding
chair in this financially difficult year; Drew Bagnell and Nicholas Roy, the student funding
co-chairs, who dispersed student travel awards; and Joelle Pineau, the volunteer chair, who
arranged for student volunteers, and made sure the conference ran smoothly. We also thank
Steven Scott, the treasurer of IMLS, for his support and advice on financial issues, and Mon-
ica Dinculescu for her contributions as webmaster for the icml2009.org website. The staff
of Softconf.com, especially Rich Gerber, were extremely helpful in tailoring the START V2
conference-management software to our rather unorthodox reviewing procedure.

For more general support, we are grateful to the members of IMLS for their advice. We are
also very grateful to the many financial sponsors of ICML (who are listed elsewhere in these
proceedings) for their generous support of this conference.

No technical conference is possible without the efforts of reviewers, so we wish to thank
everyone who participated in the process, from the dedicated reviewers, to the Area Chairs,
to the authors themselves for their roles in the process. No reviewing procedure is perfect,
but to the extent that this year’s program was successful, it was because of those people who
applied their prodigious intellectual talents to help maintain and improve the quality of work
in our community. We were awed and impressed to see how dependent the research process
is on your efforts and how seriously you take your role in keeping this exciting and important
research area healthy.



We hope the machine-learning community find this volume a useful resource and we are
happy to have had the opportunity to contribute.

Sincerely,

Léon Bottou and Michael L. Littman
ICML 2009 Programme Co-chairs
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Can learning kernels help performance?

Corinna Cortes
Google Research, U.S.A.

Abstract:

Kernel methods combined with large-margin learning algorithms such as SVMs have been
used successfully to tackle a variety of learning tasks since their introduction in the early
90s. However, in the standard framework of these methods, the choice of an appropriate
kernel is left to the user and a poor selection may lead to sub-optimal performance. Instead,
sample points can be used to select a kernel function suitable for the task out of a family
of kernels fixed by the user. While this is an appealing idea supported by some recent the-
oretical guarantees, in experiments, it has proven surprisingly difficult to consistently and
significantly outperform simple fixed combination schemes of kernels. This talk will survey
different methods and algorithms for learning kernels and will present novel results that tend
to suggest that significant performance improvements can be obtained with a large number
of kernels.

(Includes joint work with Mehryar Mohri and Afshin Rostamizadeh.)

Biography:

Corinna Cortes is the Head of Google Research, NY, where she is working on a broad range
of theoretical and applied large-scale machine learning problems. Prior to Google, Corinna
spent more than ten years at AT&T Labs Research, formerly AT&T Bell Labs, where she
held a distinguished research position. Corinna’s research work is well-known in particular
for her contributions to the theoretical foundations of support vector machines (SVMs) and
her work on data-mining in very large data sets for which she was awarded the AT&T Science
and Technology Medal in the year 2000. Corinna received her MS degree in Physics from the
Niels Bohr Institute in Copenhagen and joined AT&T Bell Labs as a researcher in 1989. She
received her Ph.D. in computer science from the University of Rochester in 1993. Corinna
is also a competitive runner, placing third in the More Marathon in New York City in 2005,
and a mother of two.



How do infants bootstrap into spoken language?: Models
and challenges

Emmanuel Dupoux
Ecole Normale Superieure, Ecole des Hautes Etudes en Sciences Sociales,
Centre National de la Recherche Scientifique, France

Abstract:

Human infants learn spontaneously and effortlessly the language(s) spoken in their environ-
ments, despite the extraordinary complexity of the task. Here, I will present an overview of
the early phases of language acquisition and focus on one area where a modeling approach
is currently being conducted using tools of signal processing and automatic speech recog-
nition: the unsupervized acquisition of phonetic categories. During their first year of life,
infants construct a detailed representation of the phonemes of their native language and lose
the ability to distinguish nonnative phonemic contrasts. Unsupervised statistical clustering is
not sufficient; it does not converge on the inventory of phonemes, but rather on contextual al-
lophonic units or subunits. I present an information-theoretic algorithm that groups together
allophonic variants based on three sources of information that Can be acquired indepen-
dently: the statistical distribution of their contexts, the phonetic plausibility of the grouping,
and the existence of lexical minimal pairs. This algorithm is tested on several natural speech
corpora. We find that these three sources of information are probably not language specific.
What is presumably unique to language is the way in which they are combined to optimize
the emergence of linguistic categories.

Biography:

Emmanuel Dupoux is the director of the Laboratoire de Sciences Cognitives et Psycholin-
guistique in Paris. He conducts research on the early phases of language and social acqui-
sition in human infants, using a mix of behavioral and brain-imaging techniques as well as
computational modeling. He teaches at the Ecole des Hautes Etudes en Sciences Sociales
where he has set up an interdisciplinary graduate program in Cognitive Science.



Drifting games, boosting and online learning

Yoav Freund
University of California, San Diego, U.S.A.

Abstract:

Drifting games is a mathematical framework for modeling learning problems. In this talk
I will present the framework and show how it is used to derive a new boosting algorithm
called Robustboost and a new online prediction algorithm called NormalHedge. I will present
two sets of experiments using these algorithms on synthetic and real world data. The first
experiments demonstrate that Robustboost outperforms Adaboost and Logitboost when there
are many outliers in the training data. The second set of experiments demonstrate that a
tracking algorithm based on NormalHedge is more robust against noise than particle filters.

Biography:

Yoav Freund is a professor of Computer Science and Engineering in the University of Cal-
ifornia, San Diego. His work is in the areas of machine learning, computational statistics,
information theory and their applications. He is best known for his joint work with Dr. Robert
Schapire on the Adaboost algorithm. For this work Freund and Schapire were awarded the
2003 Godel Prize and the 2004 Kanellakis Prize. Freund was elected fellow of AAAI in 2008.
Freund is included in the Thompson list of most highly cited scientists: ISIHighlyCited.com
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Overview of Tutorials and Workshops

As in previous years we were pleased to have a strong program of tutorials for ICML 2009.
These were held on June 14, immediately preceding the main conference. The program
featured nine tutorials covering a wide range of methods for, and applications of, machine
learning. There were tutorials on: active learning (Dasgupta, Langford); convergence of
natural dynamics in multi-agent games (Even-Dar, Mirrokni); machine learning for large
social and information networks (Leskovec); learning with dependencies between several
response variables (Tresp, Yu); machine learning in information retrieval (Bennett, Bilenko,
Collins-Thompson); the neuroscience of reinforcement learning (Niv); reductions in machine
learning (Beygelzimer, Langford, Zadrozny); structured prediction for natural language pro-
cessing (Smith); and a survey of boosting from an optimization perspective (Warmuth, Vish-
wanathan). We would like to thank the community for the high-quality tutorial proposals
that were received, the presenters for their extensive efforts in preparing and delivering the
selected tutorials, and the local arrangements, program, and general chairs of ICML for their
hard work in organizing such a stimulating conference.

Jennifer Neville
ICML 2009 Tutorial Chair

Once again, ICML solicited and hosted world-class workshops on topics related to machine
learning. This year, we were delighted to collaborate with the program co-chairs of UAI (Jeff
Bilmes and Andrew Ng) and the COLT workshops chair (Sham Kakade) to put together an
exciting joint program. We constructed a slate of nine workshops that represent a wide range
of perspectives and fields, as seen in the summaries below. All workshops were held on June
18th, immediately after the main conference days. We would like to thank all of the workshop
organizers for their service to the community in putting together these high-quality meetings.
We also thank the outstanding local arrangement chairs and the general and program chairs
for ICML and the other conferences for creating another exciting and successful conference.

Chris Williams
ICML 2009 Workshop Chair



Tutorials

T1: Reductions in Machine Learning

Alina Beygelzimer, IBM T. J. Watson Research Center, U.S.A.
John Langford, Yahoo! Research, U.S.A.
Bianca Zadrozny, Fluminense Federal University, Brazil

Machine learning reductions are about reusing solutions to simple, core problems in order to
solve more complex problems. A basic difficulty in applying machine learning in practice is
that we often need to solve problems that don’t quite match the problems solved by standard
machine learning algorithms. Reductions are techniques that transform such practical
problems into core machine learning problems. These can then be solved using any existing
learning algorithm whose solution can, in turn, be used to solve the original problem. The
material that we plan to cover is both algorithmic and analytic: We will discuss existing and
new algorithms along with the methodology for analyzing and creating new reductions. In
our experience, this approach is an effective tool for designing empirically successful,
automated solutions to learning problems.

T2: Convergence of Natural Dynamics to Equilibria

Eyal Even-Dar, Google, U.S.A.
Vahab Mirrokni, Google, U.S.A.

Recently, a lot of effort has been devoted to analyzing response dynamics in various games.
Questions about the dynamics themselves and their convergence properties attracted a great
deal of attention. This includes, for example, questions like “How long do uncoordinated
agents need to reach an equilibrium?” and “Do uncoordinated agents quickly reach a state
with low social cost?”. An important aspect in studying such dynamics is the learning
model employed by self-interested agents in these models. Studying the effect of learning
algorithms on the convergence rate of players is crucial for developing a solid understanding
of the corresponding games. In this tutorial, we first describe an overview of the required
terminology from game theory. Then, we survey results about the convergence of myopic
and learning-based best responses of players to equilibria and approximately optimal
solutions, and study the effect of various learning algorithms in convergence (rate).
Throughout the tutorial, we describe fundamental connections between local search
algorithms and learning algorithms with the convergence of best-response dynamics in
multi-agent games.



T3: Learning with Dependencies between Several Response Variables

Volker Tresp, Siemens Corporate Technologies, U.S.A.
Kai Yu, NEC Laboratories, U.S.A.

We analyze situations where modeling several response variables for a given input improves
the prediction accuracy for each individual response variable. Interestingly, this setting has
appeared in different context and a number of different but related approaches have been
proposed. In all these approaches some assumptions about the dependency structure
between the response variables is made. Here is a small selection of labels describing
relevant work: multitask learning, multi-class classification, multi-label prediction,
hierarchical Bayes, inductive transfer learning, hierarchical linear models, mixed effect
models, partial least squares, canonical correlation analysis, maximal covariance regression,
multivariate regression, structured prediction, relational learning, ... The large number of
approaches is confusing for the novice, and often even for the expert. In this tutorial we
systematically introduce some of the major approaches and describe them from a common
viewpoint.

T4: Survey of Boosting from an Optimization Perspective

Manfred K. Warmuth, University of California, Santa Cruz, U.S.A.
S.V.N. Vishwanathan, Purdue University, U.S.A.

Boosting has become a well known ensemble method. The algorithm maintains a
distribution on the binary labeled examples and a new base learner is added in a greedy
fashion. The goal is to obtain a small linear combination of base learners that clearly
separates the examples. We focus on a recent view of Boosting where the update algorithm
for distribution on the examples is characterized by a minimization problem that uses a
relative entropy as a regularization. The most well known boosting algorithms is AdaBoost.
This algorithm approximately maximizes the hard margin, when the data is separable. We
focus on recent algorithms that provably maximize the soft margin when the data is noisy.
We will teach the new algorithms, give a unified and versatile view of Boosting in terms of
relative entropy regularization, and show how to solve large scale problems based on state
of the art optimization techniques.



TS: The Neuroscience of Reinforcement Learning

Yael Niv, Princeton University, U.S.A.

One of the most influential contributions of machine learning to understanding the human
brain is the (fairly recent) formulation of learning in real world tasks in terms of the
computational framework of reinforcement learning. This confluence of ideas is not limited
to abstract ideas about how trial and error learning should proceed, but rather, current views
regarding the computational roles of extremely important brain substances (such as
dopamine) and brain areas (such as the basal ganglia) draw heavily from reinforcement
learning. The results of this growing line of research stand to contribute not only to
neuroscience and psychology, but also to machine learning: human and animal brains are
remarkably adept at learning new tasks in an uncertain, dynamic and extremely complex
world. Understanding how the brain implements reinforcement learning efficiently may
suggest similar solutions to engineering and artificial intelligent problems. This tutorial will
present the current state of the study of neural reinforcement learning, with an emphasis on
both what it teaches us about the brain, and what it teaches us about reinforcement learning.

T6: Machine Learning in IR: Recent Successes and New Opportunities

Paul Bennett, Microsoft Research, U.S.A
Misha Bilenko, Microsoft Research, U.S.A
Kevyn Collins-Thompson, Microsoft Research, U.S.A

This tutorial will focus on the interplay between information retrieval (IR) and machine
learning. The intersection of these research areas has seen tremendous growth and progress
in recent years, much of it fueled by incorporating machine learning techniques into the core
of information retrieval technologies, including Web search engines, e-mail and news
filtering systems, music and movie recommendations, online advertising systems, and many
others. As the complexity, scale, and user expectations for retrieval technology increase, it is
becoming increasingly important for each field to keep pace with and inform the other. With
that goal in mind, this tutorial covers: the nature of the challenging learning problems faced
at many levels by search technology systems today; successful applications of machine
learning methods to key IR tasks; and opportunities for joint future progress and emerging
research problems which will benefit both machine learning and information retrieval.



T7: Active Learning

Sanjoy Dasgupta, University of California, San Diego, U.S.A.
John Langford, Yahoo! Research, U.S.A.

Active learning is defined by contrast to the passive model of supervised learning where all
the labels for learning are obtained without reference to the learning algorithm, while in ac-
tive learning the learner interactively chooses which data points to label. The hope of active
learning is that interaction can substantially reduce the number of labels required, making
solving problems via machine learning more practical. This hope is known to be valid in
certain special cases, both empirically and theoretically. Variants of active learning has been
investigated over several decades and fields. The focus of this tutorial is on general tech-
niques which are applicable to many problems. At a mathematical level, this corresponds
to approaches with provable guarantees under weakest-possible assumptions since real prob-
lems are more likely to fit algorithms which work under weak assumptions. We believe this
tutorial should be of broad interest. People working on or using supervised learning are of-
ten confronted with the need for more labels, where active learning can help. Similarly, in
reinforcement learning, generalizing while interacting in more complex ways is an active
research topic.

T8: Large Social and Information Networks: Opportunities for ML

Jure Leskovec, Carnegie Mellon University, U.S.A.

Emergence of the web, social media and online social networking websites gave rise to de-
tailed traces of human social activity. This offers many opportunities to analyze and model
behaviors of millions of people. For example, we can now study “planetary scale” dynamics
of a full Microsoft Instant Messenger network of 240 million people, with more than 255 bil-
lion exchanged messages per month. Many types of data, especially web and “social” data,
come in a form of a network or a graph. This tutorial will cover several aspects of such net-
work data: macroscopic properties of network datasets; statistical models for modeling large
scale network structure of static and dynamic networks; properties and models of network
structure and evolution at the level of groups of nodes and algorithms for extracting such
structures. I will also present several applications and case studies of blogs, instant messag-
ing, Wikipedia and web search. Machine learning as a topic will be present throughout the
tutorial. The idea of the tutorial is to introduce the machine learning community to recent
developments in the area of social and information networks that underpin the Web and other
on-line media.



T9: Structured Prediction for Natural Language Processing

Noah Smith, Carnegie Mellon University, U.S.A.

This tutorial will discuss the use of structured prediction methods from machine learning
in natural language processing. The field of NLP has, in the past two decades, come to si-
multaneously rely on and challenge the field of machine learning. Statistical methods now
dominate NLP, and have moved the field forward substantially, opening up new possibilities
for the exploitation of data in developing NLP components and applications. However, for-
mulations of NLP problems are often simplified for computational or practical convenience,
at the expense of system performance. This tutorial aims to introduce several structured pre-
diction problems from NLP, current solutions, and challenges that lie ahead. Applications
in NLP are a mainstay at ICML conferences; many ML researchers view NLP as a primary
or secondary application area of interest. This tutorial will help the broader ML community
understand this important application area, how progress is measured, and the trade-offs that
make it a challenge.



Workshops

W1: Seventh Annual Workshop on Bayes Applications

John Mark Agosta, Intel Corp., U.S.A.

Russell Almond, Educational Testing Service, U.S.A.
Dennis Buede, Innovative Decisions, U.S.A.

Marek J. Druzdzel, University of Pittsburgh, U.S.A.
Judy Goldsmith, University of Kentucky, U.S.A.
Silja Renooij, Universiteit Utrecht, The Netherlands

The Bayes Applications Workshop presents projects in several areas where researchers have
demonstrated the use of Bayes networks / graphical models in business, military, education
and product development. To work in the real world, researchers often have to integrate such
analytic techniques with the needs of larger systems and to reconcile apparently conflicting
demands of theory and practice. Fortunately the availability of mature academic and com-
mercial software tools has spawned numerous opportunities for such attempts; the stories of
how this has been accomplished reveal valuable lessons for all.

W2: Automated Interpretation and Modelling of Cell Images

Robert F. Murphy, Carnegie Mellon University, U.S.A.
Chun-Nan Hsu, Academia Sinica, Taiwan
Loris Nanni, University of Bologna, Italy

Dramatic advances in fluorescent probe development, new fluorescence microscope designs
to achieve greatly improved temporal and spatial resolution, and significant advances in digi-
tal camera and computer technology have enabled increasing use of fluorescence microscopy
for quantitative, large scale studies of cell behavior. The high volume and high quality of im-
ages resulting from these studies has created and will continue to create many opportunities
for computational analysis, especially in the realm of computer vision, machine learning and
UALI This workshop is to bring together interdisciplinary researchers to present and discuss
emerging challenges and research issues that arise when realizing fully-automated intelligent
analysis of cell images due to recent advances in cell imaging capabilities to discover new bi-
ological knowledge about cell structure and function. Discussions of new issues overlooked
in the major conferences will be especially encouraged.



W3: Workshop on Learning Feature Hierarchies

Kay Yu, NEC Laboratories America, U.S.A.

Ruslan Salakhutdinov, University of Toronto, Canada
Yann LeCun, New York University, U.S.A.

Geoff Hinton, University of Toronto, Canada

Yoshua Bengio, University of Montreal, Canada

Building intelligent systems that are capable of extracting high-level representations from
high-dimensional sensory data lies at the core of solving many Al related tasks, including
object recognition, speech perception, and language understanding. Theoretical and biolog-
ical arguments strongly suggest that building such systems requires deep architectures that
involve many layers of nonlinear processing. Recent research in machine learning has seen
a notable advance in learning feature hierarchies via deep architectures from labeled and
unlabeled data. The learned high-level representations have been shown to give promising
results in many challenging supervised learning problems, where data patterns often exhibit
a high degree of variations. Through having a series of invited talks, a poster session, and
a panel discussion, this workshop is expected to assess the current state of the field, discuss
key challenges, and identify future promising directions of investigation.

W4: Results of the 2009 Reinforcement Learning Competition

David Wingate, Massachusetts Institute of Technology, U.S.A.
Carlos Diuk, Rutgers University, U.S.A.

Lihong Li, Rutgers University, U.S.A.

Matthew Taylor, University of Southern California, U.S.A.
Jordan Frank, McGill University, Canada

The annual Reinforcement Learning competition invites researchers from around the world
to apply their latest methods to a suite of exciting and diverse challenge problems. The aim
of the competition is to facilitate direct comparisons between learning methods on important
and realistic domains. This competition can stimulate development and verification of in-
creasingly practical algorithms on events like tetris, helicopter control, and real-time strategy
environments. The 2009 Reinforcement Learning ICML workshop will feature the results
of the competition, presentations by competitors regarding their methods, insights, and chal-
lenges they overcame, as well as invited speakers and a poster session.



WS5: The Fourth Workshop on Evaluation Methods for Machine Learning

Chris Drummond, NRC Institute for Information Technology, Canada
Nathalie Japkowicz, University of Ottawa, Canada

William Klement, University of Ottawa, Canada

Sofus Macskassy, Fetch Technologies, U.S.A.

The fourth in a series, this workshop intends to continue the debate within the machine
learning community into how we evaluate new algorithms. We aim to discuss what prop-
erties of an algorithm need to be evaluated (e.g., accuracy, comprehensibility, conciseness);
to solicit views and suggestions for other approaches than those currently used; to investigate
alternate methods that could be useful. The three previous workshops focused on issues that
have captured the interest of the community, such as; the role of experiments in evaluation,
the use of one, community wide, evaluation measure (e.g., Accuracy, AUC, F-measure), the
relevance of statistical tests to evaluation, the effectiveness of the UCI data sets for evalu-
ation, the need for sharing and characterizing benchmark data sets in general, and how to
promote the views of this workshop to the rest of the community. The 2008 ICML workshop
concluded with an agreement that we, as a scientific community, should substantially change
how evaluation is performed in machine learning. We, however, disagreed on the direction
that this change should take. As a continuation of the same theme, this workshop aims to so-
licit views, intuitions and visions of alternatives to change existing evaluation methods. We
hope to make progress but still carry forward the good methods and experiences we already
have acquired.



W6: On-line Learning with Limited Feedback

Jean-Yves Audibert, Université Paris-Est, France
Peter Auer, University of Leoben, Austria
Alessandro Lazaric, INRIA, France

Remi Munos, INRIA, France

Daniil Ryabko, INRIA, France

Csaba Szepesvdri, University of Alberta, Canada

The main focus of the workshop is the problem of on-line learning when only limited feed-
back is available to the learner. In on-line learning, at each time step the learner has to predict
the outcome corresponding to the next input based on the feedbacks obtained so far. Unlike
the usual supervised problem, in which after each prediction the learner is revealed sufficient
information to evaluate the goodness of all predictions he could have made, in many cases
only limited feedback may be available to the learner. Depending on the nature of the limi-
tation on the feedback, different classes of problems can be identified, such as reinforcement
learning, on-line control problems, multi-armed bandits, indirect feedback. Although some
aspects of on-line learning with limited feedback have been already thoroughly analyzed
(e.g., multi-armed bandit problems), many problems are still open. For instance, bandits with
large action spaces and side information, learning with delayed reward, on-line optimization,
etc., are of primary concern in many recent works on on-line learning. Furthermore, on-
line learning with limited feedback has strong connections with a number of other fields of
Machine Learning such as active learning, semi-supervised learning, and multi-class classi-
fication. The goal of the workshop is to provide researchers with the possibility to present
their current research on these topics and to encourage the discussion about the main open
issues and the possible connections between the different sub-fields.

W7: Numerical Mathematics in Machine Learning

Matthias Seeger, Saarland University and Max Planck Institute for Informatics, Germany
Suvrit Sra, Max-Planck Institute for Biological Cybernetics, Germany
John P. Cunningham, Stanford University, U.S.A.

Many machine learning methods naturally reduce to numerical mathematics algorithms,
such as conjugate gradients, Lanczos, matrix factorizations, ODE solvers, or quadrature.
These techniques are often used without proper understanding of numerical stability issues
or knowledge of techniques to improve convergence (such as preconditioning). By bring-
ing together experts from both fields, we aim to identify major gaps along this interface of
growing importance, to find tractable remedies, and to feed back specific machine learning
demands to numerical mathematicians.



WS8: Abstraction in Reinforcement Learning

Ozgiir Simgek, Max Planck Institute for Human Development, Germany
George Konidaris, University of Massachusetts, Amherst, U.S.A.

Although reinforcement learning methods have been effectively applied to a number of prob-
lems of practical importance, successful large-scale applications remain the exception rather
than the norm. Problems with large state spaces still pose considerable challenges to existing
algorithms.

Abstraction is the process of factoring out irrelevant details, in other words, of focusing only
on the information that is relevant for a particular purpose. For a number of years, the re-
search community has been exploring various forms of abstraction as potential mechanisms
for scaling up reinforcement learning algorithms to large, complex problems. State abstrac-
tion approaches and temporal abstraction methods have become well established, while re-
cent representation-discovery methods have shown a great deal of promise.

The goal of this workshop is to promote interaction between researchers that work on various
forms of abstraction in reinforcement learning, to explore possible areas of synergy between
existing approaches, and to open up discussion on novel techniques that can harness the
existing strengths of different types of abstractions.

W9: Sparse Methods for Music Audio

Douglas Eck, University of Montreal, Canada
Dan Ellis, Columbia University, U.S.A.
Philippe Hamel, University of Montreal, Canada

Sparse coding is gaining attention as alternative to traditional, orthogonal-basis approaches,
able to find more interesting or more useful solutions to underconstrained, high-dimensional
problems. Music audio provides an excellent candidate for sparse coding, being very high
dimensional (e.g., over 80,000 values in one second of music from a CD), yet usefully de-
scribed as the combination of a small number of separate signals — such as individual instru-
ments — each subject to a large number of mutual constraints. This description can be applied
at multiple levels, from the raw audio through to compositional structure.

There have been only a few publications on applying sparse techniques in music. The goal of
the workshop is to bring together researchers with an interest in this topic, to focus, develop,
and refine the various perspectives and approaches possible. We hope to raise the profile
of these ideas, both to those already working with music audio, and to machine learning
researchers who may be curious about working with music audio data.
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