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Preface

The task of constructing composite systems, that is systems composed of more than one part, can be seen as interdisci-

plinary area which builds on expertise in different domains. The aim of this workshop is to explore the possibilities of

constructing such systems with the aid of Machine Learning and exploiting the know-how of Data Mining. One way of

producing composite systems is by inducing the constituents and then by putting the individual parts together.

For instance, a text extraction system may be composed of various subsystems, some oriented towards tagging, morphosyn-

tactic analysis or word sense disambiguation. This may be followed by selection of informative attributes and finally gen-

eration of the system for the extraction of the relevant information. Machine Learning techniques may be employed in

various stages of this process.

The problem of constructing complex systems can thus be seen as a problem of planning to resolve multiple (possibly

interacting) tasks. So, one important issue that needs to be addressed is how these multiple learning processes can be

coordinated. Each task is resolved using certain ordering of operations. Meta-learning can be useful in this process. It can

help us to retrieve previous solutions conceived in the past and re-use them in new settings.

The aim of the workshop is to explore the possibilities of this new area, offer a forum for exchanging ideas and experience

concerning the state-of-the art, permit to bring in knowledge gathered in different but related and relevant areas and outline

new directions for research.

Of particular interest are methods and proposals that address the following issues:

• Planning to construct composite systems,

• Exploitation of ontologies of tasks and methods,

• Representation of learning goals and states in learning,

• Control and coordination of learning processes,

• Recovering / adapting sequences of DM operations,

• Meta-learning and exploitation of meta-knowledge,

• Layered learning,

• Multi-task learning,

• Transfer learning,

• Multi-predicate learning (and other relevant ILP methods),

• Combining induction and abduction,

• Multi-strategy learning,

• Learning to learn.

Other areas may be covered, provided they are relevant towards the overall aims of the workshop.

Helsinki, July 2008 Pavel Brazdil

Abraham Bernstein

Larry Hunter
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New Directions in Goal-Driven Learning

Ashwin Ram ASHWIN@CC.GATECH.EDU

Cognitive Computing Lab, College of Computing, Georgia Tech, USA

Abstract

Goal-Driven Learning (GDL) views learning as a strategic process in which the learner attempts to identify and

satisfy its learning needs in the context of its tasks and goals. This is modeled as a planful process where the

learner analyzes its reasoning traces to identify learning goals, and composes a set of learning strategies (modeled

as planning operators) into a plan to learn by satisfying those learning goals.

Traditional GDL frameworks were based on traditional planners. However, modern AI systems often deal with

real-time scenarios where learning and performance happen in a reactive real-time fashion, or are composed

of multiple agents that use different learning and reasoning paradigms. In this talk, I will discuss new GDL

frameworks that handle such problems, incorporating reactive and multi-agent planning techniques in order to

manage learning in these kinds of AI systems.

Short C.V.

Dr. Ashwin Ram is an Associate Professor and Director of the Cognitive Computing Lab in the College of Computing at

Georgia Tech, an Associate Professor of Cognitive Science, and an Adjunct Professor in Psychology at Georgia Tech and

in MathCS at Emory University. He received his PhD from Yale University in 1989, his MS from University of Illinois

in 1984, and his BTech from IIT Delhi in 1982. He has published 2 books and over 100 scientific articles in international

forums. He is a founder of Enkia Corporation which provides AI software for information assurance and decision support.
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Transfer Learning by Mapping and Revising Relational Knowledge

Raymond J. Mooney MOONEY@CS.UTEXAS.EDU

University of Texas at Austin

Abstract

Transfer Learning (TL) attempts to leverage knowledge previously acquired in a source domain to improve the

accuracy and speed of learning in a related target domain. Statistical Relational Learning (SRL) concerns meth-

ods that combine the strengths of predicate logic and probabilistic graphical models in order to effectively and

robustly learn and reason about complex relational data. Our recent work uses TL to improve SRL, specifically

transfering learned Markov Logic Networks (MLNs), an expressive SRL formalism, to new domains. We present

a complete MLN transfer system that first autonomously maps the predicates in the source MLN to the target

domain and then revises the mapped knowledge to further improve its accuracy. Experimental results in several

real-world domains demonstrate that our approach successfully reduces the amount of time and training data

needed to learn an accurate model of a target domain over learning from scratch. A future research issue that

concerns planning to learn is automatically selecting useful source domains for a given target domain or actually

constructing simpler problems to use as potential sources for transfer.
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Experiment Databases:
Creating a New Platform for Meta-Learning Research

Keywords: meta-learning, databases, model selection, ontologies

Joaquin Vanschoren joaquin.vanschoren@cs.kuleuven.be

Hendrik Blockeel hendrik.blockeel@cs.kuleuven.be

Department of Computer Science, K.U.Leuven, Leuven, Belgium

Bernhard Pfahringer bernhard@cs.waikato.ac.nz

Geoff Holmes geoff@cs.waikato.ac.nz

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract

Many studies in machine learning try to in-
vestigate what makes an algorithm succeed
or fail on certain datasets. However, the field
is still evolving relatively quickly, and new
algorithms, preprocessing methods, learning
tasks and evaluation procedures continue to
emerge in the literature. Thus, it is impossi-
ble for a single study to cover this expanding
space of learning approaches. In this paper,
we propose a community-based approach for
the analysis of learning algorithms, driven by
sharing meta-data from previous experiments
in a uniform way. We illustrate how orga-
nizing this information in a central database
can create a practical public platform for any
kind of exploitation of meta-knowledge, al-
lowing effective reuse of previous experimen-
tation and targeted analysis of the collected
results.

1. Introduction

1.1. Sharing Meta-Data

Research in machine learning is inherently empirical.
Researchers, as well as practitioners, seek a deeper
understanding of learning algorithm performance by
performing large numbers of learning experiments.
Whether the goal is to develop better learning algo-
rithms or to select useful approaches to analyze new

Appearing in Proceedings of the ICML/COLT/UAI 2008
Planning to Learn Workshop (PlanLearn), Helsinki, Fin-
land, 2008. Copyright 2008 by the author(s)/owner(s).

sources of data, collecting the right meta-data and cor-
rectly interpreting it is crucial for a thorough under-
standing of learning processes.

Despite an abundance of empirical studies (and meta-
data), much remains to be learned about what makes
an algorithm succeed or fail on certain datasets. Sev-
eral comprehensive empirical studies, such as StatLog
(Michie et al., 1994), MetaL (Brazdil et al., 2003) and,
more recently, Ali and Smith (2006) and Caruana and
Niculescu (2006) try to provide an overview of the
state-of-the-art, but as new algorithms, preprocessing
methods, learning tasks, and evaluation metrics are in-
troduced at a constant rate, it is impossible for a sin-
gle study to cover this continuously expanding space
of learning approaches. Moreover, the meta-data gen-
erated by these and thousands of other machine learn-
ing studies is usually collected and stored differently
and therefore hard to share and reuse. Collecting this
information in public repositories would create a re-
source that could be tapped at any time to retrieve
up-to-date results from a wide range of prior studies.

Furthermore, especially from a practitioner’s perspec-
tive, data mining is not a one-shot operation. Gener-
ally, many different preprocessing and modeling tech-
niques have to be applied in order to gain a deeper
understanding of the data at hand, and sharing meta-
data about previous studies could greatly help prac-
titioners to build on previous experience and check
which methods might be particularly useful.

1.2. A Community-Based Approach

In this paper, we propose a community-based ap-
proach for the analysis of learning algorithms, driven
by collecting and sharing meta-data about learning
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Figure 1. Using experiment databases1

methods, preprocessing methods and datasets in a uni-
form way, as illustrated in Fig. 1.

To share the results of any empirical machine learning
study, they are first expressed in a standard experi-
ment description language, capturing the details of the
algorithms used, their parameter settings, the datasets
on which they were run, the employed preprocessing
steps, the evaluation methodology used and the results
of that evaluation. Known features of the algorithms
(e.g. its bias-variance profile) and datasets (e.g. land-
marker evaluations) can also be added at any time.
Next, the experiments are submitted to a repository,
where they are automatically organized to make this
information easily accessible and searchable. To this
effect, each experiment is associated with previously
stored experiments and linked to all known properties
of the algorithms and datasets.

There are various ways to make use of such a resource.
When evaluating or designing new methods, the repos-
itory could be queried to compare different algorithms
or to test specific aspects of an algorithm’s behavior,
for instance how data properties or parameter settings
affect its performance. The returned results can then
be theoretically interpreted, possibly leading to new
insights and/or improved algorithms. Furthermore,
given the amount of available meta-data, it is also pos-
sible to mine the repository for patterns in algorithms
behavior, or to use the shared data in data mining
assistance tools to propose interesting approaches to
new problems, possibly setting up more experiments
to ascertain their validity.

1Figure adapted from a framework by Smith (2008).

The remainder of this paper is organized as follows.
In Section 2, we discuss how experiment databases
can presently serve as a useful repository for machine
learning information. In Section 3, we show how to use
such databases to answer various interesting research
questions about the behavior of learning algorithms,
and in Section 4 we discuss meta-models generated by
mining the data. Finally, we consider some interesting
future applications in Section 5, including possible uses
in data mining assistance tools. Section 6 concludes.

2. Experiment Databases

An experiment database, as described in (Blockeel &
Vanschoren, 2007), is a database specifically designed
to store learning experiments in an organized fash-
ion, including all details about the algorithms used,
parameter settings, datasets, preprocessing methods,
evaluation procedure and results. Once stored, all in-
formation can be easily accessed by writing the right
database query, in standard SQL, providing a very
versatile means to investigate large amounts of ex-
perimental results, both under very specific and very
general conditions. With all details publicly available,
they also ensure experiments can be easily reproduced
and reused in future analysis.

Our implementation of such a database currently con-
tains about 500,000 experiments of 54 classification al-
gorithms on 87 datasets with 50 dataset characteriza-
tions, each evaluated on 36 evaluation metrics. It also
contains some characterizations of the algorithms, like
the model type, a bias-variance profile, and their com-
patibility with different types of data. It is available
online at http://expdb.cs.kuleuven.be. This web-
site also hosts a description of a standard experiment
description language, available tools for uploading ex-
periments, a gallery of SQL queries (including the ones
used in the next section), and a query interface includ-
ing visualization tools for displaying returned results.

3. Querying for Answers

To illustrate the use of such databases in various stages
of the knowledge discovery process, we try a num-
ber of example queries, increasingly making use of
the available meta-level descriptions of algorithms and
datasets. While the first queries only use the recorded
performance evaluations of specific algorithms on spe-
cific datasets, subsequent queries also use the stored
data characteristics and algorithm features, offering
increasingly generalizable results. A wider range of
interesting queries can be found in Vanschoren et al.
(2008).
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task. However, the effects and properties of preproces-
sors and algorithms are hard-coded. Using an experi-
ment repository could engender a much more flexible
system, querying the database to see, for instance, how
fast an algorithm would be on a certain dataset, or
what the preconditions are for applying newly entered
algorithms.

New installments of algorithm ranking tools, like the
MetaL ranker (Brazdil et al., 2003) can also be en-
visaged. For instance, such a ranker would be able
to use any stored evaluation metric, or a combina-
tion thereof, take parameter variations into account
and include viable preprocessing steps. Furthermore,
it could be given a certain amount of time to optimize
its predictions by automatically running additional ex-
periments.

6. Conclusions

We propose a community-based approach for the anal-
ysis of learning algorithms in which both machine
learning researchers and practitioners can share meta-
data from learning experiments in a uniform way, and
upload this information to a searchable experiment
database. We illustrate the use of such databases in
various stages of the knowledge discovery process by
discussing a number of example queries, increasingly
making use of the available meta-level descriptions of
algorithms and datasets. These include ranking all al-
gorithms on a group of datasets, comparing parameter
effects on different types of datasets, using preproces-
sors to draw learning curves, and plotting the average
bias-variance ratio of several algorithms against the
dataset size, each in a single query. Next, we illus-
trated how the available meta-data can also be auto-
matically mined for patterns in algorithm behavior.
Finally, we discussed possibilities for future work, in-
cluding applications in data mining assistance tools.
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Learning to Plan: Predicting the Behavior of Two Heuristics on the
Job-Shop Scheduling Problem

Pedro Abreu pedabreu@liaad.up.pt

LIAAD-INESC Porto LA, Rua de Ceuta 118 6o andar, 4050-190 Porto, Portugal

Carlos Soares csoares@fep.up.pt

LIAAD-INESC Porto LA
Faculdade de Economia, Universidade do Porto

Jorge M. S. Valente jvalente@fep.up.pt

Faculdade de Economia, Universidade do Porto

Abstract

We present a general methodology to model
the behavior of heuristics for the Job-Shop
Scheduling that address the problem by solv-
ing conflicts between different operations on
the same machine. Our approach is based
on the prediction of the gaps in the opera-
tion of machines, which are then combined
to estimate the performance of the methods.
We tested it using two well know heuristics:
Shortest Processing Time and Longest Pro-
cessing Time. Our results show that it is pos-
sible to predict the behavior of these heuris-
tics on random instances, generated using dif-
ferent distributions. We have also the same
models to estimate the relative performance
of two heuristics, but without success in this
case.

1. Introduction

The complexity of optimization problems such as the
Job-Shop Scheduling Problem (JSS) makes it very dif-
ficult to understand the behavior of heuristic methods.
This is true even for simple ones, such as the Shortest
Processing Time (Jain & Meeran, 1999). An interest-
ing research question is whether it is possible to create
models that relate properties of JSS instances with the
performance of different heuristics. In this paper, we
address this problem using a Machine Learning ap-
proach.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

If we are able to successfully generate such models,
they will be useful for several purposes. They can im-
prove our understanding of the JSS problem and the
methods used to solve it. Additionally, they can pro-
vide insights on how to improve those methods or de-
velop new ones. Finally, given an instance of the JSS
problem, they can help to decide which method should
be used.

Two very simple and common heuristics to solve the
JSS problem are considered here, namely the Shortest
Processing Time (SPT) and the Longest Processing
Time (LPT) methods (Jain & Meeran, 1999).

In Section 2 we described the background for this work
and provide further motivation. Our approach is de-
scribed in Section 3 and the results obtained are pre-
sented in Section 4. We analyze the results and present
our conclusions in Section 5.

2. The Job-Shop Scheduling Problem

The deterministic job-shop scheduling problem can be
seen as the most general of the classical scheduling
problems. Formally, this problem can be described
as follows. A finite set J of n jobs {J1, J2, . . . , Jn}
has to be processed on a finite set M of m machines
{M1, M2, . . . ,Mm}. Each job Ji must be processed
once on every machine Mj , so each job consists of a
chain of m operations. Let Oij represent the operation
of job Ji on machine Mj , and let pij be the processing
time required by operation Oij .

The operations of each job Ji have to be scheduled in
a predetermined given order, i.e. there are precedence
constraints between the operations of each job Ji. Let
≺ be used to denote a precedence constraint, so that
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Oik ≺ Oil means that job Ji has to be completely pro-
cessed on machine Mk prior to being processed on ma-
chine Ml. Each job has its own flow pattern through
the machines, so the precedence constraints between
operations can be different for each job. Other ad-
ditional constraints also have to be satisfied. Each
machine can only process one job at a time (capacity
constraints). Also, preemption is not allowed, so op-
erations cannot be interrupted and must be fully pro-
cessed once started. Let tij denote the starting time
of operation Oij . The objective is to determine start-
ing times tij for all operations, in order to optimize
some objective function, while satisfying the prece-
dence, capacity and no-preemption constraints. The
duration in which all operations for all jobs are com-
pleted is denoted as the makespan Cmax. In this paper,
we consider as objective function the minimization of
the makespan:

C∗
max = min (Cmax)

= minfeasibleschedules (max (tij + pij)) ,
∀Ji ∈ J, Mj ∈ M.

The job-shop scheduling problem is NP-hard (Garey
& Johnson, 1979; Lenstra & Rinnooy Kan, 1979),
and notoriously difficult to solve. Many papers have
been published on the job-shop scheduling problem.
A comprehensive survey of job shop scheduling tech-
niques can be found in (Jain & Meeran, 1999). Given
the complexity of the job-shop scheduling problem,
the exact methods are limited to instances of small
size. Metaheuristic algorithms have been successfully
applied to instances of small to medium size. How-
ever, for large instances, dispatching rules are the
only heuristic procedure that can provide a solution
within reasonable computation times. Furthermore,
dispatching rules are also often required for other
heuristic procedures, e.g. metaheuristic algorithms
frequently use dispatching rules to generate initial so-
lutions.

The longest processing time (LPT) and shortest pro-
cessing time (SPT) heuristics are two of the most well-
known dispatching rules, and are widely used for the
job-shop scheduling problem, as well as for a large
number of other scheduling problems. In this paper,
we consider these two rules, implemented with an ac-
tive schedule generation algorithm (Giffler & Thomp-
son, 1960; Baker, 1974). This algorithm assigns oper-
ations to machines as soon as possible, taking into ac-
count the constraints described earlier. Following this
strategy, conflicts will probably occur. This means
that two or more operation will overlap on a given ma-
chine if they are scheduled as soon as possible. In that
case, the algorithm uses a rule to choose the order in

which the operations will be assigned to the machine.
Many rules can be used for that purpose. In this work,
we use the dispatching rules LPT and SPT for that
purpose. The LPT rule schedules the operation with
the longest processing time and SPT chooses the oper-
ation with the shortest processing time. As illustrated
in Figure 1, the performance of these heuristics differs
across different instances. STP achieves the best re-
sult in this case as in 63.7% of the 1000 instances used
in this work while LTP is the best in the 36.1%.

3. Learning the Behavior of Heuristics

Our goal is to use Machine Learning methods to in-
duce models that relate the characteristics of JSS in-
stances with the performance of these heuristics. One
approach is to do this directly, using a learning al-
gorithm to generate a mapping between the values
of features representing those characteristics and the
performance of each of the heuristics. Alternatively,
one could try to predict the relative performnce of the
heuristics, if the goal is to select the best one (Abreu
& Soares, 2007). This assumes that it is

Here, we follow an alternative approach, because a
schedule is the result of a a series of decisions made by
an heuristic for every conflict that occurs during the
construction of the schedule. Therefore, the makespan
is the combination of the gaps between operations, as
illustrated in Figure 1. Based on this assumption, our
method is divided into two steps, which are discussed
in the following sections:

1. Predict the gaps separating two consecutive oper-
ations of the same job, on the schedules generated
by the heuristic;

2. Calculate the makespan, using the predicted gaps.

3.1. Prediction of the Individual Gaps

Our goal is to predict the gaps generated by the two
heuristics considered, SPT and LPT , for each pair of
consecutive operations, Ojmo−1

and Ojmo
, defined as

GapSPT (Ojmo
) and GapLPT (Ojmo

), respectively. The
Gapsched

jmo
= tjmo

− ejmo−1 is the length of the period
between two consecutive operations in job j in a given
schedule sched, ejmo

= tjmo
+ pjmo

is the end time of
operation Ojm, mo is the machine in precedence order
o ∈ {2, . . . , |M |} and Gapsched

jm1
= tjm1 . The value of

Gap is non-zero when the beginning of the second op-
eration (Ojmo

) has been delayed by a conflict, which
was solved by the heuristic in favour of another oper-
ation. In Figure 1 we observe two schedules generated
by SPT and LPT, respectively. It illustrates how the
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Figure 1. Schedules generated for the same instance with LTP (left) and STP (right).

use of different heuristics can yield large differences in
gaps.

We address this as a regression problem (Kononenko
& Kukar, 2007). In regression, the goal is to obtain a
model that relates a set of independent variables, or
features, Xi with a target variable, Y , based on a set
of examples for which both the values of {X1, X2, . . .}
and Y are known. In our case, an example is a conflict
in a schedule and the target variable, Y , is the gaps,
Gapsched(Ojmo

).

3.2. Features to Describe Conflicts

In order to obtain a reliable model, regression methods
must be provided with features, {X1, X2, . . .} which
are good predictors of the target variable, Y . In other
words, to be able to make accurate predictions, fea-
tures that provide information about the target vari-
able are required.For this problem, we need to design
features representing operations (e.g., duration), us-
age of machines (e.g., total processing time required)
and relations between operations in a job and using
the same machine.

Some of the measures used here are based on the In-
finite Capacity Schedule (ICS). The ICS is the sched-
ule obtained by relaxing the capacity constraints (i.e.,
the constraints that specify that each machine can
only process one job at a time). This schedule can
be easily constructed by scheduling the operations as
specified by the precedence constraints. Based on the
ICS, we compute a measure of the distance between
two operations (Oj1m and Oj2m) that are processed
in the same machine as follows: dist(Oj1,m, Oj2,m) =
|mj1m−mj2m+1|

pj1m+pj2m

2 +1
, where mjm = tjm +

pjm

2 is the time

unit when half of operation Ojm is processed. When

the operations are consecutive, the value of the mea-
sure is 1 and when the two operations are centered
on the same time unit, the value depends only on the
duration of operation. This means that if two oper-
ations are near and have a long duration, the value
of this measure is low, so there is a high possibility
of having a conflict when trying to generate a feasi-
ble schedule. Some additional notation is: d(S) is the
set containing the duration of operations in S, d(S) =
{pij : ∀Oij ∈ S}; ldij (hdij) is the subset of Mj con-
taining operations with shorter (longer) duration than
Oij , ldij = {Orj ∈ Mj : prj < pij} (hdij = {Orj ∈
Mj : prj > pij}); distjmo

(S) is the ICS-based distance
measure between Ojmo and the other operations in set
S, distjmo

(S) = {dist(Ojmo
, Oj1mo

) : ∀Oj1mo
∈ S};

dist
[s,r]
ij is the subset of Mj containing operations with

distance of ICS to Oij between s and r. Additionally,
some of the measures are computed for several oper-
ations in a machine and aggregated using functions
sum, average, minimum, maximum, median, variance,
the first and the third quartile, represented below as
f , for simplicity. Therefore, the features used to char-
acterize a given operation (Ojmo

) are:

• Precedence Order The pre-defined order of the
operation in the job, o

• Duration Rank in Machine The position of
the operation in a ranking of the operations in
the same machine in increasing order of duration,
|ldjmo

| + 1

• Processing Time in Machine Aggregated du-
ration of the operations to be processed on the
same machine as Ojmo

, f(d(Mmo
))

• Distance to Other Operations in Machine
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Aggregated distance in the ICS between the op-
eration and the other operations to be processed
on the same machine, f(distjmo

(Mmo
\{Ojmo

}))

• Duration of Operations with
Shorter/Longer Duration in Machine
Aggregated duration of operations to be
processed on the same machine that have
shorter/longer duration than operation Ojmo

,
f(d(ldjmo

))/f(d(hdjmo
))

• Distance to Other Operations in Machine
with Shorter/Longer Duration Aggregated
distance in the ICS between the operation and
the other operations with shorter/longer du-
ration to be processed in the same machine,
f(distjmo

(ldjmo
))/f(distjmo

(hdjmo
))

• Duration with distance higher than r and
less than s and Shorter/Longer duration
Aggregated duration of the operation with dis-
tance in the ICS to operation Ojmo

between [r, s]
and with duration shorter/longer than the opera-

tion Ojmo
, f(S) where S = dist

[r,s]
jmo

∩ldjmo
(hdjmo

).
The values of [r, s] are:] −∞,−3], ] − 3,−1.5], ] −
1.5, 0], ]0, 1.5], ]1.5, 3] and ]3,∞[

The features are not the same for the two heuristics.
For prediction of the gaps of the heuristic SPT, we
use the features describe above using the Shorter char-
acteristic (from shorter/Longer) and for the heuristic
LPT, we use the Longer characteristic.

3.3. Predicting the Makespan

The predictions of the gaps (Gap) for each schedule
can be used to estimate the makespan of the schedule
generated using the rule R for instance I as follows

MKR
I = maxj∈{1,...,|J|}





|M |
∑

o=1

(
pjmo

+ GapR (Ojmo
)
)





Note that these estimates can be used to select the best
heuristic. SPT should be used if MKSPT

I < MKLPT
I ,

otherwise LPT should be used.

4. Experiments

We have tested four regression methods that
are available in the R statistical package
(www.r-project.org): regression trees, linear
regression, support vector machines (SVM) and ran-
dom forest. For the linear model, we redimension the
features In order to analyse the results, we consider

the empirical plots of the real against the predicted
data, and also use the following analytical error
measure - relative mean squared error (RMSE). This

error is calculated as RMSE =
P

i(fi−f̂i)
2

P

i(fi−f̄i)2
, where f̂i

is the prediction of the target feature for example i
from the test dataset, fi is the real value of the target
feature of example i from the test dataset and the
f̄i(baseline) is the average of the values of the target
feature on the training dataset. We note that if the
value of RMSE is greater than 1, it means that the
learning algorithm did not learn a model capable of
generalizing to new examples better than by using the
mean value of the target on the training set.

We generated three types of datasets, namely Uniform,
Gaussian and Beta datasets. These datasets differ in
the method used to generate the JSS instances that
are tested. In the Uniform and Gaussian datasets, the
precedence order is generated using a uniform distribu-
tion, as described in Taillard (Taillard, 1993). Also, in
the Uniform (Gaussian) dataset, the duration of each
operation is generated using a uniform (gaussian) dis-
tribution, such that these durations are not correlated
with the machines or jobs, as described in (Watson
et al., 1999). The Beta dataset contains more diverse
instances, with duration of operations either not corre-
lated with machines or jobs, correlated with machines
or correlated with jobs, and randomly generated pa-
rameters α and β. For the precedence order in the
instances of the Beta dataset, instead of generating a
new precedence order for each job, as in the Uniform
and Gaussian datasets, a previously generated prece-
dence order is sometimes repeated. The larger the
number of repetitions, the closer the instance is to a
flowshop instance, since in the flowshop problem the
precedence constraints are identical for all jobs. Each
instance has 5 jobs to be processed on 5 machines and
the range of processing time values is between 1 and
99. Experiments were carried out separately for the
data corresponding to each of the distributions. We
have generated 1000 instances using each of the distri-
butions, which corresponds to 25000 examples, each
one representing one gap of consecutive operations.
For each experiment the data corresponding to 500 in-
stances were used for training and the remaining data
were used for testing. Note that, given the large size
of the test set, there is no need to employ resampling
techniques, such as cross-validation, for estimating the
error;

In the figures, we have on the x-axis the prediction
based on the predictions obtained with the Random
Forest model and on the y-axis, we have the real value.
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Table 1. Error results obtained with different models (Lin-
ear Regression and Random Forest) for each heuristic of
the prediction of gaps (fourth column), end time jobs (fifth
column) and makespan (sixth column) on different datsets
(Uniform, Gaussian and Beta).

RMSE
Dist. Alg. Heur. Gap End Time Makespan
U LR SPT 0.58 0.41 0.92
U LR LPT 0.74 0.84 1.60
U RF SPT 0.43 0.30 0.84
U RF LPT 0.62 0.71 1.01
G LR SPT 0.60 0.48 1.20
G LR LPT 0.71 0.78 1.49
G RF SPT 0.50 0.43 1.20
G RF LPT 0.61 0.69 1.06
B LR SPT 0.59 0.29 0.30
B LR LPT 0.70 0.48 0.42
B RF SPT 0.48 0.25 0.29
B RF LPT 0.60 0.44 0.33

4.1. Discussion

The results on the problem of predicting the gaps are
generally positive, especially the ones obtained with
the Random Forest algorithm (Table 1 and Figure 2).
Better results are obtained in the prediction of the
gaps generated with SPT than with LPT. This could
either mean that the latter is a more difficult problem
or that the features are more suitable for the former
problem.

Some interesting observations can be made based on
Figure 2 and further analysis of the results (not shown
due to lack of space). First, there are a lot of exam-
ples (gaps) with a true value of 0. On the other hand,
although the maximum value of the gaps is approxi-
mately 500, the predictions are generally below 300.
We observe that the largest errors occur at the ex-
tremes of the range of real values. These observations
indicate that the regression methods are not dealing
with the distribution of target values appropriately.

Additionally, we present the results on the interme-
diate steps. For the Beta dataset, the error of pre-
dicting the gaps is higher than the error of predicting
the end time of jobs for both heuristics (Table 1 and
Figure 4). Additionally, the results obtained for SPT
are clearly better than for LPT. Figure 3, which plots
the distribution of the errors of predicting gaps for the
two heuristics, provides a possible explanation for this.
The distribution for SPT is more symmetric than for
LPT. So, when adding the gaps, the errors of heuris-
tic SPT may be cancelling themselves out because of
the symmetry around 0. However, further analysis of

Figure 2. Graphic of value prediction using Random Forest
model (x-axis) and real value of gaps duration for SPT(left)
and LPT(right) of Beta dataset. Similar plots were ob-
tained for the Uniform and Gaussian datasets.

Figure 3. Histograms of the errors prediction with R. For-
est model for SPT gaps (left) and LPT (right) from Gauss.
dataset

results is necessary to confirm this.

We also analyse the results on the the prediction of the
makespan of each heuristic (Table 1 and Figure 5). In
comparison to the error of predicting the end time of
jobs, in the Uniform and Gaussian dataset, it increases
while on the Beta dataset they are both very similar.

These results indicate that it is possible to predict the
gaps generated by these two heuristics, which is the
goal of this paper. However], we also evaluated the
accuracy of selecting the best heuristic based on the
estimated makespans. The results in Table 2 show that
this is also possible. However, the difference to the de-
fault accuracy (i.e., using a baseline method that al-
ways selects the heuristic that wins in the largest num-
ber of instances in the training set) is small. The table
also shows that in instances with a larger difference of
performance between the heuristics, the advantage of
the prediction is more clear. These results indicate
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Figure 4. Graphic of value prediction using Random Forest
model (x-axis) and real value of end time of the job’s for
SPT(left) and LPT(right) of Beta dataset. Similar results
were obtained on the Uniform and Gaussian datasets.

Figure 5. Graphic of value prediction using Random Forest
model (x-axis) and real value of makespan of the instances
for SPT(left) and LPT(right) of Beta dataset. Similar re-
sults were obtained on the uniform and gaussian datasets.

that we must improve the predictions of the gaps be-
fore being able to accurately predict the makespan and
which method will obtain the best result.

One important goal of this work is to show that it is
possible to use the approach proposed here to obtain
information about the behavior of heuristics for the
JSS problem. To illustrate this, we analyze the coeffi-
cients of the linear model obtained for the LPT heuris-
tic on the Gaussian dataset. The coefficients with the
largest effect are both negative, meaning that higher
values of the corresponding variables are associated
with a lower value of the gap. The two features rep-
resent the average of duration of the operations with
higher duration than the operation that precedes the
gap and with an ICS distance between 0 and 1.5 and
-1.5 and 0, respectively. This means that the duration
of the gap is inversely proportional to the duration of
the operations which are very near in the ICS to the

Table 2. Error results obtained with different models (Lin-
ear Regression, Random Forest and Baseline) for each
dataset type of the prediction of best heuristic for all in-
stances and for selected instances, i.e., the ones for which
there is a clear decision, identified by a difference in the
predicted makespan higher than 20%.

Dist. Alg. All Selected
U LR 0.38 0.23
U RF 0.33 0.15
U Bl 0.43 0.33
G LR 0.39 0.25
G RF 0.39 0.24
G Bl 0.42 0.31
B LR 0.39 0.37
B RF 0.34 0.17
B Bl 0.46 0.37

operation that precedes the gap (i.e., ICS distance be-
tween -1.5 and 1.5) and that have a higher priority
for the LPT heuristic (i.e., they have a longer dura-
tion). This is an interesting result for two reasons.
Firstly, it indicates that the ICS provides useful in-
formation about the behavior of the LPT heuristics,
at least in small instances. It remains to be investi-
gated whether the same is true for larger instances.
Secondly, one hypothesis for this effect is that, under
these conditions, there is a high probability that the
operation that precedes the gap will be in conflict with
operations that have higher priority according to LPT.
Therefore, the gap before the operation is probably
longer, which possibly decreases the probability that
there will be a conflict after that operation. In other
words, the gap which is being predicted is expected to
be shorter. This indicates one possible problem with
our approach. The features describe the operation be-
fore the gap, while, the operation after it is expected
to have the largest effect on its size. Further work is
reuquired to test this hypothesis.

The highest positive coefficient is the one of the fea-
ture representing the third quartile of the duration of
the operations with higher duration (i.e., with a higher
priority for the LPT) and with an ICS distance smaller
than -3 (i.e., farther from the operation being consid-
ered). This result may be related to the previous one.
It may indicate that, if there is less probability of a
conflict with the operation before a gap (because the
operations with higher priority have been scheduled a
lot earlier), then the probability that there is a con-
flict in the following operation increases and so does
the gap.
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5. Conclusion

In this work, we addressed the problem of learning
models that are able to predict behavior of different
heuristics for the Job-Shop Scheduling problem. We
propose a methodology that is novel and can be ap-
plied to any heuristic that solves conflicts individually.
Our goal is to determine the properties of the instance
that determine the performance of the heuristic. Our
approach divides the problem into two sub-problems:
1) for every pair of consecutive operations, predict the
size of the corresponding gap in the schedules gener-
ated by the heuristic and 2) predict the makespan of
the schedule based on the predictions made in sub-
problem 1.

In our experiments, positive results were obtained in
the two sub-problems. However, the results on the
second problem are not entirely satisfactory. Our plan
is to improve the set of features used in order to obtain
more accurate predictions in the first sub-problem. We
expect that better base-level predictions will enable
better results on the prediction of the makespan of
the schedules generated by the heuristics.

As future work, we plan to explore the generality of the
method, by testing it with another common heuristic
for the JSS problem, MWR, and on heuristic meth-
ods that generate non-delayed schedules. It’s impor-
tant to analyze and understand the models for gen-
erate better features. Finally, we will also extend this
work to predict the behavior of meta-heuristics. In this
case, these results are particularly interesting because,
as these heuristics are more computationally complex,
the problem of selecting beforehand which method to
apply is quite relevant.
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Abstract

We propose an intelligent data mining (DM)
assistant that will combine planning and
meta-learning to provide support to users of a
virtual DM laboratory. A knowledge-driven
planner will rely on a data mining ontology
to plan the knowledge discovery workflow and
determine the set of valid operators for each
step of this workflow. A probabilistic meta-
learner will select the most appropriate oper-
ators by using relational similarity measures
and kernel functions over records of past ses-
sions meta-data stored in a DM experiments
repository.

1. Introduction

We propose an architecture that combines a planning-
based and a meta-learning approach in providing data
mining support to end users. By adding AI-planning
to meta-learning, we can ensure support for the com-
plete knowledge discovery process. Contrary to previ-
ous efforts where the dominant focus was on either
learning (Statlog, Metal) or preprocessing (Mining-
Mart), our data mining assistant will propose work-
flows that start with the raw data, select and sequence
the different preprocessing operations, select a suitable
learning algorithm and output trained models. On
the other hand, by adding meta-learning to planning-
based data mining (DM) support, it will make the
planner adaptive to changes in the data and capable of
improving its advice over time; this improvement will
apply to the planner’s decision-making at any node of
the knowledge discovery workflow.

Meta-learning will be based on multiple and di-

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

verse types of meta-data. Statlog and Metal meta-
learners relied mainly on quantitative (e.g., statisti-
cal, information-theoretic) characteristics of data to
select appropriate learning algorithms (Michie et al.,
1994; Metal, 2002). MiningMart described datasets in
terms of domain concepts but did not use these to met-
alearn (Morik & Scholz, 2004). The proposed system
will meta-mine both quantitative and qualitative, do-
main ontology based metadescriptions of the applica-
tion dataset. In addition, the meta-learner’s ken will,
for the first time, go beyond the dataset to take into
account a significantly extended learning context the
application task, performance criteria, workflow qual-
ity indicators, and the user’s profile as defined by quan-
titative results and qualitative feedback from his past
historical record of data mining experiments.

Generalizing from these heterogeneous factors requires
defining similarity measures and data mining opera-
tors over complex structures. We will explore elabo-
rate task descriptors such as operator trees (Mierswa
et al., 2006) or multirelational experiment descriptors
that integrate information concerning datasets, algo-
rithms, and evaluation strategies, (Kalousis & Hilario,
2003; Hilario & Kalousis, 2001).

We propose a novel meta-learning technique which
blends probabilistic reasoning and kernel-based learn-
ing from complex structures. We will exploit a frame-
work that we have recently developed for kernel-based
learning over complex structures using the language
of relational algebra (Woznica et al., 2007; Woznica
et al., 2005). To meta-learn from the diverse fac-
tors described above, we will weave state transition
probabilities into kernel-based learning over relational
schemas and devise methods for adjusting these prob-
abilities to improve the data mining assistant’s choices
as it gains experience.
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2. An Intelligent Assistant for Data
Mining

The intelligent data mining assistant will be at the
helm of a virtual DM laboratory designed for a com-
munity of users with common data-analytical needs in
a specific application domain. Essential components
of this e-lab will be a DM ontology and a DM exper-
iments repository. The ontology will provide a formal
specification of the knowledge discovery process – its
different phases, the set of operators that can be le-
gitimately applied at each phase, and so forth. The
repository will be the e-lab’s long-term memory; de-
tailed records of all experiments performed in the e-lab
will be stored in the repository to allow for replication
and comparative meta-analysis of data mining exper-
iments.

The DM assistant will take in user specifications of the
knowledge discovery task and available data, plan a
methodologically correct learning process, and suggest
ranked workflows that the user can enact to achieve
the pre-specified objectives. To plan the workflow
and determine the operator or algorithm to apply for
a given data mining step, the assistant will harness
prior knowledge stored in the DM ontology. Meta-
data stored in the DM experiments repository will be
leveraged to improve the data mining process itself,
for instance by incrementally refining the DM plan-
ner’s search in the design space of candidate DM oper-
ators (and workflows). The kernel-based, probabilistic
meta-learner will dynamically adjust transition prob-
abilities between DM operators, conditioned on the
current application task and data, user-specified per-
formance criteria, quality scores of workflows applied
in the past to similar tasks and data, and the user’s
profile (based on quantified results from, and qualita-
tive feedback on, her past DM experiments). The pro-
posed meta-learning method will be evaluated against
the baseline of a case-based DM planner, which re-
trieves and adapts workflows from the most similar
past experiments. By comparing the DM planner’s
evolution over time based on these two approaches,
we hope to gain insights into the patterns that govern
the efficacy of data mining workflows, operators and
parameters.

2.1. The Knowledge Driven Planner

A DM ontology and repository will ease the task of
constructing a complicated KD process by simplifying
scientists’ access to the plethora of data mining con-
cepts, algorithms, data sources, and past experiments.

We will devise a tool that helps data miners (and data

mining scientists) to navigate the space of KD pro-
cesses systematically, and more effectively. In partic-
ular, we will develop an intelligent discovery assistant
(IDA) that helps a data miner with the exploration of
the space of valid1 DM processes (Bernstein & Provost,
2005). The discovery assistant’s intelligence comes
mainly from its awareness of the full knowledge dis-
covery context and its capacity to learn incrementally
from experience. The KD context is available to the
IDA in the form of the user’s task specification and
domain-ontology based semantic annotations on the
dataset. In addition, the IDA can extract quantitative
characteristics of the dataset such as the number of ex-
planatory variables or the percentage of missing values.
The IDA uses this contextual information, together
with knowledge from the DM ontology and knowledge
base (e.g., applicability conditions of DM operators),
to search for and enumerate the valid and effective DM
processes. It does this by (i) retrieving and adapting
them from the DM experiments repository using case-
based reasoning approaches, or (ii) using AI planning
type approaches to construct new valid data mining
processes.

Once the IDA has listed a variety of alternatives it
also assists the user in choosing workflows to execute,
for example, by ranking the workflows (heuristically)
according to what is important to the user. In ad-
dition, the IDA will also allow for some open-ended,
statistical/exploratory data analysis, as has been ad-
dressed by Amant and Cohen (1998). In such ex-
plorations, the IDA does not necessarily provide the
user with finished KD-workflows, but provides guid-
ance at each step in the exploration of a KD-process
- a type of support that is suitable in data mining
endeavors that are exploratory and/or where the case-
based/planning based IDA does not provide satisfac-
tory KD-workflows. In this exploratory mode, scien-
tists (or data miners) would first assemble underlying
data-sources after which the IDA would try to provide
advise on what possible next steps could be. As soon
as scientists would choose one of these steps the IDA
would execute it in the background and try to advise
on next steps or suggest backtracking to the previous
decisions if some newly arisen information would war-
rant this.

To allow the planner-based IDA to improve with ex-
perience, we introduce a set of probabilistic param-
eters that will be automatically adjusted by meta-

1A valid DM workflow violates no fundamental con-
straints of its constituent techniques. An automated sys-
tem can take advantage of an explicit ontology of data-
mining techniques, which defines the various techniques
and their properties.
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mining the DM experiments repository. The DM-
workflow planner is essentially a breadth-first search
algorithm that starts from an initial state and tries to
reach a final stage by sequencing data mining opera-
tors. At each state the search algorithm will add all
DM operators that can be legitimately applied. Prior
knowledge about operator application constraints is
obtained from the DM ontology and modeled in a state
transition table T with dimensionality K × K (K is
the number of DM operators). The Tij element of
this table is defined as Tij = P (Oj |Oi,D,KDT). In
words, it denotes the transition probability from state
(DM operator) i, to state (DM operator) j, given the
description D of the data and the description of the
knowledge discovery task, KDT. These probabilities
sum to one over a given row i,

∑

j Tij . In the simple
breadth-first search all valid transitions are equiprob-
able (will all be expanded and explored), since there
are no preferred sequences of operators.

The planner should establish the sequence of data min-
ing operators WF = [S1, S2, ..., SN ] with maximal
joint probability distribution given the data descrip-
tion D, and the knowledge discovery task description,
that is: WF = argmaxWF P (S1, S2, ..., SN |D,KDT).
Under the assumption that the transition to the
next stage depends only on the current stage,
the data description, D, and the knowledge dis-
covery task, KDT, the joint probability dis-
tribution P (S1, S2, ..., SN |D,KDT) factorizes as:

P (S1|D,KDT)
∏N

i=2 TS(i−1)Si
The initial stage S1 is

governed by a probability distribution defined over
the different data mining operators, given the data D
and the knowledge discovery task KDT, i.e. S1 ∼
P (O|D,KDT) = [P (Oi|D,KDT)|i = 1 . . . N ]. It is
straightforward to adapt the search algorithm to out-
put together with the DM-workflows their joint prob-
abilities. Assuming T is in its original state, i.e. ig-
noring all past experiments in the DM experiments
repository, all DM workflows of equal length will also
have equal joint probability, as the breadth search al-
gorithm examines all states without distinction. Note
here that longer workflows will have lower joint prob-
ability than shorter since their joint probability is a
product of a larger number of terms, one issue that
arises here is whether this should be factored out by
an appropriate normalization, nevertheless intuitevely
one would prefer shorter and simpler workflows over
more complex.

We have expressed the way in which the search al-
gorithm moves around the space of states, i.e. data
mining operators, in terms of state transition proba-
bilities, i.e the set of parameters T, P (O|D,KDT ).
It is this set of parameters that will be the target of

the incremental meta-learning.

2.2. Meta-Learning

The general problem that IDA tries to solve can be
formulated as follows: given a user, U , of the plat-
form facing a knowledge discovery problem, A, and a
description of A = (D,KDT), where, D corresponds
to a description of the data, both in terms of their
semantics, as these are established after their annota-
tion with respect to the domain ontology, and their
quantitative characteristics, KDT is a description of
the Knowledge Discovery Task that the user is try-
ing to accomplish, establish a data mining workflow
WF which will address the knowledge discovery task
and will optimize some performance criteria, PC, spe-
cific to the user. The description of KDT can be as
high level as simply stating the learning task to be
performed, e.g. classification, or more specific such as
stating that the goal is classification using a reduced
set of features. Its description will be given in the
form of a workflow although at a high level. At the
beginning IDA will rely solely on the data mining on-
tology and the planner to propose and rank a number
of alternative WFs; essential to the planning process is
the set of parameters, T, P (O|D,KDT). The initial
state of these parameters will be determined by the
data mining experts. To allow the planner to recom-
mend the most appropriate workflow(s), we propose
an infrastructure to adapt these parameters to the re-
quirements of a given knowledge discovery problem as
these can be gathered from (A, U,PC). The adapta-
tion process will take account of previous data mining
experiments and performance results, as well as other
factors such as users’ feedback, context and reputa-
tion.

More precisely, the system is confronted with a num-
ber of data mining experiments performed by vari-
ous users, which are eventually stored in the DMER.
Each data mining experiment, DMEk, is a complex
structure described by a number of components that
will eventually resemble to something like: DMEk =
(Uk,WFk,Dk,KDTk,PCk,UFk). Uk is the iden-
tifier of the user that performed the given experi-
ment, the remaining variables have a complex struc-
ture. WFk denotes the workflow that was applied on
the given DMEk, and is actually a sequence of data
mining operators; Dk is the description of the data
analysed in the experimentDMEk; KDTK is the de-
scription of the knowledge discovery task that is to be
performed; PCk is a vector containing different per-
formance measurements obtained by applying work-
flow WFk to dataset Dk, with respect to a number
of performance criteria; and UFk is some qualitative
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user feeback along a number of different dimensions,
such as understandability, ease of use, complexity etc.

Learning the planner’s parameters for a
new Knowledge Discovery Problem The meta-
learning module will establish functions fT(A) and
fO(A) that, given the description, A = (D,KDT), of
a new, potentially unseen, knowledge discovery prob-
lem, will estimate T and P (O|A), respectively. These
estimates will then be used by the planner to provide
a ranked list of workflows for A. The main learn-
ing paradigm that we will use is that of kernel-based
estimation. Let Xk = (Dk,KDTk) denote the de-
scription of the knowledge discovery problem associ-
ated with data mining experiment DMEk, then:

fT(A) =

∑

Xk

TkKKDP (A, Xk)
∑

Xk

KKDP (A, Xk)
, (1)

fO(A) =

∑

Xk

P(O|Xk)KKDP (A, Xk)
∑

Xk

KKDP (A, Xk)

where the summations are taken over all Xk ∈
DMER. KKDP (A,Xk) is a kernel2 function that pro-
vides a measure of similarity of A and Xk; Tk and
P (O|Xk) are estimations of T and P (O) derived from
DMEk. The workflow, WFk, of a data mining exper-
iment, DMEk, can give rise to an estimation, Tk, of
T simply by counting the times that a transition hap-
pens from one operator, Oi, to another operator, Oj ,
within that workflow and normalizing it by the total
number of transitions. Similarly it can provide us with
an estimation of P (O|Xk). In both estimates we can
imagine adding a Laplace correction so that the prob-
ability of the transitions that do not appear is greater
than zero.

Kernels on Descriptions of Knowledge Discov-
ery Problems The estimates given in equations 1
can be readily used by the planner to construct work-
flows which are tailored to A. We will design ker-
nel functions which are appropriate for this type of
problem exploiting similarity measures defined over
datasets in the context of meta-learning, (Kalousis &
Hilario, 2003), but also more general kernel functions
for complex objects, (Woznica et al., 2007; Woznica
et al., 2005) Since the description of a knowledge dis-
covery problem consists of two quite different parts,
the data description and the knowledge discovery task
description, we envisage that the KKDP (A,X) kernel

2A kernel function, k(x, y), provides the similarity of the
images of x and y in some feature space without having to
compute explicitly the mapping.

will be the composition of two very different kernels,
one, KD, defined on the data part of the description
and another, KWF , defined on the knowledge discov-
ery task description part. The first kernel will have to
account for similarities defined not only with respect
to quantifiable characteristics of the datasets, but also
with respect to their annotations within the domain
ontology. The second kernel will be defined over the
language used to described knowledge discovery tasks,
potentially over different abstraction levels, and will
exploit similarities of operators and concepts derived
from the data mining ontology. Note here that the
definition and availability of these kernel—similarity—
functions will also serve the needs of the case-base and
will result in similarity measures for the retrieval of
similar knowledge discovery problems, datasets, and
workflows—knowledge discovery tasks. We will de-
sign, test, and evaluate different ways of defining the
KKDP kernel, exploring and/or even learning the im-
portance of its constituents, (Woznica et al., 2007).
We will also explore different estimations of Tk and
P (O|Xk) from a given workflow description WFk.

Accounting for Qualitative and Quantitative
Performance Indicators of WFs The estimations
derived from the equations of 1 are based only on
the similarity of the description of the current knowl-
edge discovery problem A with the descriptions of the
knowledge discovery problems Xk, thus ignoring any
quality indicator for the WFk workflow associated
with Xk. The quality indicators come into two flavors:
quantitive performance measures, contained in PCk,
that are estimated from the actual application of the
WFk workflow on the data, and qualitative indica-
tors, contained in UFk, that are given by the user Uk,
concerning non-easily quantifiable dimensions such as
understandability and/or simplicity of the final models
produced by the workflow, ease of use of the workflow
etc. Yet a third, indirect, quality indicator of a work-
flow WFk can come from the ”quality” of the user Uk

associated with the workflow. The quality of a user
Uk will be given by a function Q(Uk) that will account
for various factors, such as how often workflows de-
signed by this user have been adopted by other users,
how the workflows of this user have been qualified by
other users, how this user has been qualified by other
users, etc. By accounting for such quality indicators of
a WFk workflow we can accordingly favor or penalise
the estimations Tk and P (O|Xk) derived from WFk.

Moreover we should account for the fact that differ-
ent users might have different preferences concerning
the desired quantitative and qualitative performance
indicators of the workflows, e.g. trading accuracy for



27

Meta-learning and planning of data mining workflows

understandability. In order to address such differences
we will design user dependent parameterizable func-
tions fu(PCk,UFk) of the quality indicators. These
functions will weight heavily the Tk and P (O|Xk) es-
timations derived from workflows that exhibit the de-
sired performance while they will reduce towards zero
the weights of estimations derived from workflows with
poor performance. Incorporating these functions into
equations of 1 results in estimates of the form:

fT(A) =

∑

Xk

TkKKDT (A, Xk)fu(PCk, UFk)Q(Uk)
∑

Xk

KKDT (A, Xk)fu(PCk, UFk)Q(Uk)
(2)

fO(A) =

∑

Xk

P(O|Xk)KKDT (A, Xk)fu(PCk, UFk)Q(Uk)
∑

Xk

KKDT (A, Xk)fu(PCk, UFk)Q(Uk)

We will thus design, test and evaluate, performance
aware estimates of the parameters of the planner, ac-
cording to the equations of 2 by incorporating user de-
pendent functions of qualitative and quantitative per-
formance indicators of the workflows as well as user
quality indicators through the Q(Uk) function. The
latter will draw heavily on the definition of authority
indexes described later.

User’s Profile—Context The profile of a user con-
sists of the information stored about the user within
the system. This information consists of all the previ-
ous knowledge discovery projects that he/she has un-
dertaken, the data mining experiments that he per-
formed within each knowledge discovery project, the
datasets associated with these experiments, the de-
scriptions of these datasets, the workflows that he/she
has chosen for final deployment or publication on
the platform, the feedback that he/she has provided
on previous suggestions of the system, the workflows
he/she has designed from scratch without relying on
the system’s support, his/her level of authority, as this
is determined by the frequency of use by other users
of the workflows he/she has published. We will define
precisely the different information sources that collec-
tively constitute a user’s profile. An important part
of this task will be the definition of authority indexes
for the users of the system. We will construct kernel
functions, KU (Uk, Ul), to measure the similarities of
the profiles—contexts— of any pair of users, Uk, Ul.
Since the profile of a user consists of datasets, knowl-
edge discovery task descriptions, and more, the KU

kernel will be actually a set kernel based on agreega-
tions of KKDP kernels on the different problems that
the user has encountered, potentially including other
kernels defined on other aspects of a user’s profile.

Incorporating User’s Feedback and Context
So far the estimations of the parameters given by
fT(A) and fO(A) were adapted to the descriptions
of the knowledge discovery problem that should be
solved, accounting for the quality of the previous so-
lutions, but they do not incorporate any existing feed-
back from the user that is performing the current data
mining experiments on previous analysis episodes and
workflows within there, nor any information about
his/her profile. In order to do that we will incorporate
the KU (Uk, Ul) kernel in the computation of fT(A).
Like that the qualitative and quantitative indicators
given by the user U , who is performing the actual ex-
periment, in his/her past interactions with the sys-
tem, will be given maximum weight since KU (U,U)
atains the maximum possible similarity value. More-
over the incorporation of KU (U,Uk) will assign greater
importance to users that exist in similar contexts as
the U , thus modeling the assumption that users in
similar context will probably find interesting similar
tools. The new estimations will be functions of both
the description of the knowledge discovery application
problem, A, and the user, U , who is faced with A.

fT(A, U) =

∑

k
TkKKDT (A, Xk)fu(PCk)fu(UFk)Q(Uk)K(U, Uk)

∑

k
KKDT (A, Xk)fu(PCk)fu(UFk)Q(Uk)KU (U, Uk)

(3)

fO(A, U) =

∑

k
P(O|Xk)KKDT (A, Xk)fu(PCk)fu(UFk)Q(Uk)K(U, Uk)
∑

k
KKDT (A, Xk)fu(PCk)fu(UFk)Q(Uk)KU (U, Uk)

We will define, test, and evaluate, the final form of the
adaptive estimations of the parameters of the planner
which will incorporate the user’s feedback on previous
analysis episodes and suggestions of the system, as well
as information about the user’s context similarity with
that of other users. In the latter the idea is that users
that exist in similar contexts will have similar data
analysis needs.

3. Evaluation

We will systematically evaluate the different strate-
gies for estimating the parameters of the DM-workflow
planner. The basic evaluation strategy will be to ex-
amine how well the suggestions of the planner, un-
der the different estimation strategies, correlate with
the users’ actual feedback. Standard hold-out or
resampling-based strategies will be used to estimate
this correlation. The key idea will be to use a part
of the available data to build the estimates for un-
seen cases and compute the correlation with the user
feedback. Different levels of evaluation will be of in-
terest, namely, evaluating performance on completely
new users for which nothing is known, and evaluating
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performance for users that have a recorded history.

4. Discussion

In this paper we propose a system that will com-
bine planning and meta-learning to provide support
to users of a virtual laboratory. Standard planning
approaches return a number of different solutions, typ-
ically unranked. Our planner will rank these solutions
according not only to their probabilities among dif-
ferent users and different user communities, as these
are depicted in the state transition matrix, but also
with respect to a number of qualitative and quantita-
tive performance indicators on past problems. Equally
important we account for the different degrees of rel-
evance that these performance indicators might have
for different users, or even for the same user in different
contexts, by incorporating as a part of the establishe-
ment of the final ranking of plans parameterizable, ac-
cording to user preferences, functions of these quality
indicators.

A crucial factor for the success of the system, especially
if one considers the enormous size of hypothesis space
of the metalearning problem, is the construction of a
large repository of Data Mining Experiments. In order
to address this issue we plan to exploit ideas from so-
cial networking coupled with e-science platforms. One
such platform is MyExperiment, (Goble & De Roure,
2007), which is an e-science social network that sup-
ports the exchange of complex workflows that address
bioinformatics problems. Exploiting the idea of social
networks for the construction of a network of Data
Mining Scientists provides a very promising way to ad-
dress the problem of data collection for metalearning.
Such social networks already exist in the form of fo-
rums build around specific data analysis tools such as
Weka (Witten & Frank, 2005), RapidMiner (Mierswa
et al., 2006). Moving to the next stage where par-
ticipants will exhange not only comments and sugges-
tions but in fact complete data mining workflows, such
as Weka or RapidMiner workflows, that can be read-
ily applied is not such a great leap. We believe that
the benefits for the data analysis community would
be great and analysts will have every reason to par-
ticipate to such a community by contributing content
benefiting from the collective intelligence.
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Abstract

This paper addresses the problem of semi-
automatic design of workflows for complex
knowledge discovery tasks. Assembly of op-
timized knowledge discovery workflows re-
quires awareness of and extensive knowledge
about the principles and mutual relations
between diverse data processing and min-
ing algorithms. We aim at alleviating this
burden by automatically proposing work-
flows for the given type of inputs and re-
quired outputs of the discovery process. The
methodology adopted in this study is to de-
fine a formal conceptualization of knowledge
types and data mining algorithms and design
a planning algorithm, which extracts con-
straints from this conceptualization for the
given user’s input-output requirements. We
demonstrate our approach in two use cases,
one from scientific discovery in genomics and
another from advanced engineering.

1. Introduction

Integration of heterogeneous data sources and infer-
ring new knowledge from such combined information
is one of the key challenges in present-day life science.
Consider e.g. bioinformatics where for virtually any
biological entity (a gene, for example), vast amounts
of relevant background information are available from
public web resources. This information comes in di-
verse formats and at diverse levels of abstraction. Con-
tinuing the genomic example, the publicly available
data sources range from DNA sequence information,
homology and interaction relations, gene-ontology an-
notations, information on the involvement in biologi-

Appearing in Proceedings of the 25 th International Confer-
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cal pathways, expression profiles in various situations
etc. To merge only these exemplary sources of data,
one already has to combine specialized algorithms for
processing sequences, relational data, ontology infor-
mation and graph data. It is thus no surprise that
a principled fusion of such relevant data requires the
interplay of diverse specialized algorithms resulting in
highly intricate workflows. While the mutual relations
of such algorithms and principles of their applicability
may be mastered by computer scientists, their com-
mand cannot be expected from the end user, e.g. a
life scientist.

The primary hypothesis investigated in our study is
that such complex scientific workflows can be assem-
bled automatically with the use of a knowledge discov-
ery ontology and a planning algorithm accepting task
descriptions automatically formed using the vocabu-
lary of the ontology.

2. Related Work

Several previous works have explored planning in the
context of workflows. Notably, within the Pegasus
project (Deelman et al., 1990) a planner is used to
construct a concrete workflow out of an abstract work-
flow. In our research we tackle a related yet different
goal; given an ontology and a task description, we use
a planner to construct a workflow, which in the ter-
minology of (Deelman et al., 1990) would be called
abstract. The paper (Klusch et al., 2005) is relevant
to our work as it elaborates a procedure for converting
OWL-S service annotations into action descriptions in
the standard Planning Problem Description Language
(PDDL). Constructing a PDDL problem description is
also a technical ingredient of our methodology.

Unlike in (Klusch et al., 2005) we conduct workflow
composition tasks in the specific domain on data min-
ing, for which we devise a special ontology. A sim-
ilar aim was followed by recent work of Brezany et
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al. (Brezany et al., 2007). This work, however, is fo-
cused only on automatic formation of linear sequences
of tasks: their ontology ensures that there is only one
algorithm that can be inserted into a workflow prior
to another algorithm. In our work we try to provide
a more principled framework for the domain of data
mining, aimed at enabling the construction of much
more complex workflows with the main intended ap-
plication in non-trivial scientific discovery tasks.

To the best of our knowledge, there is so far no previ-
ous work providing a principled and actionable ontol-
ogy for data mining including relational data mining
with complex background knowledge. There have been
efforts to provide a systematic description of data and
processes for the classical data mining tasks e.g. in
systems MiningMart (Morik & Scholz, 2004), CAM-
LET (Suyama et al., 1998), CITRUS (Wirth et al.,
1997) and NExT (Bernstein & Deanzer, 2007).

The MiningMart system (Morik & Scholz, 2004) fo-
cuses on propositional data mining from data stored
in a relational database. It contains a meta-model for
representing and structuring of information about data
and algorithms, however this meta-model is expressed
in XML, not in an ontology language. The system
also does not provide means for automatic workflow
creation.

The project CITRUS (Wirth et al., 1997) uses an ob-
ject oriented schema is used to model relationships be-
tween the algorithms. The system focuses on guiding
the user through mostly manual process of building
of workflows by including information about proper-
ties and usability of the algorithm in the algorithm
description. Planning is used only for proposing steps
in process decomposition and refinement.

In the CAMLET system an ontology of algorithms
(processes) and ontology of data structures are defined,
however no ontology language is specified in (Suyama
et al., 1998). The system relies on manually defined
top-level control structure, which is then refined using
genetic programming until a suitable structure pro-
ducing the required results is found. The structure of
algorithms ontology does not attempt to formalize the
domain systematically, rather it is determined by the
used top-level control structure.

The most systematic effort to construct a general
knowledge discovery ontology is described in (Bern-
stein & Deanzer, 2007). The ontology used by the
NExT system is built on OWL-S and provides a rel-
atively detailed structure of the propositional data
mining algorithms. It focuses on classical data min-
ing processes, which contain three subsequent steps:

pre-processing, model induction and post-processing,
while our primary focus in on describing more complex
relational data mining tasks. The workflows generated
by the NExT system are linear, whereas for our tasks
workflow is a directed acyclic graph.

The development of a unified theory (conceptualiza-
tion) of data mining was recently identified as the first
of ten most challenging problems for data mining re-
search (Yang & Wu, 2006). While we do not claim
completeness or universal applicability of the ontology
developed in this work, in its design we did try to fol-
low the state-of-the-art works attempting to establish
such a unified theory. From Mannila’s traditional def-
inition of data mining (Mannila, 1995), we accepted
the core concepts of a pattern and representation lan-
guage. On the other hand, in categorizing knowledge
and algorithm types, we followed on the recent com-
prehensive study by Džeroski (Dzeroski, 2007).

3. Knowledge Discovery Ontology

Our knowledge discovery ontology defines relation-
ships among diverse ingredients of knowledge discovery
scenarios, including both declarative (various knowl-
edge representations) and algorithmic (both inductive
and deductive algorithms). The primary purpose of
the ontology is to make the workflow planner able to
reason about which algorithms can be used to pro-
duce intermediary or final results required by a spec-
ified data mining task. Due to limited space, we con-
strain ourselves to describing only the basic aspects
of our approach to designing the ontology, which es-
sentially follows up on the recent attempts of estab-
lishing a conceptual framework for data mining (Dze-
roski, 2007). Our proposal addresses two core con-
cepts: knowledge, capturing the declarative elements
in knowledge discovery, and algorithms, which serve
to transform a piece of knowledge into another piece
of knowledge. The basic top-level structure of the on-
tology is in Figure 1. Currently the ontology contains
about 70 classes including descriptions of some propo-
sitional algorithms available in Weka data mining plat-
form (Witten & Frank, 2005) and relational data min-
ing algorithms described in (Žáková & Železný, 2007).

As an example of algorithm description we present the
definition of the well known Apriori algorithm in the
description logic notation (Baader et al., 2003) :
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Figure 1. The basic top level structure of the knowledge discovery ontology.

Apriori ⊑ NamedAlgorithm

⊓ ∃ output · (MiningResult⊓

∀ contains · AssociationRule)

⊓ ∃ input · (Dataset⊓

SingleRelationKnowledge⊓

∃ format · {ARFF, CSV})

⊓ ∃ minSupport · double

⊓ ∃ minConfidence · double

The Apriori algorithm is defined as an algorithm that
has two parameters minSupport and minConfidence,
has a single relation dataset in the CSV or ARFF for-
mat as its input, and produces a result in the form of
association rules.

Technically, the ontology is implemented in the de-
scription logic variant (OWL-DL) of the leading se-
mantic web language OWL (Patel-Schneider et al.,
2004). Our primary reasons for this choice were
OWL’s sufficient expressiveness, modularity, availabil-
ity of ontology authoring tools and optimized reasoners
and a well-established community support.

4. Workflow Construction

The task of automatic workflow construction consists
of the following steps: converting the KD task into a
planning problem, generating the plan using a third
party planning algorithm, storing the generated ab-
stract workflow in form of semantic annotation, in-
stantiating the abstract workflow with specific con-
figurations of the required algorithms and storing the
generated workflow.

To maintain generality of our approach, we deci-
ded to encode the planning task into the standard

language PPDL (‘Planning Domain Definition Lan-
guage’) (Smith & Weld, 1999). We are using PDDL
2.0 with type hierarchy and domain axioms. Planning
algorithms require two main inputs. The first one is
a description of the domain specifying the available
types of objects and actions. The second one is the
problem description specifying initial state, goal state
and the available objects. We have developed an algo-
rithm for generating the domain description from the
KD ontology. In order to formalize problem descrip-
tion and generate the problem description in PDDL in
a similar way and for storing the created workflows in
a knowledge-based representation, we have created a
small ontology for workflows, which extends the knowl-
edge discovery ontology.

As an example we present the definition of action in
PDDL representing the Apriori algorithm described in
Section 3.

(:action AprioriAlgorithm

:parameters (

?v0 - Dataset_SingleRelationKnowledge

?v1 - CSV

?v2 - MiningResult_contains_Associa-

tionRule )

:precondition (and (available ?v0)

(format ?v0 ?v1))

:effect (and (available ?v2)

(format ?v2 ?v1)))

The information about the output of Apriori algo-
rithm was expressed using a conjunction of the named
ontological class MiningResult, a universal restric-
tion on contains and an existential restriction on for-
mat. Therefore the effects of the action using Apri-
ori algorithm are represented using the unary pred-
icate available applied on a named class MiningRe-
sult contains AssociationRule, which is a subclass of
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MiningResult, and a binary predicate format.

We have implemented a planning algorithm based on
the Fast-Forward (FF) planning system (Hoffmann &
Nebel, 2001) to generate abstract workflows automati-
cally. The FF planning system uses a modified version
of hill climbing algorithm called enforced hill climbing
to perform forward state space search. The goal dis-
tances are estimated by relaxed GRAPHPLAN (Blum
& Furst, 1997). The original planning problem is con-
verted into a relaxed problem by ignoring delete lists
of the operators.

Currently the planning algorithm outputs the first
workflow with the smallest number of processing steps
as the solution. In future work we are planning to in-
clude other heuristics such as the estimated runtimes
of the workflows to provide the user with the possi-
bility to view and select from a number of workflows
with the highest ranking.

5. Use Cases

We have conducted experiments with workflow con-
struction in two domains. The first domain is ge-
nomics, where we were interested in relational descrip-
tive analysis of gene expression data. The second is
concerned with learning from product design data.
Here the examples are semantically annotated CAD
documents.

Both these domains are highly knowledge-intensive.
One of the main challenges is to efficiently extract rel-
evant information from large amounts of data from
different sources with a rich relational structure. The
use of advanced knowledge engineering techniques is
becoming popular not only in bioinformatics, but also
in the engineering domain, and complex background
knowledge thus nowadays characterizes both domains.
As a result, traditional data mining techniques and
tools are not straightforwardly applicable. Rather,
complex knowledge discovery workflows are required
in both the domains under inquiry.

An example of abstract workflow generated in the
engineering domain is in Figure 2. There are four
preprocessing steps, which can be performed simul-
taneously. In this case all the preprocessing steps fo-
cus on extracting knowledge from the semantic rep-
resentation into a form, in which it could be used
by relational data mining algorithm. ModeDecla-
rationsExtractorOWLDL extracts mode declarations
from domain and range restrictions on properties de-
fined in the CAD ontology. The sort theory con-
taining a taxonomy of classes from the CAD ontol-
ogy is extracted using SortTheoryExtractorOWLDL.

The OWLDLRelationalConverter is used to convert
descriptions of the individual annotations to Prolog
and RDF2PrologConverterCI does the same for the
identifiers of the annotations.

6. Conclusions and Future Work

We entered this study with the primary hypothe-
sis that complex scientific and engineering knowledge
discovery workflows, such as those we had to de-
velop manually in previous studies (Trajkovski et al.,
2008; Žaková et al., 2006), can be proposed semi-
automatically. Semi-automatic workflow composition
does require the user to know exactly what he/she
possesses as the knowledge input and what kind of
output he/she desires to achieve, but it does not re-
quire him/her to be aware of the numerous properties
and mutual relationships of the wide range of relevant
knowledge discovery algorithms.

For the purpose of workflow generation, we used two
main ingredients. First, a formal conceptualization
of knowledge types and algorithms was implemented
through a knowledge discovery ontology, following up
on state-of-the-art developments of a unified data min-
ing theory. Second, a planning algorithm is employed
that assembles workflows on the basis of planning task
descriptions extracted from the knowledge discovery
ontology and the given user’s input-output task re-
quirements. The workflows generated by our algo-
rithm were complex, but reasonable in that there was
no apparent way of simplifying them while maintain-
ing the desired functionality. Therefore the workflows
generated in two use cases (in science and engineering)
can serve as a proof of concept for our approach.

Since the generated workflows are not linear, we could
get significant runtime improvements from executing
the workflows in the GRID environment. Therefore in
future work we are planning to extend the ontology by
descriptions of concrete computational resources e.g.
by integration of our KD ontology into OWL-S. This
will enable us to produce workflows optimized for exe-
cution in a given computing environment. We are also
planning to evaluate the respective merits of planning
via conversion into PDDL and building a planning al-
gorithm directly over the DL representation.
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Figure 2. An automatically generated workflow for obtaining classification (predictive) rules and subgroup descriptions
(descriptive rules) from annotations of CAD design drawings.
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Abstract

This paper concerns the problem of predict-
ing the relative performance of classi�cation
algorithms. Previous approaches involved
the concept of metalearning based on past
experiments. The key idea was to learn
the mapping between the characterization
made on both the new dataset and the past
ones and the actual performance observed.
Several ways of characterizing the datasets
were developed, some were data-based while
others were algorithm-based (sampling land-
marks). Although recent studies showed
some advantages of the sampling landmark
measures, data characterization can still be
useful. A combination of both types of char-
acterization is presented in this paper. We
also present a method that iteratively se-
lects the most appropriate measures for pre-
dicting the relative performance of classi-
�ers. Experimental evaluation has shown
that the method achieves better performance
than previous approaches.

1. Introduction

The problem of predicting the relative performance
of classi�cation algorithms continues to be an issue
of both theoretical and practical interest. There are
many algorithms that can be used on any given prob-
lem. Although the user can make a direct comparison
between the considered algorithms for any given prob-
lem using a cross-validation evaluation, it is desirable
to avoid this, as the computational costs are signi�-
cant.

The common approach of many methods is to store
previous experimental results on di�erent datasets.
The datasets, including the one in question, are char-

acterized using a set of measures. A (meta-)learning
method is used to generate a prediction, for instance,
in the form of a relative ordering of the algorithms.

Some methods rely on dataset characteristics such
as statistical and information-theory measures
(D. Michie, 1994; Brazdil et al., 2003). However, these
measures need to be identi�ed beforehand, which is a
non-trivial task.

These di�culties have led some researchers to explore
alternative ways to achieve the same goal. Some have
proposed to use performance of simpli�ed versions
of the algorithms. These performance measures are
sometimes referred to as sampling landmarks (Bensus-
san & Giraud-Carrier, 2000; Pfahringer et al., 2000).

Other researchers have proposed to use the algorithms
performance on simpli�ed versions of the data. These
measures are sometimes referred to as sampling land-
marks (Soares et al., 2001; Fürnkranz & Petrak, 2001).

The use of previous information concerning a series of
sampling landmarks (i.e., learning curves) on a set of
representative datasets is essential. Without this, sam-
pling may lead to poor results (Perlich et al., 2003).

Our previous studies involving sampling landmarks
have shown (Leite & Brazdil, 2005; Leite & Brazdil,
2007a; Leite & Brazdil, 2007b) that this approach
performs usually better than dataset characteristics
for predicting the relative performance of classi�ers.
The characterization involves conducting some experi-
ments on a new dataset. The plan of these experiments
is built up gradually, by taking into account the results
of all previous experiments � both on other datasets
and on the new dataset obtained so far.

We have observed that in some cases data characteri-
zation measures perform better. A question then arises
as to whether it is possible to devise a method to pre-
dict the relative performance of classi�ers using mea-
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sures of both kinds. The aim of this paper is to an-
swer this question. In the next sections we describe
methods that use performance on samples (AMDS
and ADMS_SetGen), data characteristics (MDC) and
both types of measures (AMDS_DC).

2. Using Performance on Samples to
Predict the Outcome of Learning

The aim is to decide which of two classi�cation al-
gorithms (Ap and Aq) is better on a new dataset d.
The performance of the algorithms on a set of samples
sheds some light on the �nal outcome of the learning
curves. Intuitively this approach should work better if
several samples of di�erent sizes are used for each al-
gorithm, providing more information about the shape
of the two learning curves. Method AMDS (Leite &
Brazdil, 2007a) uses this approach. It assumes the ex-
istence of available information about how both algo-
rithms perform on di�erent datasets d1 · · · dn for sev-
eral samples with sizes s1 · · · sm.

The attributes used for the prediction (on the best
algorithm), also known as metaattributes, are esti-
mates of the performance of the algorithms on ran-
dom samples of speci�c sizes s1 · · · sm. For instance
metaattribute Api,j (Aqi,j) is the estimate of perfor-
mance of algorithm Ap (Aq) on a random sample of
size sj extracted from dataset di. Normally only some
of these metaattributes will be used in the prediction.
In other words, only a parts of each learning curve will
be used. The user can either specify which metaat-
tributes should be used, or else we can use an auto-
matic mechanism for selecting them (in Section 4 we
describe the method used to determine the appropriate
metaattributes).

Assuming that method AMDS will use a �xed set
of metaattributes S (determined by the user), the
method AMDS encompasses the following steps:

1. Characterize the new dataset d (involves the esti-
mation of all metaattributes in set S)

2. Compute the distances between d and all the
other datasets d1 · · · dn using the description given
by the metaattributes S. Identify the subset of k
nearest datasets.

3. For each of the k nearest datasets identi�ed (re-
trieved) in step 2, adapt each pair 1 the other
withof learning curves to the new partial learning
curves build for dataset d. Adaptation is done by

1Each dataset has associated a pair of learning curves,
one related with Ap and other with Aq.

rescaling each retrieved learning curve in order to
minimize the square distance from this curve to
the respective partial learning curve for dataset d.

4. For each pair of adapted curves decide which al-
gorithm is better.

5. Identify the algorithm to use on the new dataset
d, by considering the results on k neighbour
datasets.

It is clear from the overview that AMDS is a k-NN clas-
si�er. It can be seen as a meta-level classi�er, whose
aim is to determine which base-level algorithm (Ap or
Aq) is better. The distance function 2 is given by the
following equation:

dAMDS(di, dj) =
∑

s∈Sp

| Api,s −Apj,s |

︸ ︷︷ ︸

Ap

+
∑

s∈Sq

| Aqi,s −Aqj,s |

︸ ︷︷ ︸

Aq

(1)

Sp (Sq) contains the indices of meta-features used to
characterize the new case (dataset) using the perfor-
mance of algorithm Ap (Aq) on speci�c samples.

3. Using Data Characteristics to
Predict the Outcome of Learning

This method (MDC) can be brie�y described by:

1. Compute the characterization measures 3 for all
datasets (including the new one).

2. Compute the distance between the new dataset
and the stored ones.

3. Choose the k stored datasets (neighbours) that
are �nearest� to the new dataset (according to the
distance).

4. Use the algorithm that was most often the best
one on the identi�ed nearest datasets.

A Manhattan distance function is used to identify the
nearest datasets. Each measure is �rst rescaled to �t
the interval [0,1]. The distance function is:

dMDC(di, dj) =
∑

t∈M

|Mt(i)−Mt(j) |

max(Mt)−min(Mt)
(2)

2This is distance is usually called Manhattan distance.
3We have considered the data characteristic measures

presented in Table 1. Method MDC could use other mea-
sures.
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4. Selecting which Measures to Use
(SetGen)

Method AMDS predicts the relative performance of
classi�cation algorithms using their performance on
di�erent samples. The sample sizes are passed to
AMDS as an input (e.g. <s1,s2,s3> related to Ap
and <s2,s5> related to Aq). It is important to �nd
how many samples should be used and what their sizes
should be. If we use the performance on more sam-
ples (or larger samples) it is reasonable to expect an
improvement on the quality of the decisions made by
AMDS (the learning curves shapes will be better de-
�ned). However the computational costs involved in
computing the metaattributes will rise. If we use less
samples (or smaller samples) both the quality of the
decision and the computational costs will decrease.

Algorithm SetGen determines automatically the
metaattributes. This is not dome using an ordinary
feature selection method (e.g. forward selection) that
only tries to improve the accuracy of the method. The
method described here also deals with costs, that is
time spent to compute each feature.

The samples are chosen taking into account the ex-
pected success rate improvement in the prediction con-
cerning the algorithm to use (Ap or Aq). A new
meta-feature can be included only if the success rate
of AMDS is expected to improve by at least a �xed
amount ∆. At the same time the system tries to iden-
tify those candidate solutions that increase the com-
putational costs by the least amount. The desired se-
quence of samples is identi�ed using a hill climbing
approach. An overview of the method is presented
in Figure 1. The best metafeature is the one with
minimum estimated cost that will cause an expected
improvement on the accuracy of AMDS by at least ∆.

Figure 2 shows the method SetGen in more detail. The
Simplify instruction (step 20) removes from MF all
metaattributes covered by the set of metaattributes
constructed so far. If for instance AtrSet contains
metaattribute Ap4 then all Api for i ≤ 4 will be re-
moved from MF .

5. Using Performance on Samples and
Data Characteristics to Predict the
Outcome of Learning

The method AMDS_DC is an extension of the method
AMDS. The di�erence relies on the distance function
used. The distance function includes both estimates of
the performance of the algorithms on samples and also
data characteristic measures. The distance is de�ned

Figure 1. SetGen: An Iterative process of characterizing
the new dataset and determining which algorithm is better

Function SetGen(∆)

MF ← Enumeration of all metaattributes1

Estimate the computational cost of every meta�attribute2

Sort MF according to the computational costs3

Improved ← True4

AtrSet ← {}5

while Improved do6

Improved ← False7

last_acc ← EvalAMDS_DC(AtrSet)8

foreach mfeat ∈ MF do9

last_acc ← EvalAMDS_DC(AtrSet ∪ {mfeat})10

if mfeat is a data characteristic then11

δ ← 0.00112

else13

δ ← ∆14

end15

if acc > last_acc + δ then16

AtrSet ← AtrSet ∪ {mfeat}17

acc ← last_acc18

Improved ← True19

Simplify(MF , AtrSet)20

end21

end22

end23

return AtrSet24

Figure 2. SetGen: Method that Select the Measures



38

Selecting Classi�ers Using Meta-Learning with Sampling Landmarks and Data Characterization

by the following equation:

d(di, dj) = dAMDS(di, dj) + dMDC(di, dj) (3)

Since the data characteristic measures were previously
shown to be less predictive in comparison with per-
formance on samples metaattributes we have modi�ed
the criteria used to identify the best metaattribute.
This type of metaattribute is introduced, if the accu-
racy increase is at least ∆DC , which is a much smaller
value than the value of ∆.

6. Empirical Evaluation

In our previous work (Leite & Brazdil, 2007b) we have
shown that AMDS is better than MDC for predicting
the best algorithm for a given dataset. The method
AMDS has lower costs when compared with the deci-
sion using cross�validation, but larger costs when com-
pared with MDC.

In this section we present the results concerning
the method AMDS_DC. We are interested to know
whether the data characteristics (using AMDS_DC)
can improve the performance of our previous method
AMDS. The question we address here is: Will Set-
Gen select data characteristic measures in conjunction
with the measures of performance of the algorithms on
samples (sampling landmarks)?

Here we describe the experiments that we have con-
ducted to evaluate the method AMDS_DC. Compar-
isons are made with MDC and AMDS (version that
includes SetGen).

The decision problem concerning whether algorithm
Ap is better than Aq can be seen as a classi�cation
problem which can have three di�erent outcomes: 1
(or -1) if algorithm Ap gives signi�cantly better (or
worse) results than Aq, or 0 if they are not signi�-
cantly di�erent. The aim of this experimental study is
to determine the accuracy and the computational cost
(calculated at run-time) of the three methods consid-
ered.

To compute the accuracies we need to compare, for
each case (dataset), the predicted class with the true
classi�cation determined by a usual cross�validation
evaluation procedure on each dataset for the two given
algorithms. A statistical test (t�test) was used to com-
pute the statistical signi�cance. Instead of using the
usual accuracy measure, we have used a di�erent mea-
sure that is more suited for our classi�cation task with
3 possible outcomes. The errors are called penalties
and are calculated as follows. If a particular method
(e.g. AMDS) classi�es some case as +1 (or -1), while

the true class is 0 (the given algorithms are not signif-
icantly di�erent) then, from a practical point of view
the method did not fail, because any decision is a good
one. Therefore the penalty is 0. However if the method
classi�es the dataset as 0, while the true class is +1 (or
-1) then we consider that the method partially failed.
The penalty is 0.5. If the classi�cation is +1 (or -1),
while the true class is -1 (or +1), this counts as a com-
plete failure, and the penalty is 1. The corresponding
accuracy, referred to as meta�accuracy, is computed

using this formula 1 −
∑

d∈D
penalty(d)

|D| , where D is the

collection of datasets.

In this empirical study we have used the following
6 base-level classi�cation algorithms, all implemented
within Weka (Witten et al., 1999) machine learning
tools: J48 (C4.5 implemented in Weka), JRip - rule
set learner (RIPPER (Cohen, 1995)), logistic discrim-
inant (le Cessie & van Houwelingen, 1992), MLP -
multi-layer perceptron, IB1 - instance-based learner,
and Naive Bayes. Using this setting we get 15 classi�-
cation problems, one for each pair of algorithms.

We have used 40 datasets in the evaluation. Some
come from UCI (Asuncion & Newman, 2007), others
from the project METAL (MetaL, 1999). In our ex-
periments described here we have considered the data
characteristic measures presented in Table 1.

Table 1. Data Characteristics Measures
Id Measure

1 M1 n.examples
2 M2 prop.symbolic.attrs
3 M3 prop.missing.values
4 M4 prop.h.outlier
5 M5 class.entropy
6 M6 avg.mutual.information
7 M7 canonical.correlation.best.linear.combination

For each decision problem (there are 15 such
problems 4) the three methods (AMDS_DC, AMDS,
MDC) are evaluated using a leave-one-out methodol-
ogy. In each case we measure meta-accuracy and com-
putational cost. Computational costs are expressed as
a ratio of times. The time required by the particular
method (e.g. AMDS_DC) is normalized, by dividing
it by the time required to obtain the decision by cross-
validation. Cross-validation represents a slower, but,
in principle, also a more reliable method.

In the experiments the following setting were used
∆ = 0.07, ∆DC = 0.001 and k = 23 for AMDS,
AMDS_DC, and k = 7 for MDC.

Table 2 shows the results concerning the meta�

3For 6 items, we can de�ne 15 di�erent pairs.



39

Selecting Classi�ers Using Meta-Learning with Sampling Landmarks and Data Characterization

accuracies. The decision problem in question is pre-
sented in column 1. In most cases both AMDS and
AMDS_DC are better than MDC. There are some
cases where MDC is worse than the default accuracy.
In most cases AMDS_DC reaches the same perfor-
mance as AMDS. This is due to the fact that usually
the performance on samples is more predictive than
data characteristic measures. Most of the times the
measures based on characteristics are not selected by
SetGen and when they are selected the decision con-
cerning the best algorithm remains the same. How-
ever in problem IB1�LOG AMDS_DC is better than
AMDS.

Although the results did not improve signi�cantly the
performance of the previous method, AMDS_DC is
never worse results than AMDS. This indicates that
we can use AMDS_DC.

Table 2. Meta�accuracy for each method (average)

Default
Accuracy MDC AMDS AMDS_DC

IB1-J48 80.00 95.00 92.50 92.50
IB1-JRip 72.50 87.50 92.50 92.50
IB1-LOG 66.67 80.56 94.44 97.22
IB1-MLP 84.21 85.53 92.11 92.11
IB1-NB 67.50 70.00 92.50 92.50
J48-JRip 75.00 76.25 90.00 90.00
J48-LOG 77.78 70.83 97.22 97.22
J48-MLP 63.16 75.00 86.84 86.84
J48-NB 85.00 76.25 90.00 90.00
JRip-LOG 75.00 72.22 86.11 86.11
JRip-MLP 68.42 81.58 89.47 89.47
JRip-NB 82.50 78.75 92.50 92.50
LOG-MLP 80.00 78.57 97.14 97.14
LOG-NB 94.44 94.44 94.44 94.44
MLP-NB 94.74 94.74 94.74 94.74

Mean 77.79 81.15 92.17 92.35

Regarding the costs of the methods, that is measured
by the time spent on computing required metafeatures,
the results are summarized in Table 3. The results are
presented in the form of ratios. The time spent by each
method is related to the time taken by cross-validation.
The values presented here are average values (geomet-
ric mean). MDC is the fastest method (however its
performance is worse that AMDS and AMDS_DC). It
is 143 times faster that cross-validation. AMDS_DC
and AMDS are 7 times faster than cross validation.

Table 3. Computational costs in comparison with cross-
validation (ratios)

MDC AMDS AMDS_DC
Geometric
mean 0.007 0.137 0.139

A question arises regarding which data characteris-
tic measures were selected by SetGen when running
AMDS_DC. Table 4 presents the results. The num-
bers shown indicate in how many datasets each par-
ticular measure was introduced. The numbers are rel-
ative. They show the proportion of datasets in which
a particular measure was used. Number 2.5, for in-
stance, means that the feature was introduced in 1/40
dataset (the total number of datasets was 40). For
some decision problems SetGen did not select any mea-
sure.

Table 4. Percentage of use of each measure

M1 M2 M3 M4 M5 M6 M7
IB1-J48 12.5

IB1-JRip 7.5
IB1-LOG 2.8 5.6 2.8
IB1-MLP
IB1-NB 2.5 2.5 2.5

J48-JRip
J48-LOG 2.8 2.8
J48-MLP 2.6 2.6 18.4 5.3
J48-NB

JRip-LOG 2.8 2.8 2.8
JRip-MLP 2.6 13.2
JRip-NB

LOG-MLP
LOG-NB
MLP-NB

7. Discussion

How is the method described related to plan-

ning?

In this section we will discuss the issue of how the
method presented in this article relates to planning.
We start by reviewing the area of planning and execu-
tion control.

Planning has been an active area of research already
in the early days of AI. The topic of planning is dis-
cussed in just any textbook on AI (see e.g. (Russell &
Norvig, 2003) ). The early approaches (e.g. in the
70's) exploited usually a symbolic representation of
states, goals and the operators. Plans were represented
usually as sequences of operations, or by a partially
ordered set of operations (referred to usually as non-
linear plans). Later approaches exploited hierarchical
decomposition, conditional planning and integration of
planning and execution (Russell & Norvig, 2003).

Approaches to planning can be divided into two groups
depending on whether on what the objective is. The
�rst group include planners that generate a full plan
which is then followed step by step in the execution
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phase. If some problem is detected during execution,
the system then corrects the plan (preferably by car-
rying out a small modi�cation, but not by complete
re-planning).

The second approach just determines the �rst action
(or a few actions) to execute. The rest of the plan is
not fully determined. The system then executes the
actions and continues in this mode until the �nal goal
has been attained. The latter approach is useful in
situations where there is incomplete knowledge of the
environment and when the execution of some actions
brings in more information. Consider, for instance,
that the robot has the task of retrieving an object from
a dark room. The robot should start by entering the
room, localizing a switch and turning the light on. It
makes no sense to do any other planning before it can
see the layout of the room. After this, when more
information is available, the robot can plan how to get
to the required object.

The method presented here follows the second ap-
proach referred to above. It tries to establish the next
action to execute and executes this action. It contin-
ues like this until the stopping condition is satis�ed.
In our case the aim of the action it to gather more in-
formation about one of the two algorithms in question.
This involves training each algorithm on a sample of
a particular size and getting the estimates of perfor-
mance on a test sample. This process terminates when
enough information is available and a decision can be
made as to which of two algorithms is better.

What is special about our planning problem?

The problem tackled here is a somewhat di�erent from
typical problems handled by many planning systems.
Let us consider the nature of the goal in learning a
classi�er. Note that the problem does not involve an
issue of how to solve a particular task, but rather a set
of tasks. This is because the dataset in question rep-
resents, in e�ect, a set of classi�cation problems. This
is because, in attribute-based representation, each line
represents one classi�cation problem. Each solution
is characterized by a particular performance measure
(e.g. accuracy).

This domain has another somewhat special character-
istic. Solutions are characterized by training and test
times, or in general by costs. So normally, considering
that many algorithms exist, these will have di�erent
bene�ts (e.g. accuracies) and di�erent costs. So, on
one hand we can identify a low cost solutions (fast
algorithms) which normally do not perform very well.
On the other hand we may have solutions with achieve
higher performance, but incur also higher costs.

In the work presented here we were not interested in
the extremes, but rather a good compromise between
the two. Our aim is to obtain a solution that ap-
proaches the performance of the best possible solution
(selection by cross-validation), but incurs much lower
costs (i.e., is N times faster).

Is it better to recover complete plans or recover

information and re-plan?

In some earlier work on planning DM operations, there
exists a notion of a plan associated with a given task,
which normally consists of a partially ordered set of
operations. If these are stored, they can be re-used in
new setting. It is just necessary to identify the task
that is similar to the current task, retrieve the plan
and adapt it to the new circumstances. This is the
approach followed in MiningMart (Kietz et al., 2000),
for instance. A question arises about how the approach
described in this article relates to this.

In this article we have described a method that sug-
gests a sequence of experiments on samples of certain
size. Training a particular classi�cation algorithm can
indeed be seen as an operation. Elaborating a suitable
sequence of such operations can thus be regarded as
planning.

After the planning process has been completed, the
complete plan is available for inspection or for future
use and/or adaptation. Note that we do not just re-
trieve a plan and re-use it, but rather exploit previous
information to generate a plan that is well adapted to
the new circumstances.

Retrieving and existing plan and executing it (i.e with-
out adaptation), is in principle, possible, but we have
not done that, as it would most likely lead to substan-
dard results. We plan to verify this experimentally in
future.

8. Conclusions

In this paper we have described method AMDS_DC
that exploits data characterization and sampling to
determine which of two given classi�cation algorithms
is better on a new dataset.

Previous results have shown that method AMDS that
exploits sampling landmarks, that is, metafeatures
representing estimates of performance of given classi�-
cation algorithms on samples, achieves more accurate
decisions when compared with the method MDC that
exploits data characteristics.

Here we have shown how we can extend our previous
method, by including the measures of both kinds. The
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metafeatures (metaattributes) used by the method are
either data characteristics of the dataset in question,
or performance estimates of the given classi�cation al-
gorithms on samples of speci�ed sizes.

The method automatically establishes how many sam-
ples are needed and their sizes. Besides the method
also determines which data characteristic measures are
useful for the decision concerning which is the best al-
gorithm.

Experimental evaluation has shown that the new
method (AMDS_DC) achieves a comparable perfor-
mance to the previous method (AMDS). The average
metaaccuracy was 92.35%. In one speci�c problem
(IB1 versus LOG) AMDS_DC achieved a better re-
sult when compared with AMDS.

The method determines which metaattributes to use
in order to reach accurate decisions while at the same
time tries to save computational time. This represents
a signi�cant improvement over previous methods in
dealing with the problem of predicting the relative per-
formance of learning algorithms in a systematic man-
ner.
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Abstract

The problem of learning to design complex
systems building networks of simpler compo-
nents is tackled. A framework for the objec-
tive comparison of different learning strate-
gies is proposed. The Workflow Schema is the
data structure proposed for the problem for-
malization. Moreover, the use of graph min-
ing results to define the learning process is
analyzed and the advantages and limitations
emphasized. Finally, an empirical analysis of
the strategies and heuristics proposed in the
defined benchmark framework is made, and
the results shown.

1. Introduction

The problem of learning to design complex systems
have been largely studied and it is still a challenging
problem. The design of a complex system is usually
understood as the construction of a network of sim-
pler components, being the structure of the network
itself the solution to the problem. We have focused in
the frequent scenario in which the learning system has
access to previous solutions. The information avail-
able might be used assuming the hypothesis that the
frequent patterns in previous solutions should be suit-
able to be applied in new solutions to similar prob-
lems. This paper proposes a benchmark problem to
compare objectively different approaches to the learn-
ing task. A strategy to apply graph mining results
in learning strategies is then discussed. The simpler
approach of using the frequency of appearance of iso-
lated elements of the network in previous solutions is

Appearing in Planning to Learn Workshop, International
Conference on Machine Learning, Helsinki, Finland, 2008.
Copyright 2008 by the author(s)/owner(s).

presented as well. The results achieved applying these
strategies are compared, pointing up the difficulties to
scale up the graph pattern approach to large sparse
search spaces.

The described approach is not an attempt to propose
a model to deal with the design learning problem in
real scenarios, but a context in which it can be mea-
sured the benefits and limitations of different learning
strategies proposals.

2. Workflow Schema Representation

Multiple formalisms and languages have been pro-
posed in the literature for knowledge representation
in this context. There is active research in this way,
from fields closely related to the topic, being the In-
duction of Process Models from log data one of the
most outstanding examples (Rozinat et al., 2007).
Event-Driven Process Chains (EPC) are a widely used
technique for modelling business processes. Petri
Nets (Gyapay & Pataricza, 2003) and P-Graphs have
been used in the context of Process Network Synthesis
to give support to the optimization process (Friedler
et al., ). The Business Process Execution Language
(BPEL) standardized by OASIS, and YAWL are lan-
guages successfully implemented in BPM software so-
lutions. Process Algebra and Finite State Machines
are also valid formalisms used in this context.

Nevertheless, the model adopted in this paper is Work-
flow Schema (Greco et al., 2005), since it have been
demonstrated to be expressive enough to represent
structured solutions to design problems.

The structure of this model is a Directed Acyclic
Graph (DAG), with constraints. The structure is the
representation of the knowledge of the problem and
fixes all the possible solutions that can be constructed
to solve it. On this graph the nodes represent ac-
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tions that transform the input materials into the out-
put products. The edges represent the possibility of
bringing the output product of one action to another
action that would take it as input material. Depend-
ing on the context of the problem, the materials and
products may be physical objects, if we are trying to
optimize the production cycle of an industry, or any
other concept as a data structure, if the problem is re-
lated with the optimization of a Business Management
Process. The WS can be considered as a metagraph,
being those subgraphs that fulfill all the constraints
possible solutions to the represented problem. The
constraints exist since to realize the actions some min-
imum input material might be necessary, the amount
of output product is limited, and the amount of prod-
uct that can be brought to other activity is fixed. Fur-
thermore, the process is not considered optimized if
there is some product available that can be resused
but it is not. This paper assume the context in which
such a WS is available for the problem, or can be in-
duced using background knowledge and rules (Rozinat
et al., 2007). Each possible solution according to this
structure is a subgraph called Instance. The previ-
ous knowledge about previous solution to a problem is
called Valuated Instance-Set. The following definitions
formalize these concepts.

A Workflow Schema W is a tuple
(V, E, Vo, Vf , n, p, c), where V is an ordered
set of nodes, E is a set of edges defined as
E ⊆ {(vi, vj) | i < j ∧ vi ∈ (V \ Vf ) ∧ vj(V \ Vo)}, Vo

is the set of start nodes, Vf is the set of end nodes,
n : (V \ Vo) → Z+ is the Node necessity function,
p : (V \ Vf ) → Z+ is the Node production function,
and c : E → Z+ is the Edge capacity function.

Given a node v ∈ V the set of input edges is denoted
as Ei(v) = {(v′, v) | (v′, v) ∈ E}, and the set of output
edges as Eo(v) = {(v, v′) | (v, v′) ∈ E}.

Given a WS = (V, E, Vo, Vf , n, p, c), a graph
S = (VS , ES) is said to be a subgraph of
WS iff (i) VS ⊆ V (ii) ES ⊆ E and (iii)
(∀ vi ∈ VS ,∀ vj ∈ VS , i < j → ∃ path(vi, vj)).

Given a WS, the subgraph SI = (VI , EI) is an instance
of W , iff the following constraints are fulfilled:

(i) At least one of the initial nodes are included in the
instance: VIo = VI ∩Vo 6= ∅, (ii), only the initial nodes
have not ingoing edges: ∀vi ∈ VI \ VIo,∃(vj , vi) ∈ EI

(iii) the sum of input edge capacities is at least the
necessity of each node: ∀v ∈ VI \VIo,

∑

Ei
I
(v)

c(e) ≥ n(v),

and (iv) given a node with at least one outgoing edge,
its output edges are included in the instance with
the goal of approximating as much as possible the

node production to the sum of edge capacities, under
the constraint that this sum of capacities can not be
greater than the production:

∀v, (v, v′) ∈ EI → minEo
I
(v){c(e)} > p(v)−

∑

Eo
I
(v)

c(e) ≥ 0

where Eo
I (v) = Eo(v) \ Eo

I (v).

An instance I is complete when ∄v ∈ VI \ Vf with
Eo

I (v) = ∅.

A complete instance I is said to be successfull, SC-
Instance, if it contains at least one final node, VIf =
VI ∩ Vf 6= ∅,

An instance I defined respect to W , may be also de-
fined as the join of a set VIo of initial nodes of W , and
a set of decisions D. A decision DI(v) of a node v is
defined as the part of an instance constituted by the
set of all the outgoing edges Eo(v) included in the in-
stance, and the set of the end nodes of these outgoing
edges.

An instance I ′ represented by the subgraph S′
I is an

extension of another instance I represented by the sub-
graph SI , I ≺ I ′, iff I ′ and I are defined respect to the
same WS and SI is a subgraph of S′

I .

Given a non-complete Instance I, an extension I ′ is
said to be a 1-step extension iff I ′ can be obtained
joining I with at least one decision of I ′. This is
I ≺

1
I ′ iff (I 6= I ′) ∧ (∃v ∈ VI | I ∪ DI′(v) = I ′). By

analogy, a extension In of an instance I is said to be
a n-step extension iff In is obtained as the union of I
with at least n decisions of In

Given a WS, and a SC-Instance I = (VI , EI) defined
respect to it, the cost function associated to that in-
stance can be generally defined as:
Cv : InstancesSet → R. Therefore, the cost function
assigns a real value to each combination of nodes and
edges that fulfills SC-Instance constraints, without any
additional information or assumption.

The set of all possible different SC-Instances defined
respect to a given WS is called 2IW S . The cardinality
of this set, | 2IW S |, is the size of the solution space
modelled by the WS.

Given a WS, a Valuated Instance-Set F is defined as
a set of pairs:
F ⊆

{
(Ii, Ci) | Ii ∈ 2IW S ∧ Ci = Cv (VIi

, EIi
)
}
.

3. Benchmark Problem

The former definitions give the context in which the
Benchmark Problem can be defined. The purpose is
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not to propose a schema to be immediately applied in
real world situations, but a framework that allows to
compare objectively different learning strategies.

The definition of this framework assumes given: a
Workflow Schema WS, a Valuated Instance-Set F and
a non-complete Instance I. The known information
from the Cost function Cv, are the sampled values for
the instances of the set F. Nevertheless, this function
Cv can be used to analyze the behavior of the com-
pared learning strategies.

With this information the objective is to achieve one of
the following goals: (i) Design the system able to learn
from the Workflow Schema and the Valuated Instance-
Set to predict the optimum Instance I ′, extension of
a given I for each possible non complete instance de-
fined respect to the WS. This is, the learner might
be a function PL (WS,F ) = IP , where PL is the
Predictor-Learning strategy function and the IP the
Instance-Predictor induced function. The IP function
is applied IP (I) = I ′, being I a non-complete Instance
and I ′ the optimum predicted complete Instance ex-
tension to I. (ii) Design a system able to learn a func-
tion that given the non-complete instance I predicts
the optimum 1-step extension instance I ′. In this case,
the learner is a function EL (WS,F ) = IE, where EL
is the Extender-Learning strategy function and the IE
the Instance Extender induced function. The function
IE is applied IE(I) = I+, being I+ the 1-step exten-
sion of I.

3.1. Learner Brief Analysis

The defined framework allows different approxima-
tions of learning systems to be applied to solve the
problem. A couple of examples are outlined below.

Naively, the proposed problem can be seen as a com-
binatorial problem (Rosen et al., 2000), having one
decision to take between a finite number of options
for each node of the WS. Nevertheless, in the prob-
lem appear constraints between the values for these
decisions since not all possible combinations lead to
valid solutions. This approach might also define the
way of using efficiently the knowledge from previous
solutions.

Since the set of nodes of a WS is ordered, the pro-
cess of building a complete instance can follow it. At
each step the next node of the non-complete instance
is taken and one of the possible decisions is added to it.
This system can not be considered a Markov Process
in which the state is represented by the selected node
at each moment, since the decisions selected from pre-
vious nodes changes the resulting Instance completely,

and so, the decision criteria to select for the actual
node. If the state of the Markov process is defined as
a function of the nodes of the actual non-complete In-
stance, then this consideration can be assumed. Nev-
ertheless, the number of different states needed to rep-
resent all the situations grows exponentially with the
number of nodes of the non-complete Instance.

4. Experiments and Results

Within the framework described by the proposed
Benchmark Problem, some experiments have been de-
signed to show how can be measured the differences
between different learning strategies.

With respect to the definition of the framework, in
order to make the experiments, the cost function Cv,
that would remain unknown for the learner, might be
specified. In our case we have defined a weight function
for each element of the WS: w : V ∪ E → Z+ and it
is called the local cost function. This function simply
assigns a cost value to each element of the structure of
the WS. Finally, the cost of a SC-Instance I on a WS
is calculated as: Cv(I) =

∑

v∈VI

w(v) +
∑

e∈EI

w(e)

4.1. Heuristics for the EL function

Our main objective in these experiments is to study
how to exploit information from the set of complete in-
stances. The defined EL-functions are defined stochas-
tically. All the decisions of each node of the WS are
evaluated. The probability that the function EL re-
turns one particular decision for a particular node is
proportional to the valuation of the decision.

Random choice With the random choice heuristic,
the EL function selects each decision randomly using
a uniform probability distribution.

Isolated element mining based choice In this
heuristic, the EL function is updated using informa-
tion about the appearance of isolated elements (nodes
and edges) in previous instances. Note, that this
heuristic is not using information about the workflow
structure where the element is included.

A node vi ∈ Rv of the workflow is valuated in the
context of the set of alternative decisions Rv that are
present when an instance has to be extended from the
particular node v. Two aspects are considered. Firstly,
each element is valuated obtaining the mean cost of the
instances where it is included. If vi is the node, the
value q′ assigned to it, in this first step is given by:
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q′i =
1

|Svi

I |

∑

S
vi
I

(cmax − C(I))

cmax − cmin

where Svi

I is the set of previous instances where el-
ement vi is present and cmin, cmax are the best and
worst costs of the defined instances.

In the second step, the frequency of the elements in
the instances is taken into consideration. Frequency is
used to non-linearly increase the value assigned to a
node if it has a good value, or to non-linearly decrease
the value assigned to a node if it has a poor value.
This is carried out using the A-law non linear formula:

Q(q; A) =

{
Aq

(1+ln(A)) − 1
A

< q < 1
A

sign(q) 1+ln(A|q|)
1+ln(A) |q| ≥ 1

A

Then, the EL performs a random experiment where
the outcome are elements of Rv. The experiments are
repeated until a complete decision is obtained.

Frequent pattern mining based choice The ob-
jective now is to introduce in the EL function prefer-
ences for particular structures in the WS.

The levelwise search algorithm (Agrawal & Srikant,
1995; Greco et al., 2005) is used to obtain frequent
patterns from the previous instances. Once these pat-
terns have been obtained, they are evaluated according
to the same procedure as in the previous heuristic for
isolated elements.

For each decision parameter v for the EL function,
each single element in Rv is valuated with the infor-
mation of the patterns in which it appears. The set of
patterns considered in the valuation of an element are
selected from the set of frequent patterns with two im-
portant constraints: they must be compatible with the
instance that is being extended when the EL function
is applied and they have to include the element that
is being evaluated. Furthermore, only representative
patterns are be selected. To achieve this, a subset of
the previous complete instances is extracted contain-
ing the Nb best valuated instances and the Nw worst
valuated instances. Frequent patterns obtained from
this subset are the ones used for element valuation.

4.2. Learning Framework Strategies

To compare the different EL heuristics mentioned, a
framework might be defined. In this case it is inspired
in an Active Learning Context. In this context the
learner is given a WS, and an empty set F . A fixed

number N of opportunities to sample the function Cv

are established. After this N values, the learner might
have built the elements of the set F for N different
Instances.

The learners can be finally compared by the values
and evolution of these N elements of the F set. The
best strategies to build the learner might also lead to
a quick evolution of the instances in F to low-costs
ones, in the sense that it means that it is exploring
the near-optimal areas of the solution space.

The different learning frameworks implemented for the
experiments are described below. All the strategies
need a first set of K complete instances to obtain
knowledge from the WS. This set can be obtained us-
ing the random choice EL heuristic. After those K
instances, the learning strategy might be defined. The
strategies proposed in this paper are defined specifying
two aspects: Each N − K of the instances to be cre-
ated during this stage of the learning process can be
achieved by the process: A non-complete Instance is
proposed and then extended to achieve a SC-Instance.
(i) The learning strategy might decide how to select
the non-complete Instance on each iteration. (ii) To
obtain the SC-Instance from the non-complete one, the
EL function heuristic might be selected.

In relation to the first aspect, we have researched two
types of randomized search strategies: a global search
with reinforcement learning and a local search with a
constructive stage.

Global search with reinforcement learning
This is the most direct way of using the set of valuated
complete instances and the heuristics described above.
After obtaining a first set of complete instances, the
reinforcement learning strategy tries to construct new
instances using the EL function guided by the element
valuations. Once the new instance is finished its cost is
obtained sampling the function Cv and the valuations
of the elements in each Rv for v ∈ V are changed using
one of the heuristics to consider the new information.

Local search with a constructive stage. This
strategy can be seen inside a mixed search procedure
including cycles of global search and others of local
search (Resende & Ribeiro, 2005). The global search
can be implemented using the random choice heuristic
or the previous strategy. The local search cycle follows
these steps:

It starts selecting one instance from F . For this selec-
tion the probability of each instance is proportional to
its cost.
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Figure 1. Workflow Schema, Instances and Patterns.

A frequent pattern is selected randomly. The proba-
bility to be chosen is also proportional to the pattern
valuation.

In the constructive stage, a new instance is obtained
from the selected instance and pattern. Firstly, the
pre-pattern is obtained: it is a valid instance composed
of the minimum subgraph of the instance that contains
the selected pattern and the start node. Then the
pre-pattern is extended using the EL function until a
complete instance is obtained.

After the constructive stage, the new instance is valu-
ated and included in the set of complete instances. A
new iteration of the local cycle starts.

4.3. Workflow Example

Graph represented in figure 1 could be part of a work-
flow schema. Necessity and production values are writ-
ten inside each node. All the node costs are equal. All
the edges capacities are equal to one.

The second graph represented in figure 1 shows one
instance on this WS. The nodes that belongs to the
instance have been gray colored. Note that this in-
stance can be extended making a decision on the el-
ements drawn using dashed lines. Lower part of the
figure shows the possible instances that result from
extension. It is clear, that the first one has a lower
associated cost than the second instance.

Observe that information needed to decide in a prob-
lem like this can not be obtained from isolated ele-
ments valuations.

The patterns shown in the bottom of figure 1 can be
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Figure 2. Randomized search heuristics results.

obtained from the proposed initial instance.

4.4. Implementation and results

For the implementation of the experiments, some as-
sumptions have been made, as explained below. The
experiments described in this paper are restricted to
WS’s with only one start node and only one end node
(|Vo| = |Vf | = 1). The other important constraint is
that every instance I of our WS can be extended to a
complete instance.

The generated WS has 9 nodes, 45 edges and the
number of different complete instances defined on it
is about 40000. The cost of the optimal instance is
1389.

Figure 2 represents the results of the experiments mak-
ing use of different search strategies and heuristics.
Each strategy performs a number of identical experi-
ments. Each experiment generates 5000 instances fol-
lowing the strategy rules. The experiments are re-
peated 100 times and the cost of each instance on each
experiment stored. In order to know the general be-
havior of the strategy the mean over this 100 experi-
ments is calculated. So that, a sequence of 5000 values
is obtained and each of them represents the mean cost
of the generated instances at the iteration number n.
Then, a new sequence is calculated with each value
representing the mean of 100 consecutive values in the
sequence.

Each strategy begins constructing 500 random in-
stances. After these iterations, the heuristics are ap-
plied.

The reinforcement learning with pattern information
strategy is able to use more information from the pre-
vious instances than the strategy based on elements
information. This result is clearly represented in fig-
ure 2. After some iterations in which there are not
important differences, the strategy using frequent pat-
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tern mining begins to generate instances with lower
costs than the other one. As it is shown, these two
strategies have a problem in common: they are not
able to improve the mean cost of the iterations they
generate after the random period. The reason is that
in the first period is useful to get information not only
about instances well valuated but also about the worst
instances. This strategy performs a global search in a
search space very large and complex. The search pro-
cess is not able to cover relevant parts of the workflow
and relevant patterns are poorly or not represented at
all in the set of frequent patterns.

Figure 2 also represents the results of the local search
strategy, using element mining heuristic and pattern
mining heuristics. It can be observed that the for-
mer results are much worse than latter ones. When
using element mining heuristics, after some iterations
the new instances generated are not better than the
previous ones. On the other hand, the pattern min-
ing heuristic results not only are better, but also they
progress on each new instance generated.

The local search is represented in detail in figure 3. In
this figure is shown the cost of a sequence of instances
just after the random stage. In this case, the cost
reduction process take place from the first iterations.
After the random stage the best instances are used
in the local search. When this search finds a better
instance then this instance is used in the local search
and the medium cost of the new instances constructed
is reduced.

5. Conclusions

This paper has described a framework to compare ob-
jectively different learning approaches to the problem
of the design of complex systems. The first contribu-
tion is the selection of the data representation struc-
ture between the different approximations proposed in

the literature. This structure is a Workflow Schema
based on a DAG with constraints. With this defini-
tion, the benchmark problem was defined, assuming
that background knowledge from the application prob-
lem is available to build the structure of all problem
with all possible solutions in form of a network struc-
ture. Some solutions to that problems might also be
available and evaluated. Then, experiments are pro-
posed. In these experiments some learning strategies
are compared. It has been shown the utility of mining
frequent patterns to train the learner, but also the lim-
itations of this heuristics while searching a large sparse
solution space. The exploration-exploitation trade off
situating the experiment on a active learning like envi-
ronment have been also faced. The results show that
a local search around previously known close to opti-
mum solutions become more effective in this experi-
mental set-up.
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(extended abstract)
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Czech Technical University in Prague, Czech Republic

The purpose of this submission is to present our
newly started research project entitled “LeCoS: Merg-
ing Machine Learning with Constraint Satisfaction”
concerned with exploring how to exploit relational ma-
chine learning (primarily inductive logic programming,
ILP) to solve constraint satisfaction problems (primar-
ily planning tasks), and vice versa. With this submis-
sion we wish to launch a discussion at the workshop
about challenges and possible pitfalls of the previewed
research directions of project as described below, and
about further possible directions that we had not been
aware of. The full paper submission following this ab-
stract will also describe the lessons learned in our par-
ticipation in the learning track of this year’s interna-
tional planning competition, where –in the frame of
the mentioned project– we are developing ILP algo-
rithms that learn relational heuristics from instances,
solutions and process traces of complex planning prob-
lems.

The first main objective of the project is to exploit con-
straint satisfaction techniques in relational machine
learning (RML). Most RML algorithms are based on
methods of inductive logic programming (ILP), whose
most typical goal is to induce a first-order logic theory
explaining a set of classified examples (ground facts)
using background knowledge, which also is a first-order
logic theory. ILP has demonstrated numerous promi-
nent applications (such as in bioinformatics), but the
large computational demands of traditional ILP algo-
rithms are generally considered an obstacle to its wider
use. Although their worst-case run-times are often cur-
tailed by suitable heuristics, these are usually domain-
specific and do not translate across learning tasks. At
the same time, the primary sources of ILP’s complex-
ity (the task of finding a consistent theory and the
task of testing the consistency of a theory) are essen-
tially CS problems (as shown previously by (Maloberti
& Sebag, 2004)), although they are traditionally not
viewed as such. Upon their suitable reformulation into
the CS framework, relevant CS algorithms with their

general and often powerful heuristics would naturally
lend themselves to significantly alleviate the routine
ILP tasks. There is indeed a wide scope for explo-
ration, ranging from rather traditional CS methods to
unorthodox techniques such as rapid random restarts
which we have already shown to be highly beneficial in
the CS task of theta-subsumption (Kuželka & Železný,
2009) conducted repeatedly in ILP systems.

The following set of proposed research directions is
concerned with incorporating CS algorithms into ma-
chine learning (specifically inductive logic program-
ming) algorithms, namely for the essential tasks of
subsumption check and theory search.

• CSP for subsumption checking. The sub-
sumption check procedure is at heart of practi-
cally every ILP system, used as an approximation
to the generally undecidable problem of logical
implication. The subsumption check is routinely
used for scoring a candidate hypothesis (Horn
rule) through verifying how many learning ex-
amples it logically entails. It is an NP-complete
problem and procedures for its conversion into a
CSP problem are generally known. However, only
rare research works have addressed the exploita-
tion of CSP algorithms with their native heuris-
tics on such converted problems. Our aim is to
explore an extended range of CSP techniques ap-
plied in this context and also investigate their im-
pact for a more systemized set of particular set-
tings under which the subsumption check is per-
formed in ILP. Such settings correspond to vari-
ous language-biases introduced previously in ILP
research to constrain the often overly expressive
and inefficiently manageable language of full Horn
clause logic. Examples are determinate clauses or
the relational feature language used in (Železný &
Lavrač, 2006).

• CSP for theory search. The main challenge
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here will be to reformulate the general ILP prob-
lem (finding a hypothesis that is complete and
consistent with respect to learning examples) into
a CSP problem. Clearly, the general ILP prob-
lem (where a hypothesis is a logic program) is
undecidable, but ILP algorithms in practice al-
ways use some kind of a language bias (constrain-
ing the form of logic clauses as mentioned in
the above item) turning the task into a differ-
ent (decidable) complexity class. We will inves-
tigate what language biases makes the ILP prob-
lem NP-complete and feasibly convertible into a
CSP problem. Then, using such biases, we will
explore how CSP algorithms are effective at this
alternative (w.r.t the state of the art) approach to
solving the ILP problem.

• Integration. This objective aims at developing
an algorithm combining the results of the previ-
ous two items. An expected outcome is thus an
unorthodox ILP system in the form of a CSP pro-
cedure (subsumption check) embedded in another
CSP procedure (theory search).

The second main objective is to exploit relational ma-
chine learning for efficient solving of constraint satis-
faction problems, primarily complex planning tasks.
There are indeed several genuine opportunities for ML
to speed up CS. First, note that in a typical deploy-
ment of CS algorithms, CS problem instances are not
generated randomly but are rather reformulations of a
constrained class of tasks from a distribution pertain-
ing to a certain domain. This can be exemplified by a
repeated planning task (e.g. timetables for successive
academic years in one institution) with only partially
changing specifications (e.g. resources). Thus, succes-
sive CS instances may exhibit stable structural pat-
terns, although these may be disguised to the naked
eye. Here, machine learning algorithms have the po-
tential to discover such patterns, occurring either in
the instance specifications or in their solutions. In the
former case, the patterns’ occurrence may correlate
with important quantities unknown prior to solving
the task (e.g. the run-time) and thus may be used
as predictors thereof. In the latter case, frequent pat-
terns found in solutions of small (tractable) instances
may straightforwardly be used as heuristics for solv-
ing larger instances of the same problem class: the
CS algorithm would here prioritize the exploration of
those candidate solutions which contain the ‘promis-
ing’ patterns. CS, viewed as an application domain
for machine learning, is highly special in two respects.
Firstly, the objects being learned about cannot be rep-
resented by a tuple of attribute values since they are

relational structures. This implies that the advanced
ML family - relational machine learning (such as ILP)
- must be mobilized in such an application. Secondly,
the fact that CS instances and - for tractable instances
- even solutions, can be automatically generated, im-
plies that a practically infinite supply of training ex-
amples would be available to the learning algorithm –
a circumstance unheard of in usual ML applications.
Both these aspects indicate an excellent opportunity
for CS to become a killer application domain for rela-
tional machine learning and ILP.

This set of research directions will define the frame-
work for learning from descriptions of previously
solved CSP/Planning instances, their solutions as well
as the computational processes employed in their solv-
ing, in order to augment subsequent solution processes.

• Learning from CSP/Planning instances.
The main research questions will pertain to: (i)
how CSP instances should effectively be repre-
sented as inputs to ML algorithms, mainly what
descriptors (numeric, symbolic, relational, even
including the position with respect to the phase-
transition region of the instance solubility) should
be used as descriptive features, (ii) what vari-
ables can and should be used as the target vari-
ables for supervised learning. Expected outcomes
of this research are, for example, effectively in-
vocable predictive models of (a) the actual time-
complexity of a particular CSP instance (b) the
most competent CSP algorithm, heuristic, etc.
given the description of a particular instance.

• Learning from CSP/Planning solutions.
Here we will primarily investigate how ML algo-
rithms should be applied to learning from existing
CSP/Planning solutions in order to discover fre-
quent structural patterns therein. Following ex-
perimental work, we will try to trace the theoreti-
cal underpinnings which give rise to such patterns.
Expected outcomes here lie in the automatic gen-
eration of CSP/Planning heuristics: discovered
structural patterns will be reused as heuristics
to streamline subsequent searches. A great ex-
pectation is in learning such heuristics from so-
lutions of tractable CSP/Planning instances and
in turn implant them into solving much harder
instances, including those unsolvable by current
CSP/Planning algorithms due to computational
demands.

• Learning from CSP/Planning instances
and solutions. This objective integrates the pre-
vious two. The aim is to connect the two sources
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of information (instance descriptions and solu-
tions). The main rationale is that the manifes-
tation of certain frequent structural patterns in
CSP/Planning solutions may not be implied by
the choice of a general CSP/Planning subclass,
but rather may be determined by certain proper-
ties of the specific instance in question. For ex-
ample, the occurrence of certain patterns in in-
stance descriptions may correlate with the occur-
rence of other patterns in the corresponding solu-
tions. Such relationships can potentially be dis-
covered by machine learning algorithms and used
in a spirit similar to the previous item.

• Learning from CSP/Planning pro-
cesses. While the previous objectives viewed
CSP/Planning instances as learning examples,
here we will proceed in a more fine-grained man-
ner, by identifying objects arising in the course
of CSP/Planning computation as learning exam-
ples. For instance, a learning example here may
be a particular state in the CSP/Planning state-
space exploration process. Expected benefits of
such an approach include the potential ability
e.g. to learn a description of states at which
pruning is beneficial or where further exploration
is especially promising, or to gradually learn the
optimal value of search cutoff in a randomized
restarted search strategy. Thus, one learning
episode in this setting coincides with the entire
course of solving one CSP/Planning instance; the
predictive models, gradually tuned as the search
proceeds, will be deployed to co-guide the search
once their accuracy exceeds a suitable threshold.
A significant supporting factor for this on-the-fly
learning strategy is the enormous number of
examples at hand: current CSP/Planning algo-
rithms explore spaces extending to over millions
of search nodes, thus–in lay language–there will
likely be enough ‘time’ to train the model before
its actual deployment in the given search process.

• Learning from CSP/Planning instances
and processes. Here we aim to combine the
CSP/Planning-instance-level learning with the
process-level learning. An obvious kind of predic-
tive model potentially discoverable in such a con-
figuration is, for example, ‘if the instance contains
pattern P , and the current search node exhibits
property R, prune all descendants of the current
node.
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Lavrač, Nada, 29

Leite, Rui, 35

Mooney, Raymond J., 8

Pfahringer, Bernhard, 10

Ram, Ashwin, 7

Sigut, José, 42
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Železný, Filip, 29, 49


