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Foreword

As in previous years, the goal of the Bayesian Modelling Applications workshop
is to provide a focused, informal forum for fruitful exchanges among theorists,
practitioners and tool developers. Discussions may cover research questions
and insights, methodologies, techniques, and experiences with applications of
Bayesian models to any particular problem domain. This year we address the
special theme

How biased are our numbers ?

We have composed an interesting program of selected contributions that focus
on issues relating to (probability) biases in applications of Bayesian networks.
For example, in constructing a Bayesian model, the probabilistic information
required for establishing its numerical parameters can be obtained from data,
human experts, a mix of these, or from yet other sources, all of which are known
to be biased. How can the biases in the sources of probabilistic information be
identified? How can the degree of bias, and its effect on the resulting model
and its behaviour, be established? Is it possible to correct for these biases? Do
the dedicated elicitation techniques that are being designed for the purpose of
eliciting probabilities from human experts forestall, for example, biases and over-
commitments of the resulting model? Are these techniques efficient, easy to use,
and scale up to building large models? In verifying the probability assessments
and behaviour of the model under construction, biases in the numbers and in
the interpretation of these numbers can be expected. What type of bias can be
expected, and how can it be identified? What kind of probabilistic information,
possibly computed from the model under construction, do you feed back to, for
example, a human expert? How do you communicate such information? Is it
interpreted as intended?

This year, the workshop includes a session partially dedicated to an inference
evaluation, held prior to the workshops/conferences. We are looking forward to
yet another fruitful edition of the Applications workshop, hoping it will provide
for identifying useful insights, techniques and future challenges for all research
communities concerned with reasoning under uncertainty.

Silja Renooij
Hermi J.M. Tabachneck-Schijf
Suzanne M. Mahoney



Schedule for the 6th Bayesian Modelling Applications Workshop

09:00 — 09:30 Welcome and Introduction by Silja Renooij

09:30 — 10:30 Session I: Probability elicitation and bias
Moderator: Marek Druzdzel

Observations from field trials with several elicitation techniques

i an ecological domain
C.R. Thomas, A.E. Nicholson, and B.T. Hart

Relieving the elicitation burden of Bayesian Belief Networks
B.W. Wisse, S.P. van Gosliga, N.P. van Elst, and A.l. Barros

10:30 — 11:00 Coffee Break

11:00 — 12:30 Session II: Model elicitation and bias
Moderator: John-Mark Agosta

A Bayesian approach to learning in fault isolation

H. Wettig, A. Pernestal, T. Silander, and M. Nyberg

Hypothesis Management Framework: a flexible design pattern
for belief networks in decision support systems

S.P. van Gosliga and 1. van de Voorde
An experimental procedure for evaluating user-centered methods
for rapid Bayesian network construction

M. Farry, J. Pfautz, Z. Cox, A. Bisantz, R. Stone, and E. Roth

12:30 — 14:30 Lunch Break



14:30 — 16:00 Session III: Biased inference

Moderator: Silja Renooij

The impact of overconfidence bias on practical accuracy
of Bayesian network models: an empirical study

M.J. Druzdzel and A. Onisko

Results of the probabilistic inference evaluation'

R. Dechter and A. Darwiche
16:00 — 16:30 Coffee Break

16:30 — 18:00 Session IV: Making bias explicit

Moderator: Finn Jensen

Methods for representing bias in Bayesian networks

E. Carlson, S. Guarino, and J. Pfautz

Discussion and Closing
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Evaluating Probabilistic Reasoning
Systems

Adnan Darwiche and Rina Dechter

The probabilistic reasoning evaluation took place during the month preceding
the UAI conference. Its results will be presented at the applications workshop,
and a full report on the methodology, benchmarks and results will be posted at
the evaluation webpage following the UAI conference.

Motivation

Over the past two decades a variety of exact and approximate algorithms were
developed across several communities (e.g. UAI, NIPS, SAT/CSPs) for an-
swering optimization and likelihood queries over probabilistic graphical models.
Since all these tasks are NP-hard, theoretical guarantees are rare and empirical
evaluation becomes a central evaluation tool. Yet, the empirical comparison be-
tween algorithms requires agreement on representations, benchmarks and eval-
uation criteria which is challenging, especially in the context of approximation
algorithms.

Some communities have already addressed similar challenges through yearly
empirical evaluations and competitions (e.g. SAT, CSP and planning) which
proved effective, leading to algorithmic advances and to software development
and dissemination. We believe that such an effort could benefit probabilistic
inference algorithms as well. Probabilistic reasoning presents additional chal-
lenges, however, as it tends to be harder, requires heterogenous knowledge rep-
resentation frameworks, and must deal with the issue of evaluating approximate
inference algorithms.

Goals

Our goal is to use the evaluation as a process that will help establish some
standards for evaluating probabilistic reasoning systems based on both exact
and approximate algorithms. Another long term goal is to reinforce a tradition
of building and sharing probabilistic reasoning systems that allow easy access to
state-of-the-art inference algorithms by members of the broader scientific and
engineering communities. We hope to achieve a number of objectives:



e Increase the utilization of probabilistic inference algorithms in real-world
applications by reducing the investment needed for building applications
based on probabilistic reasoning.

e Allow newer members of the inference community to quickly capitalize
on the expertise of more senior members of the community by providing
broader access to existing code.

e Foster an environment where reported empirical results are accompanied
by the very systems used to obtain them.

The actual UAT'08 probabilistic reasoning evaluation took place during the
month preceding the conference and its results are presented and discussed
during the applications workshop. The evaluation includes both Bayesian and
Markov networks and consider three inference tasks: probability of evidence
(partition function), most probable explanations (also called MPE or energy
minimization), and node marginals. The evaluation will consider both exact
and approximate algorithms, especially anytime algorithms that improve their
approximations with time. Details of the evaluation can be found at:

http://graphmod.ics.uci.edu/uai08/Evaluation

A full report on the methodology, benchmarks and the results will be posted at
the evaluation webpage following the conference.

Organizing Committee

e Fahiem Bacchus: http://www.cs.toronto.edu/~fbacchus/

o Jeff Bilmes: http://ssli.ee.washington.edu/people/bilmes/

(co-chair) Adnan Darwiche: http://www.cs.ucla.edu/~darwiche/

(co-chair) Rina Dechter: http://www.ics.uci.edu/~dechter/

Hector Geffner: http://www.tecn.upf.es/~hgeffner/

Alexander Thler: http://www.ics.uci.edu/~ihler/

Joris Mooij: http://www.jorismooij.nl/

Kevin Murphy: http://www.cs.ubc.ca/~murphyk/
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Observations from field trials with several elicitation techniques in
an ecological domain

Colette R. Thomas*
Water Studies Centre
Monash University,
VIC, 3800, Australia

Abstract

Quantitative ecologists use Bayesian net-
works (BNs) to integrate their collective un-
derstanding of system processes, and to adap-
tively investigate management alternatives.
Consequently, subjective probability assess-
ments are often critical for ecological BNs.
Several published probability elicitation tech-
niques were trialled in development of a pro-
totype ecological BN. These included verbal,
numeric, text and matrix formats. Observa-
tions of the participant’s preferences for and
performances under the different formats are
described and discussed.

1 INTRODUCTION

We wanted to construct a BN collaboratively with the
key end-user group for the domain, namely tropical
seagrass managers and scientists in the Great Barrier
Reef World Heritage Area (GBRWHA), in northeast-
ern Australia. In this region elevated nutrient and
sediments entering the GBRWHA from river flows are
considered one of the most important land-based in-
fluences on the system (Brodie et al. 2007), although
the issue has been contentious (e.g. Starck 2005). A
risk-based approach using BNs was considered way to
tackle these problems in the GBRWHA, however data
scarcity meant that experts were required to provide
some of the probability estimations for the BN.

Given the complexity and data scarcity of most ecolog-
ical systems, significant effort is required to maximise
the extraction of information from available data.
Most data types can be adapted to BN analysis this is
one of the reasons why BNs are so appealing to ecolog-
ical risk practitioners. However, rarely in an ecological

*Current address: CSIRO Sustainable Ecosystems
Davies Laboratory, Townsville, QLD, 4814, Australia.

Ann E. Nicholson
Faculty of Information Technology
Monash University
VIC, 3800, Australia

Barry T. Hart
Water Studies Centre
Monash University,
VIC, 3800, Australia

application are all pertinent relationships represented
adequately, if at all, by empirical data. In these in-
stances machine learning and expert knowledge can
be used to quantify these system relationships with
probabilities. Many elicitation methods are available,
but little guidance exists about how to choose between
them or the biases they may introduce. We used our
need for expert probabilities as an opportunity to in-
formally trial several extant techniques. After intro-
ducing our domain, we describe the methods used, and
our observations of participant responses.

2 THE ECOLOGICAL DOMAIN

The effect of land-based activities on marine ecosys-
tems is a matter of global concern (GESAMP 2001).
With the recognition of these persistent problems also
comes acknowledgement that they cannot be properly
managed without understanding the interdependen-
cies that exist between marine and land-based sys-
tems (GESAMP 2001). This is equally true for coastal
lands draining to the GBRWHA, which extends 2,000
km along the coast (Brodie et al. 2001a). The GBR-
WHA contains approximately 3,000 reefs, large areas
of seagrass and inshore mangrove forests (Brodie et al.
2001a).

The region shown in Figure 1 is primarily agricultural,
covering approximately 410,000 km? of land (Ray-
ment 2005) draining directly into the Great Barrier
Reef lagoon. Agricultural runoff containing soil, nutri-
ents and chemicals drains from catchments into rivers
which discharge into the GBRWHA. Elevated turbid-
ity and nutrients levels have been measured in river
plumes extending from many river mouths into the
lagoon (Devlin et al. 2001b, Brodie et al. 2001b, Fur-
nas 2003), however direct linkages between river water
quality and the health of GBR ecosystems remain dif-
ficult to establish (Crossland et al. 1997).

Seagrasses are among the most productive ecosystems
in the world (Duarte & Chiscano 1999). The global
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Figure 1: Catchments of the Great Barrier Reef World
Heritage Area, indicating the study catchment.

ecosystem services provided by seagrasses have been
valued at US$3.8 trillion per year (Costanza et al.
1997). Seagrasses provide connectivity between man-
groves and reefs (Mumby et al. 2004), habitat and
nursery areas for algae, invertebrates and fish (Heck
Jr. et al. 2003), and are the primary food source of
sea turtles and dugong (Marsh et al. 1999, Aragones
et al. 2006). Dugong and sea turtles are vulnerable to
extinction globally (IUCN 2000) and their protection
in the GBRWHA is a condition that must be met to
maintain World Heritage listing.

Threatened species can be conserved if the ecosystems
they use for food and shelter are protected. Ecological
risk analysis can help identify the biophysical factors
and processes that maintain or threaten the health of
these ecosystems (Hart et al. 2006). However, ecolog-
ical knowledge is notoriously insufficient for most eco-
logical risk analysis applications. This is particularly
true in Australia, where landscapes are vast relative
to the resources available to observe them. Subjective
probability assessments are a critical data source to fill
these gaps.

3 PREPARATION

The difficulties of BN graph-building in the absence of
substantial practical guidance has been acknowledged
in the literature (Neil et al. 2000). However, valuable
contributions to the development and communication
of a coherent ecological BN methodology are increasing
(e.g. Cain 2001, Ticehurst et al. 2007). In particular
the Quantitative Knowledge Engineering of Bayesian
Networks (Q-KEBN) methodology (Woodberry et al.
2004, Pollino et al. 2005) provides a broad frame-
work for parameterising and evaluating BNs. Recent
research has seen the development of a new frame-
work for structural elicitation, and the extension of
the parameter estimation and evaluation phases of the
Q-KEBN method (Thomas et al. 2005, Thomas 2008).

The new framework was applied as follows. A tiered
bottom-up approach was used to simplify a complex
descriptive model to a smaller, more focused model
of roughly half the size. The process worked through
a rough hierarchy of system specificity (primary, sec-
ondary and tertiary factors controlling seagrass ecol-
ogy) to create a graphical model of the system. Graph-
ical modelling was followed by a phase of explicit sim-
plification, then a phase of critical review and verifica-
tion. The simplified model provided a starting point
for parameterisation and refinement tasks. Automated
methods were not used to learn the network struc-
ture. Once the qualitative structural characteristics
were identified, relationships were quantified and pa-
rameterised (Thomas 2008).

Figure 2: Seagrass health and abundance submodel

Six seagrass experts were invited to provide subjective
probabilities over nodes relating directly to their area
of expertise (seagrass ecology). These experts had par-
ticipated in structural elicitation workshops and were
familiar with the BN domain. Details of the inter-
viewing process and examples of the Verbal Elicitor
software (Hope et al. 2002) and probability assess-



ment worksheets supplemented the invitation to par-
ticipate, and three experts accepted and participated
in the interviews. Research shows that three to five
good quality experts are often sufficient for similar,
forecasting, tasks (Clemen & Winkler 1999).

Research also shows that if experts are made aware
of potential biases, and are provided with training
and feedback, the incidence of bias is likely to be re-
duced (Kahneman et al. 1982, Merkhofer 1987, List
2001). Accordingly, seagrass experts were provided
with background material describing how heuristics
and biases can influence subjective judgment. Ma-
terials were also provided that described and placed
nodes in the context of the wider BN, and explained
concepts of causal interaction and independence that
were relevant to later CPT partitioning tasks. Ex-
perts were allowed approximately two weeks to digest
and, if required, clarify the material before committing
themselves to the elicitation process. Experts were in-
terviewed once, individually, in private meeting rooms
at or near their workplaces. All experts were inter-
viewed by the same person.

Training sessions were used at the beginning of each
interview to familiarise experts with BN concepts and
allow them to experiment with all response formats.
Training began with a brief explanation of BN con-
cepts and components. The Animals BN (Norsys
2007) and a domain-relevant BN called Simple Eu-
trophication (Webb unpubl.) were used to demon-
strate how BNs work. The Animals BN is a simple,
qualitative school-level animal classification network
and the Simple Eutrophication BN is a scientific al-
gal bloom generation network — a context familiar to
the experts. Experts used these BNs to test run all
formats except the freehand sketch.

‘Test runs’ started with a two-parent node from Ani-
mals, but the CPTs became progressively more com-
plex as the training continued, moving to the Simple
Eutrophication BN. Experts were provided with an ex-
ample of each elicitation format. Parent and child
node details on these examples had been completed
by the knowledge engineer prior to training, ensuring
that all experts were trained on the same information.
The response areas on the forms had been left blank.
The expert was given a copy of each format and for the
first test run they completed each form with as much
assistance as they requested. Subsequent forms were
provided for remaining examples, and the amount of
assistance was progressively reduced until the experts
were confident enough to use each format unassisted.

The efficacy of the training in reducing bias could not
be measured for practical reasons. Similarly cost and
practicality issues prevented feedback being provided

to experts about the accuracy of their subjective judg-
ments. Each interview took up to eight hours, with
breaks provided every two hours.

4 TOOLS

Five nodes required subjective probabilities to be
provided by experts. Three nodes (Future Seagrass
Biomass, Future Seagrass Health, Dugong Grazing)
had a parent node that also required subjective assess-
ment. Probabilities for these three nodes were elicited
last, ensuring that experts thoroughly understood the
parent variables prior to specifying associated child
node probabilities.

Experts were encouraged to complete as many prob-
ability assessments as possible. To facilitate this, the
coding effort required from experts was reduced using
four strategies, presented below.

1. Start with simpler nodes and work up to more
complex assessments. Effort was made to simplify
the range of state combinations (i.e. the size of
the CPT) of the first nodes that were elicited, so
experts did not become overwhelmed by the time
they came to assess the two critical, and com-
plex, endpoint nodes late in the day. To further
insure that endpoint nodes received sufficient as-
sessment, a rough guide to the amount of time
that could be spent on each node was provided.

2. Reduce the number of assessments to those ly-
ing in critical areas of the distribution. This was
achieved either by eliciting the best, worst and
moderate cases or the 10th, 50th and 90th per-
centile regions of the distribution before gather-
ing everything else in between, or by directing
the experts to complete assessments for the cases
they felt most confident about before contemplat-
ing more difficult assessments.

3. If it became clear that an expert could not com-
plete the task within the session, the most difficult
parent state combinations were set aside entirely
and one child state was omitted from the remain-
ing assessments. Omitted child states were later
completed using a simple default rule requiring
that the probabilities of the child states sum to
one.

4. To provide flexibility in probability coding and re-
sponse tasks, five different response formats were
provided. Prior to training, each format was first
explained. Training began with small and concep-
tually simple nodes.

Experts could use any of the five response formats
provided. The formats used were:



e graph paper for sketching probability distribu-
tions and associated parameters. Domain experts
sketch the distribution they believe best repre-
sents the parent-child relationship, indicating per-
tinent parameter values where appropriate (e.g.
mean, maxima).

e the Verbal Elicitor software (Hope et al. 2002;
Figure 3). This software, based on work in van
der Gaag et al. (1999), allows entry of probabil-
ity values in ordinary English. The domain expert
makes qualitative assessments using a scale with
numerical and verbal anchors, by selecting a ver-
bal cue such as ‘unlikely’ or ‘almost certain’. The
associated numerical probabilities are either set
manually or optimised to minimise probabilistic
incoherency.

o text-scale worksheet (Figure 4). This method is
adapted from van der Gaag et al. (1999). The
knowledge engineer reads aloud the description of
the parent-child state combination. The expert
circles the preferred verbal or numeric anchor, or
slashes the scale axis at a preferred point along it.

e matrix worksheet (Figure 6). This method is
adapted from Laskey & Mahoney (2000). Domain
experts complete the full series of dependent vari-
able state responses, given information provided
on the conditioning variables. A copy of the same
verbal-numeric scale used in the above format was
provided to enable choice between verbal and nu-
meric responses.

e partitioned conditional probability table matri-
ces (Figure 5). Domain experts identified con-
ditioning variable states that would not change
the value of the dependent variable response. A
copy of the same verbal-numeric scale used in the
above format was provided to enable choice be-
tween verbal and numeric responses.

Experts could change response formats between nodes
but were discouraged from changing from one format
to another in the middle of a node assessment. Experts
were given the choice of response format only for nodes
with less than three parents. For nodes with more
than three parents CPT partitioning was used. Ex-
perts were encouraged to use verbal-numeric responses
across all formats but were never constrained to do so.
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Figure 3: Screenshot from the Verbal Elicitor software
(Hope et al. 2000)
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Figure 4: Extract from the text-scale worksheet
(adapted from van der Gaag et al. 1999).
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yes low Oks 9010100 probable | improbabe | impossible
yes low Gib15 010 probable | improbabe | impossible
yes low Gib15 101090 probable | improbabe | impossible
yes low G135 9010100 probable | improbabe | impossible
yes low 1510100 0w 10 probable | improbabe | impossible
yes low 1510100 | 101090 probable | improbabe | impossible
yes low 1510100 9010100 probable | improbabe | impossible
yes high L) 0110 probable | improbabe | impossible
yes high 0b35 101090 probable | improbable | impossible
yes high 0b35 9010 100 probable | improbable | impossible
yes high G115 0110 probable | improbable | impossible
yes high G115 101090 probable | improbable | impossible
yes high G115 9010 100 probable | improbable | impossible
yes high 1510100 010 probable | improbabk | impossible
yes high 1510100 | 101090 probable | improbabk | impossible
yes high 1510100 9010100 probable | improbabk | impossible
no ow 0bd 010

no ow 0bd 101090

no ow 0bd 9010 100

no ow Sk 15 010

no ow Sk 15 101090

no low S5k i5 90to 100

no low 1510100 | 0% 10

no low 1510 100 | 101090

no low 1510100 | 9010 100

no high 05 0410

na high 0o3a 101090

no high 0iod 9010 100

no high G 15 0410

no high G 15 101090

no high G115 9010 100

no high 1510100 010

no high 1510100 | 101090

no high 1510100 | 9010100

Figure 5: The CPT for the Habitat Quality node. A
partition over the Cyclone Scour node is indicated with
double lines



5 OBSERVATIONS ON
ELICITATION PROCESSES

5.1 Biases in approach selection

Zimmer (1984) claims that different presentation
modes put different emphasis on different areas of the
problem-space, and Windschitl and Wells (1995) show
that verbal expressions of uncertainty are more af-
fected by presentation format than are numeric ex-
pressions. Our observations appear to support this,
because in our study the response format appeared
to play a role in probability elicitation results. No
single format was collectively favoured by the experts
over the others. Interestingly, the option to sketch the
node’s probability distribution was never taken up by
experts during elicitation. This might indicate that fa-
miliarising experts with training materials before elic-
itations begin has some benefit. However, the effect
of training on format preference was not tested in this
study so we cannot be sure.

Text-scale worksheets and the VE software were gen-
erally preferred in both the training sessions and dur-
ing elicitations of simple BN nodes. As node relation-
ships became more complex, experts tended to prefer
matrix-style formats and were eventually constrained
to CPT partitioning formats for the final two, complex,
nodes (Future Seagrass Biomass and Future Seagrass
Health). Overall, one expert preferred the VE for-
mat and one preferred the text-scale format using ver-
bal responses. The third expert preferred the matrix
worksheet using numeric responses, stating that scien-
tists were more accustomed to receiving information
in numeric/matrix rather than verbal/text formats.

During training assessments with non-matrix formats
(using VE and the text-scale worksheet) some experts
showed a tendency to prefer positive cues. Answers
were often bunched at the upper end of the verbal
scale, with experts showing preferences for cues such
as ‘likely’ and ‘probable’; and avoiding cues such as
‘unlikely’ or ‘improbable’, even though they were at-
tempting to represent small probabilities.

The pattern was not clearly observed during assess-
ments using probability matrix formats, indicating
that the assessment format may influence experts’
probability allocations. However, when reminded that
parent state combinations presented to them were just
scenarios of possible system responses, experts were
able to refocus their assessment on the child state
again, usually resulting in a different assessment value.

If during an elicitation we noticed the expert having
difficulty allocating probabilities coherently, we tried
using a budget metaphor to explain how probabilities

needed to be distributed in the CPTs. Participants
were told they effectively had 100 probability units for
every parent instantiation. It was explained that this
was like a budget that needed to be completely allo-
cated into all available child states, with the largest
number of units going to the best (most likely) child
state choice for that parent instantiation. This ap-
peared to clarify for the expert the problems that en-
sue under/over-specification, if the probability budget
is not balanced appropriately. This usually happened
during elicitation of the larger CPTs.

Subsequent to these discussions, we observed two
things; 1) probability assessments were completed
faster and with reduced under/over-specification error,
and 2) experts became more inclined to use matrix for-
mats. When matrix formats were adopted in this way,
the expert’s mode of assessment changed from one of
sequential consideration of individual parent-child in-
stantiations to a system where they considered sets of
conditioning parent states to contextualise and itera-
tively re-calibrate their child node assessments on the
fly. The experts appeared to first roughly rank instan-
tiations against the available child states then allocate
or calibrate individual probability allocations accord-
ingly. In this sense the experts appeared to be men-
tally creating their own CPT partitioning systems to
reduce the cognitive burden of large elicitation tasks.

This change of approach resulted in substantially fewer
instances of what we suspect to be a positivity bias (de-
scribed in following sections). These reductions were
observed in both verbal and numeric response types. It
is interesting to note that although one expert initially
continued to use verbal responses when switching from
a text-scale to a matrix format, once s/he started rank-
ing responses as relative probabilities across the child
node, numeric responses were preferred for the remain-
der of the interview. These observations indicate that
provision of greater context may improve probability
estimation. Development of interactive online tools or
better utilisation of the BN GUI itself may help par-
ticipants actively reorganise/rank CPTs and may be a
good first step towards testing these observations more
closely.

5.2 Quantifier effect

Verbal and numeric expressions of quantifiers (few, not
all, some) and probabilities contain rhetorical and per-
spectival information (Moxey & Sanford 2000). Conse-
quently, subtle but powerful information can be com-
municated and so can influence the inferences and re-
sponses of readers.

Moxey & Sanford go on to propose that negative quan-
tifiers like not all put a different perspective on the in-



terpretation of events, which can affect the value judg-
ment placed on the outcome.

They give the following example:

“(10) There is a small probability of death, which is
a good*/bad thing.

(10%) Tt is improbable that anyone will die, which is
a good/bad* thing.

(11) There is a small risk of death, which is a
good* /bad thing.

(11°) There is an insignificant risk of death, which is
a good/bad* thing.”

In this example an asterisk denotes an unacceptable re-
sponse. Moxey & Sanford (2000) suggest that negative
quantifiers invite the reader or listener to presuppose
that things are more probable or risky than they actu-
ally are. This pattern is consistent regardless of how
much confidence is being expressed (e.g. not quite cer-
tain vs. small probability; Moxey & Sanford (2000)).

If the phrasing of conditioning statements can affect
the perspectives and inferences of the participants,
then the reasoning processes they use to generate prob-
ability assessments are also likely to be affected. This
may have implications for BN knowledge engineers, be-
cause the example above is an inverse representation of
the kind of conditioning statements used in probabil-
ity elicitation for BNs. Rephrased as a BN elicitation
query of the type used in recent research, the state-
ment could read something like;

“If blood alcohol level is low and the speed
of the car is low, the probability of death is
”

with participants required to complete the statement
with the most accurate of the probability expressions
offered. It is difficult to differentiate instances of the
quantifier effect from positivity bias, which is discussed
in the following section. Examples of possible in-
stances of the quantifier effect are described in the
following section on positivity bias.

5.3 Positivity bias

Teigen & Brun (2003) have shown that participants
choose verbal probability phrases to correspond with
the linguistic rather than the numeric content of pre-
sented information. Their experiments show that sen-
tences containing positive quantifiers — phrases with
positive directionality — will tend to receive posi-
tively framed responses, indicating that probability es-
timates are influenced by the way the conditioning in-
formation is presented.

Participants choose verbal phrases as a function of
their frame; if they want to affirm that a particular
outcome could in fact occur then they will use a term
with positive directionality (e.g. ‘possible’, at the up-
per end of the verbal scale) but if the purpose is to
draw attention to an events non-occurrence then a neg-
ative phrase (e.g. ‘improbable’, at the lower end of the
scale) will be chosen (Teigen & Brun 2003). This may
be because the phrases used in the text-scale work-
sheets and the VE software both request participants
to determine “how likely” a certain response is given
certain conditions. The word ‘likely’ creates a positive
frame for the parent-child state combination requiring
assessment. Positive frames may encourage positivity
bias; a general readiness of participants to prefer pos-
itive over negative descriptive terms, as if positivity is
the rule and negativity must be treated as an exception
(Teigen & Brun 1995).

It may be possible to reduce positive framing by omit-
ting the word ‘likely’ and presenting the parent-child
state combination as a factual statement against which
the expert applies a probability;

“When [parent node 1] is in [state 1] and [par-
ent node 2] is in [state 1], [child node] is [state
3]. What is the chance that this is true?”

This will be tested in future case studies. To our
knowledge the presence of positivity bias in probabil-
ity elicitation for BNs has not been tested directly,
and may not be adequately controlled for in extant
BN elicitation techniques or formats. However our ob-
servations may provide some evidence that these biases
can be reduced.

For example, matrix formats (Figures 5 and 6) present
experts with the entire set of parent-child state com-
binations all at once. So instead of considering each
parent-child state combination in isolation, experts
can choose to view sets of conditioning (parent) states,
including the full range of possible responses (child)
states across which the entirety of the ‘probability bud-
get’ must be allocated. This has the advantage of mak-
ing the assessment context explicit. Matrix formats
may therefore provide a mechanism for participants to
frame assessment requests more broadly.

5.4 Overconfidence/uncertainty avoidance

Although the apparent positivity bias was fairly easily
observed, we believe a different bias was also observed
during elicitations. Some experts expressed aversion
to the absoluteness of the words ‘certain’ and ‘impos-
sible’ because, in the words of one expert “nothing
is certain in ecology”. However, when allowed to use
numeric probabilities, the same expert still responded



with 1 (certain) and O (impossible) values. Expres-
sions of absolute certainty were also common in ver-
bal responses. The result suggests that these experts
may also be displaying overconfidence. There were
many probabilities at the very high or very low end
of the spectrum (near 1 or 0), and instances of com-
plete disagreement were observed; where one expert
assessed a parent-child state combination as ‘certain’
and a different expert assessed the same combination
as ‘impossible’ (divergences between experts’ assess-
ments are discussed in more detail in the following
section). This observation is similar to that described
by Keren & Teigen (2001) as ‘the principle of definitive
predictions’,; or ‘uncertainty avoidance’, where only ex-
treme probabilities are used in responses because par-
ticipants wish to appear quite clear about what will
happen next.

5.5 Aggregating expert results

Subsequent to the elicitation processes described in
this paper, we aggregated (averaged) subjective prob-
abilities and evaluated the responses in two ways.
Divergences between experts’ probability assessments
were analysed using the relative standard deviation
of the average value and the Bhattacharyya distance
measure (Bhattacharyya 1943).

These techniques allowed the experts, nodes and
node elements for which disagreement occurred most
strongly to be identified. This is necessary so that
conflicting assessments can be investigated collabora-
tively with participants to resolve whether the causes
are clerical errors or mismatching assumptions about
context —in which case the distances could be expected
to diminish, or if the cause of the differences is due
to contrasting conceptual models among experts — in
which case structural modificatifation may be required
and parallel models developed.

Further, the technique showed that although each ex-
pert provided different distributions, differences across
experts occurred in equal measure. A demonstrated
lack of systematic bias among experts indicated that
averaging was an appropriate aggregation technique.
Details of this research are reported in Thomas (2008).

6 CONCLUDING REMARKS

There is currently little guidance about how to choose
between subjective elicitation methods. Preferences
and responses of ecological managers and scientists
were informally field-trialled using a selection of prob-
ability elicitation formats. Expert’s format preferences
appeared to be influenced by their familiarity with the
format and the complexity of the elicitation problem.

Our observations indicate that none of the trialled
techniques are likely to be completely impervious to
bias and overconfidence. Positively framed text-based
descriptions of parent-child state combinations may
have contributed to the observed bias.
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Abstract

In this paper we present a new method
(EBBN) that aims at reducing the need to
elicit formidable amounts of probabilities for
Bayesian belief networks, by reducing the
number of probabilities that need to be speci-
fied in the quantification phase. This method
enables the derivation of a variable’s condi-
tional probability table (CPT) in the gen-
eral case that the states of the variable are
ordered and the states of each of its parent
nodes can be ordered with respect to the in-
fluence they exercise. EBBN requires only
a limited amount of probability assessments
from experts to determine a variable’s full
CPT and uses piecewise linear interpolation.
The number of probabilities to be assessed in
this method is linear in the number of condi-
tioning variables. EBBN’s performance was
compared with the results achieved by ap-
plying both the normal copula vine approach
from Hanea & Kurowicka (2007), and by us-
ing a simple uniform distribution.

1 Introduction

In this paper we consider the case of deriving a dis-
crete conditional probability distribution for a node of
a Bayesian belief network based on expert judgement.
There are many issues to consider when deriving a con-
ditional probability distribution via expert judgement
elicitation. The expert assessors will for example use
simplifying heuristics when assessing probabilities to
avoid too complex mental reasoning. These heuristics
might lead to biased assessments. In addition experts
might also be subject to various types of motivational
biases. There is the problem of how to select the
appropriate experts for the elicitation task and how
to properly prepare them for formulating the assess-

ments (e.g. motivating and training them). There is
the choice of which method to use to elicit the prob-
abilities: e.g. a probability-scale, probability-wheel,
gamble-like or adverb-probability matching method?
Renooij (2001) gives a good overview of these issues.
Though acknowledging their importance, in this paper
we do not consider these issues, but focus on reduc-
ing the assessment burden of large discrete conditional
probability distributions.

The number of probabilities that need to be specified
for a node can grow large very easily. For a node with
three states that has a parent node with also three
states, 6 probabilities need to be specified to deter-
mine its conditional probability table (CPT). An ad-
ditional second and third parent node with three states
would consequently require a table of 18 and 54 prob-
abilities, and so on. Apart from the huge amounts of
time it would take to assess all the probabilities for
large CPTs, it can also be questioned to what extent
assessors can be expected to coherently provide the
probabilities at the level of detail required (see e.g.
(Miller 1956) on the limitations of human short term
memory capacity). The elicitation task thus is consid-
ered a major obstacle in the use of BBNs (Druzdzel &
Van der Gaag 1995, Jensen 1995).

There are two ways in which the elicitation task for dis-
crete BBNs can be relieved. The first is to make it eas-
ier for the assessors to provide the probabilistic assess-
ments required. Van der Gaag, Renooij, Witteman,
Aleman & Taal (1999) aim to achieve this by tran-
scribing the conditional probabilities and using a scale
containing both numerical and verbal anchors. But the
effort needed to assess a full CPT using this method,
though reduced, is still exponential in the number of
conditioning variables. The second option for relieving
the elicitation burden is to reduce the number of prob-
abilistic assessments to be made. This can of course be
achieved by reducing the number of conditions (par-
ent nodes) or the number of states of the variables, but
such reductions will often be undesirable (e.g. leading



to loss of detail needed to inform a decision).

The Noisy-OR model, originally introduced by Kim
& Pearl (1983), but more extensively discussed in re-
lation to BBNs by e.g. Heckerman & Breese (1996),
reduces the number of probabilities to be specified by
making additional assumptions about the underlying
causal structure of the variables. For the noisy-OR
model, the number of probabilities needed to deter-
mine the full CPT is linear in the number of condi-
tioning variables, rather than exponential. Although
this can mean a huge reduction in elicitation effort,
the assumptions necessary are strong and all the vari-
ables in the noisy-OR model need to be binary, which
strongly limits the applicability of the method.

The Noisy-MAX model (Diez 1993) can be seen as the
extension of the Noisy-OR to multi-valued variables.
In this model the CPT is derived from 'marginal con-
ditional’” distributions specified for each parent: for
each parent the probabilities conditional on this par-
ent node are specified and subsequently the full CPT
is derived from these conditional probabilities using
the max function. The influences of each of the parent
nodes are treated in this model as independent. So the
joint influence that the parent nodes exercise is fully
determined by their marginal influence and a fixed
function. Zagorecki & Druzdzel (2006) have fitted the
Noisy-MAX model to suitable nodes from three belief
networks for which the CPTs where already specified.
The authors found the model to be able to provide a
good fit to the CPT in about 50% of the cases they
considered.

In this paper we develop and evaluate a methodology,
EBBN, for deriving a node’s CPT in the general case
that the states of the node are ordered and the states
of each of its parent nodes can be ordered with re-
spect to the influence these parent nodes have on this
node of interest. In this method only a (small) part
of the CPT- describing the joint influence of the par-
ents in contrast with the marginal influence elicited in
the Noisy-MAX model - is elicited. The conditional
probabilities that are not directly elicited are derived
using an interpolation method based on the ranks of
parent node states. The number of probabilities to be
assessed is linear in the number of parent nodes. Since
the method approximates the probabilities that are
not directly assessed, it will contain inaccuracies. Like
Van der Gaag et al. (1999) we therefore propose to re-
gard and use this method as a first step in an iterative
procedure of stepwise refinement of probability assess-
ments, like described in (Coupé, Peek, Ottenkamp &
Habbema 1999).

While testing this method three relevant alternatives
were presented. Bonafede & Giudici (2007) have de-

veloped a method for deriving a discrete conditional
probability distribution based on the marginal distri-
butions, correlation coefficients and standardised joint
moments. Yet, this method also requires all the vari-
ables to be binary, and closed-form solutions have only
been derived for up to three conditioning variables
(parent nodes). Secondly Hanea & Kurowicka (2007)
provide a method for determining a CPT based on
the copula vine approach (Bedford & Cooke 2002)
that uses similar prior information: marginal distri-
butions and adjusted (conditional) rank correlations.
This method also provides a means for deriving the
CPT in the general case that the variables are ordinal
and the influences are monotone, although it is not
clear to us if and how the prior assessments needed
can be elicited accurately from experts. In Section M
we compare the results of the method developed in
this paper with the copula vine approach of Hanea &
Kurowicka, for which the required prior assessments
are derived from a fully specified CPT.

Very closely related to our method is the method pre-
sented by Tang & McCabe (2007). These authors also
propose the use of piecewise linear interpolation to ap-
proximate not-elicited conditional probabilities. Fur-
thermore they introduce the concepts of dominant and
important factors, whilst we use positive and nega-
tive dominance and parent weights. Yet, where Tang
& McCabe, like Bonafede & Giudici, restrict their
method to work with binary variables only, the method
we introduce in this paper works with discrete vari-
ables in general, under the above described conditions
of ordinality of the variables. It should be noted that
the development of our method has taken place inde-
pendently of that of Tang & McCabe.

In the next section we will introduce our alternative
elicitation method for BBNs, EBBN, which is aimed
at reducing the elicitation burden. In Section[3we dis-
cuss when we can regard an approximation of a CPT
to be ‘good’, providing the means to assess the perfor-
mance of the proposed method and compare it with
the copula vine approach (Section[]). In the final sec-
tion we present our conclusions and suggestions for
future work.

2 The EBBN Method

We regard the problem of expert assessment of the
probability distribution of a discrete variable X, (a
node in a BBN), conditional on a set of two or more
discrete variables, which we will denote with pa(X.)
(the set of parent nodes). We require (1) the values of
X, to be ordered, and (2) that the values of each of
the elements of pa(X.) can be ordered such that each
of these variables have either a positive or a negative



influence on X,.. By stating that X3 € pa(X.) has a
positive influence on X, denoted by ST (X, X.), we
mean that observing a higher value for X does not
decrease the likelihood of higher values of X, regard-
less of the values of the other variables pa(X.) \ Xj.
We take assignment a = {z;,...,z,} to be an instan-
tiation of the set of pa(X.) = {Xj,..., X, }. Formally
we define X}, € pa(X.) having a positive influence on
X., ST(Xy, X.), as (Wellman 1990): for all values z.
of X, for all pairs of distinct values xy, > xj, of
X}, and for all possible assignments a—j for the set of
pa(X.)\ X,

P(X.> zc | Tpn,a-k) > P(Xe > e | X0, k).

The definition of a negative influence, S™(Xy, X.), is
completely analogous and would involve only reversing
the above inequality.

We define a conditioning variable X}, € pa(X.) to be
positive dominant, if the following two (sets of) as-
signments of pa(X.) lead to the same probabilities:
(I) all assignments of pa(X,.) in which X} is in its
most favourable state for high values of X, and (II)
the assignment in which each X; € pa(X.) is in its
most favourable state for higher values of X, (i.e. all
X, € pa(X.) with ST(X,, X.) are at their highest
value, and all X,, € pa(X,) with S~ (X,, X.) are at
their lowest value).

So if a positive dominant parent is in its most
favourable state for high values of X, then, regardless
of the states of the other parents, X. will have
the same probabilities as when conditional on the
assignment in which all parent nodes are in their most
favourable state. Negative dominant variables are
defined analogously.

In the remainder of this section we will first discuss the
assessments needed from the expert for the derivation
of the CPT of X.. We will then show how to obtain
the CPT from these assessments and end the section
with an illustrative example of the method, taken from
the Hailfinder network (Abramson, Brown, Edwards,
Murphy & Winkler 1996).

2.1 Required assessments

It is assumed that the assessor has confirmed that the
values of variable X, are ordered and that the assessor
can order the values of each of the variables X €
pa(X.) such that (s)he judges either ST (Xj, X.) or
S7(Xk, X¢) to hold. Then the following assessments
are required to determine the CPT for variable X, with
conditioning variables pa(Xc)El

! As mentioned in Section [ we will not discuss here how
these assessments can be best elicited from the assessor

1. (ordering). For each of the conditioning variables
X € pa(X.): order the values of Xj such that
X has either a positive or a negative influence
on X.. Fix and record this ordering of the values
and the nature of the influence.

2. (typical probabilities). For each of the values x.
of X.:

(a) determine the assignment pa(X.) = a,_ such
that the probability P(X,. = x. | a,) is as
large as possible.

(b) assess the probabilities P(X. | ag,).

Due to dominance of one of the conditioning vari-
ables az, .., (4. ,...) need not be unique, where
Ze,min (Te,maz) 1S the lowest (highest) value of X..
Therefore a, .., (Ge,.,..) is by default set to be
the assignment in which all the conditioning vari-
ables are in their most favourable state for low
(high) values of X, referred to as aneg (Gpos)-

3. (weights). For each of the conditioning variables
Xk € pa(X.), assess P(X. = Zemaz | Onegkt)
and P(X. = Zcmin | Gnegk+), where Te ma, and
ZTemin are resp.  the maximum and minimum
value of X, and apeq i+ is the assignment of
pa(X.) in which X}, is in its most favourable state
for high values of X, and all X; € pa(X.)\ Xi
are in their least favourable state for higher values
of X..

4. (dominance). For each of the conditioning vari-
ables Xi € pa(X.), determine whether Xj has
either no, a positive or a negative dominance over
X..

2.2 Deriving the CPT

The derivation of the CPT of X, is done in a two-step
procedure, using the assessments from Section 21l In
the first step we will express the probabilities P(X.) as
a function of an influence factor 7. In the second step
individual and joint influence factors are determined
for all assignments of pa(X.), which are then used to
derive the probabilities P(X.) from the functions of
step 1.

The influence factor 7 is an expression of the positive-
ness (or negativeness) of the joint influence of the par-
ent variables pa(X.) on X.. It is a function of values
of the parent variables, with 0 < i(a) < 1. We set
i(aneg) = 0, where pa(X.) = aneq is the assignment in
which all the conditioning variables are in their most
favourable state for low values of X, (see item [2 Sec-
tion ). And, at the other extreme, i(apos) is set to
1. For all other assignments ¢ € (0,1). If assignment
as has a strictly more positive influence on X, than a;



-ie. P(X. > x. | a2) > P(X. > z. | a1) for all z,
- then the influence factor corresponding to as should
be bigger than the influence factor corresponding to
ai.

We make use of two separate influence factors: the in-
dividual influence factor i for each conditioning vari-
able X}, € pa(X.) and the joint influence factor ijoins.
As will become more clear later on, 7; will contain in-
formation about the influences exercised by each of the
parent variables individually, 7;,:,¢ about the ‘general
tendency’ of all of the parent influences together.

We determine the individual influence factor i, for
Xk € pa(X.) as follows:

rank(zy) — 1
rank(xg maz) — 1
rank(Tx,max) — rank(xy)
rank(xg maz) — 1

if ST(X, X.)
Zk(l'k) =

if S_(Xk,Xc)
(1)

where the rank of the smallest value is set to be 1 and
Tk maz 1S the highest value of Xy. So if X € {low,
medium, high} has a positive influence on X, we find
that i (low) = 0, ix(medium) = 0.5 and i (high) = 1.

The joint influence factor 4o for assignment
pa(X.) = a is derived as:

> inlae) - (vank(ay) — 1)
_ {kXu€pa(Xo)}

Z (rank(zk,maz) — 1)

{k: Xy €pa(Xe)}

(2)

Z-joimf (a) :

Verify that indeed ¢joint(@neg) = 0 and #joint(apos) =
1. Also note that the individual influence factor of
Xk, ik, is equal to the joint influence factor ijoins if
pa(X.) = {Xy}, i.e. if the set of parents of X, merely
consists of Xp.

Step 1. Estimating P(X.) as a function of joint
influence factor i,

In this step P(X. = x.) is estimated as a function of
joint influence factor ijon¢, for each value z. of X..
For this we use the orderings determined at item 1
in Section 2] and the assignments a,, and proba-
bilities P(X. = z. | a,,) assessed at 2. We con-
struct the piecewise linear functions fy, : [0,1] — [0, 1]
through the points (ijoint(az, ), P(Xe = z¢ | az,)). It
can be easily verified that using these linear interpo-
lations ensures that ) f; (i) = 1, i.e. the sum of
the probabilities of occurrence of the different values
of X. equals unity for all ¢ € [0, 1]. Coherency requires
that if zcn > Zem, also ijoint(az,,,) > joint(Cz, , )-
In Figure [[l an example is given for how this estima-
tion of P(X,) as a function of i;,,; might look like.
In this example X, € {low, medium, high}, and the

points (ijoint(az,), P(Xe = 2c | az,.)) are assessed as
in Table[D

1 -
--a-- P(X. = high)
0.8 . A —m—- P(X.=medium)
i || —e— P(X. = low)
= 0.6 L <
e) ~ .
< re
2 04l s
8 \‘\ /’ \\
a ~_ <
0.2 — <,
O d===" ‘,
0 02 04 06 038 1
Ljoint

Figure 1: Piecewise linear functions through the points
(tjoint(ag, ), P(X¢ | ap,)) from Table[

Table 1: Example assessments of (¢joint(az, ), P(Xc |
az,)) for X, € {low, medium, high}

Te ijoint (‘lmc) P(Xc | ‘lmc)
low 0 P(Xe =low | ajpqy) = 0.79
P(X. = medium | ajy,,) = 0.20
P(X. = high | ajyqy) = 0.01
medium 0.22 P(Xe =low | amedium) = 0.35
P(Xo = medium | amedium) = 0.60
P(Xc = high | amedium) = 0.05
high 1 P(Xc =low | apign) = 0.01

P(Xc = medium | apigp) = 0.14
P(Xc = high | apign) = 0.85

Note that pa(X.) = aiow corresponds to the as-
signment pa(X.) = aneg and apign to apos. Hence
ijoint(alow) =0 and ijoint(ahigh) =1.

Step 2. Deriving the conditional probabilities

In Step 1 we obtained P(X.) for all possible values of
ijoint via linear interpolation, and equation ([2) pro-
vides us with an expression for ¢,y for all assign-
ments pa(X.) = a. We can now determine P(X, | a)
via P(X. | 4joint(a)) from the functions f,, of Step
1. Yet this mapping from assignments a for the con-
ditioning variables pa(X.) to an expression ijpin is
not unique. Suppose pa(X.) = {X;, Xk, X;}, X; and
X, both exercise the same type of influence (positive
or negative), and X;, Xy, X; € {low, medium, high},
then i;joint ({medium, medium, medium}) =

ijoint ({low, medium, high}) = 0.5. As pointed out
earlier, 7;in: is an expression for the ‘general tendency’
of the influence of the conditioning variables. It does
not take into account the (dis)agreement of the influ-
ences of each of the conditioning variables individually.

To account for both the ‘general tendency’ and the
individual influences of the conditioning variables, we



calculate for each conditioning variable Xj € pa(X.)
the average of the probabilities Py (X, | a) over the in-
terval (min(ix(zk), joint(a)), maz(ir(z), ijoint(a))).
An example of this average, denoted with Py (X, | a),
is illustrated in Figure 2

1
- P(X, = high)
08 § A | —m—- P(X, = medium)
,*E} = ~ —e— P(X. =low)
206 ~_ .
< ~ ’ Y T
= /\ ~— " ——— —{ P.(X. = high| a)
% 0.4 \’\ ’h‘\_ — 7 7 [ Pu(X. = medium | a)
< >~ _—
0.2 7 —— —&"Pk(Xr =low | a)
,,,, A
k=

ik(Tk) ijoint(a)

Figure 2: Example of the average probabilities Py (X..),
when ix(zx) < Pjoint(a)

We derive the desired probabilities P(X. | a) as the
average over the distributions Py (X, | a). Or actually
the weighted average

P(Xela)= >

k: Xy |pa(Xe)

wi - Pe(Xe[a),  (3)

since one parent could have a stronger influence on X,
than another. For the same relative change in states,
i.e. changes in states resulting in the same absolute
change in each of the individual influence factors, the
probabilities for X, might change more for one par-
ent variable than for another. Therefore we calculate
the weight wy, for each parent X € pa(X.), in the
following way:

1 5 1 5y
Wy = = + = (4)
S VLD D
: X epa(Xe) I: X epa(Xe)

with,

52_ = P(Xc = Te,max | aneg,k+) - P(Xc = T¢,max | aneg)
5]; = P(Xc = Te¢,min | aneg) - P(Xc = Tc,min | aneg,k—i—)-

For the derivation of the weights we have taken the sit-
uation in which each parent is in its least favourable
state for high values of X, aneq, as the base. We
use the probabilities P(X: = Zcmaz | Gneg,k+) and
P(X: = Zcmin | Gneg,k+) assessed at item 3 in Section
21 Each 6;" and 6, now expresses the changes in the
probabilities of resp. the highest and lowest state of
X, if the one parent X}, is set to its most favourable
state for high values of X. whilst leaving the other
parents in their least favourable states (apneg,p+). We
obtain the weights from these §’s via the normalisa-

tions (H).

To a large extent the choice of the base assignment
aneg and the probabilities P(X: = Zcmaz | @neg.i+)
and P(X. = Tcmin | Gneg k+) to derive the weights is
arbitrary. Even though, we feel the choice for these
assignments is one of the most natural choices that
can be made. And, more importantly, we feel these
assignments are relatively easy for assessors to con-
sider and assess. It is of course possible to use more
assessments to determine the weights more accurately.
However, we feel that the possible added value does
not weigh against the burden of the extra elicitation
effort needed.

We derive the desired probabilities P(X, | pa(X.) =
a) by rewriting [B) using (), @) and ), as

imaz,k
/ £(i) - di

P(X.|pa(X)=a)= Y -
k:Xg|pa(X.) Ymax,k Tmin,k

()

where Lnin,k = min(ix(r), ijome (a)),
imaa:,k - mam(zk(xk)a 7:joint (a)) and f('[,) =

(Foormin D )

Finally, we deal with negative and positive dominance
of one of the parent variables in the following straight-
forward way: for all the assignments ay in which
a negative (positive) dominant parent is in its least
(most) favourable state for high values of X, we set
P(X,. | aq) to be equal to P(X¢ | aneg) (P(Xc | apos))-
We will now demonstrate the method by means of an
illustrative example.

2.3 Illustrative example from the Hailfinder
network

The example given in this section is based on the Comp-
PIFcst variable from the Hailfinder network (Abramson
et al. 1996). The variable and its parent nodes,
AreaMeso_ALS, CldShadeOth, CldShadeConv and Bound-
aries, are depicted in Figure[3l For each of the variables
also the states (discrete values) are given, ordered and
with the highest state on top.

For the variable CompPIFcst we have the fully subjec-
tively specified CPT, consisting of 4-33-3 = 324 proba-
bilities. In this example we derive the required assess-
ments for EBBN, as specified in Section 1] from this
CPT, but treat them as if they were directly elicited:

1. (ordering). The ordering of the states of the vari-
ables is given in Figure[3 where the highest states
are on top. For the conditioning variables we find
the following influences:

S (AreaMeso_ALS, CompPIFest); S (CldShadeOth, CompPIFcst ) ;
S (CldshadeConv,CompPIFcst); ST (Boundaries,CompPIFcst ).



AreaMeso_ALS

StrongUp
‘WeakUp
Neutral

Down @
CldshadeOth
CldshadeConv

IncCapDeclins
LittleChange
-Cloudy
PC None
Clear

DecCaplncins

Figure 3: The variable CompPIFcst and its parent nodes
from the Hailfinder network.

2. (typical probabilities). We find the assignments:

ADecCapIncins ~ =1StrongUp, Clear, None,
Strong}, apitieChange ={StrongUp, PC, Some,
Strong} and arnccappecins ={Down, Cloudy,
Marked, None}.
The corresponding conditional probabilities are
given in Table [l and depicted as a function of
influence factor ¢ in Figure [I where ajo, =
ADecCaplnclnss and
Qhigh = GIncCapDeclns-

Amedium =  QLittleChange

3. (weights).  As assessments of the remaining
probabilities needed to derive the parent weights

we find:
P(Xc = Tc,min

P(Xc = Tc,max

towards either positive or negative influence.

Based on the assessments and (@), we find the
weights: wareaMeso_aALs = 0.459, wcidshadeoth = 0.303,
WCldShadeConv = 0.165 and wpoundaries = 0.073. We
can now use (Bl to derive the desired probabilities
and find P(CompPIFcst | pa(CompPIFcst) = aezpr) =
{0.17,0.32,0.51}. We can derive the full CPT of X,
(consisting of 324 probabilities) in the same way, re-
quiring in this case only 17 probabilities to be assessed.
When we look up the probabilities in de original CPT,
we find P(CompPIFcst | pa(CompPIFcst) = Gegpi) =
{0.20,0.32,0.48}. The probabilities estimated with the
methodology are in this case ‘not far off’. Yet, before
we can assess how well our method approximates the
directly assessed probabilities, we first need to discuss
how we can measure the quality of the approximation.

3 Approximation of a CPT for a
BBN, when is it ‘good’?

Assuming you have knowledge of the ‘true’ probabili-
ties of a certain CPT, how can you assess the quality
of an approximation to that CPT? A measure to assess
the similarity between two (discrete conditional) prob-
ability distributions, with possibly different support, is
the Jensen-Shannon divergence (Lin 1991). Based on
the Kullback-Leibler divergence, this measure does not

Aneg,k+ | @neg.k+) | Gneg.k+)
Qneg,AreaMeso ALS+ 0.20 0.45
Qneg,CldShadeOth+ 0.40 0.30
Qneg,CldShadeConv-+ 0.52 0.13
Qneg,Boundaries+ 0.65 0.05

4. (dominance). No (positive or negative) dominant
parents.

Now we have all the information (containing only 17
probability assessments!) we need to derive all the 324
probabilities of the CPT of CompPIFcst.

By means of an example we calculate the probabili-
ties P(CompPIFcst | pa(CompPIFcst) = aeypr), Where
Gegpt ={AreaMeso_ALS=Down, CldShadeOth=PC, Cld-
ShadeConv=None, Boundaries=Strong}. For these par-
ent node states we find the individual influence fac-
tors: iareaMeso.ALS (Down) = 1, icidshadeoth (PC) = %7
1CldShadeConv (None) = 0 and 7Boundaries (Weak) = 0,
and a joint influence factor ijoint(Gezpr) = 4 g6 we
see in this case that the individual influence factors of
the parents give a diverse picture, two are very nega-
tive (0), one is between negative and positive (3) and
one is very positive (1). This is reflected by the joint
influence factor, which has a very average value (0.44),
expressing no general tendency of the parent influences

take into account the context of the CPT, the belief
network. Both Henrion (1989) and Chan & Darwiche
(2002) show that inference in a belief network is most
sensitive to assessment errors in probabilities that are
close to zero or one.

Druzdzel & Van der Gaag (2000) state that, since inac-
curacies will influence the output of the belief network,
a natural question to ask is how accurate the approxi-
mation should be to arrive at satisfacory behaviour of
the network. In other words: if the network is con-
structed to perform specific queries, does the use of
approximations still lead to acceptable outcomes on
these queries?

Chan & Darwiche (2002) identify three main ap-
proaches in the literature to measure the impact of
a change in probability in a CPT: measuring the abso-
lute change in the probability of a query, the relative
change in the probability of a query or the relative
change in the odds of the query, finding the first to be
the most prevalent in the literature.

Zagorecki & Druzdzel (2006) give two measures to
express the (dis-)similarity of two CPTs for the
same conditional distribution: the Euclidian distance
and the Kullback-Leibler divergence between the two
CPTs. Time and space unfortunately have prohibited
us to implement these measures in the current investi-



gation. We have used the following measures to assess
the performance of the EBBN in the next section:

m1l. Average absolute error in probability.

m2. Average Jensen-Shannon divergence: a measure
of the similarity between the ‘true’ CPT and the
approximation to it.

m3. Maximum Jensen-Shannon divergence.

m4. Number of unmatched certainties and impossi-
bilities: the number of times the ‘true’ and the
approximating CPT disagree on probabilities of 0
and 1. As noted above, queries can be very sensi-
tive to extreme probabilities.

m5. % agreement in likelihood ranking: the percent-
age of scenarios in which the likelihood ranking of
the values of the variable is the same for both the
‘true’ CPT as the approximating CPT. As scenar-
ios all logically possible combinations of values of
the neigbouring (i.e. predecessor and descendent)
nodes are taken.

m6. % agreement on most likely state: the percentage
of scenarios in which the most likely state for the
variable is the same for both the ‘true’ CPT as
the approximating CPT. As scenarios all logically
possible combinations of values of the neigbouring
(i.e. predecessor and descendent) nodes are taken.

4 Performance of EBBN

We have investigated the performance of the method-
ology by applying it to a well-known belief network
from the literature that contained suitable large sub-
jectively assessed CPTs, and comparing its perfor-
mance with the copula vine approach from Hanea &
Kurowicka (2007). We found the Hailfinder network
(Abramson et al. 1996) to contain such CPTs.

4.1 Methodology

We have searched for belief networks that contained
nodes that satisfy the following requirements:

e the CPT of the node was subjectively assessed,

e the CPT of the node has to be reasonably chal-
lenging in size for elicitation from an expert. For
this we decided the node needed to have two or
more parents, and

e the states of the node are ordered.

We found these networks are difficult to come by. This
is not surprising of course, since these networks would
require a huge elicitation effort. Practitioners would
usually try to avoid having to specify these large CPTs
because the elicitation process would be too time con-
suming, the very problem we are aiming to deal with
in this article. In the BBN repository of the University
of Pittsburg}E we found the Hailfinder network, which
does contain 7 nodes that satisfy our requirements.

For the Hailfinder network we created three alterna-
tive versions. In each of these alternative versions we
replaced the CPTs of the 7 nodes satisfying the above
requirements (and kept the remaining CPTs as they
were). In the first alternative implementation these
CPTs were replaced with the approximations resulting
from the method introduced in this paper. We treat
the CPTs from the literature as the ‘true’ CPTs. We
assume that the probabilities needed for our method-
ology would have been assessed as they are in these
CPTs and treat the difference between approximations
of the method and the corresponding CPTs as inaccu-
racies of the approximation. So we have not tried to
find parameters for EBBN that minimise the distance
of the resulting CPT to the original, but have derived
the parameters needed from the original CPT.

The second alternative implementation has the se-
lected 7 CPTs derived according to the copula vine
approach (Hanea, Kurowicka & Cooke 2006). In this
approach a normal copula vine is constructed based on
the marginal distributions of each variable and its con-
ditioning variables (or actually continuous versions of
these discrete marginals) and (conditional) rank corre-
lation coefficients of the variable with each of its con-
ditioning variables. This normal copula vine speci-
fies a joint distribution of the variable and its condi-
tioning variables. Hanea & Kurowicka (2007) describe
how the (conditional) rank correlation coefficients can
be derived from a CPT. If one was to use the copula
vine approach in practice, the marginal distribution of
the variable under consideration and the (conditional)
rank correlations with each of the conditioning vari-
ables would have to be subjectively assessed, which is
not a trivial task. Since we are using the copula vine
approach as a benchmark here, as a different means of
approximating the ‘true’ CPT, we simply derived this
marginal and the correlations from the ‘true’ CPT.
The used marginal and correlations thus represent the
best values that could have been obtained in an elicita-
tion process. After construction we took a large sam-
ple (we used a sample size of 80,000) from the normal

The belief network models can be found
at the network repository of the Decision Sys-
tems Laboratory of the Univesity of Pittsburgh

(http://genie.sis.pitt.edu/networks.html)



copula vine and estimated the desired copula vine ver-
sion of the CPT from the frequencies in this sample.
We checked that the marginal of the variable under
consideration and the marginals of its parents were
still as specified for the copula.

Finally we constructed a third alternative implemen-
tation of the Hailfinder network in which all altered
CPTs consist of uniform distributions for all assign-
ments of conditioning variables, to serve as a second
benchmark. We have assessed the performance of our
interpolation method and both benchmarks using the
measures specified in Section[8l We found the variable
InsInMt to be a positive dominant parent of CldShade-
Conv, and treated it as such in all three alternative
implementations.

4.2 Results

The results of the comparison of the ‘true’ versions
of the selected 7 CPTs of the Hailfinder network with
each of the three alternative derivations of these CPTs
are given in Table PIB. The table displays how the
EBBN, copula vine and the uniform versions of the
CPTs score on 9 performance measures. The first four
measures are the measures ml.-m4. from Section
for the direct comparison between the ‘true’ and the
approximating versions of the CPTs. The measures in
the last five columns, m1.-m3., m5. and m6. from Sec-
tion Bl consider posterior probabilities for each of the
7 selected nodes under all possible scenarios for neigh-
bouring nodes, i.e. all logically possible combinations
of states of neighbouring nodes (both parent and child
nodes).

For the first seven measures in the table we have that
the smaller the measure, the better the performance
of the approximating CPT on that measure. For the
last two columns to opposite holds: the higher the
percentage, the better the performance. If a number
is underlined in Table @ this means that the corre-
sponding approximating method (EBBN, copula vine
or uniform) has the best performance for that mea-
surement on that variable.

If we look at the underlined values in Table[2] it seems
that EBBN and the copula vine versions are of compa-
rable performance on all performance measures apart
from ‘unmatched 0/1’; on which EBBN performs best
on all CPTs. It is comforting to see that both EBBN
and the copula vine approach clearly perform better
than when the CPT is populated with merely uni-
form distributions. Further investigation reveals that
the EBBN method scores relatively well on the so
called ‘collector’ variables CombMoisture, CombVerMo

3The EBBN and copula vine versions of the Hailfinder
network (.xdsl format) can be obtained from the authors.

and CombClouds. These are nodes in the Hailfinder
network that “summarize information from different
sources about moisture, vertical motion and clouds, re-
spectively” (Abramson et al. 1996, p.69). The EBBN
method seems a relatively good means to combine sim-
ilar information from different sources, at least for the
Hailfinder network.

5 Conclusions and discussion

In this paper we have developed a method for deriv-
ing large conditional probability tables based on ex-
pert judgement, that can hugely reduce the number
of assessments needed from the experts. The quan-
titative assessments needed from the experts are rel-
atively easy to understand: the experts still need to
assess only probabilities. We believe that the experts
will also be capable of providing the qualitative judge-
ments described in Section [Z1] at items 1, 2(a) and
4.

In order to evaluate the performance of EBBN we ap-
plied it to a well-known belief network from the lit-
erature, the Hailfinder network. EBBN’s performance
was compared with the results achieved by applying
both the normal copula vine approach from Hanea
& Kurowicka (2007), and by using a simple uniform
distribution. The results show that EBBN’s perfor-
mance is comparable to the the performance of the
normal copula vine approach, and distinctly better
than that of the uniform distributions. We believe that
the EBBN method can be a valuable tool for subjec-
tively specifying large CPTs.

In the development of the method, the application to a
real-life example (the Hailfinder network) has proven
very valuable. We would like to test the method on
more examples. But, as noted before, because of cost
and effort required to elicit large CPTs, these exam-
ples are difficult to find. Any help with finding more
examples would be greatly appreciated.

It should be noted that the EBBN method does not
always lead to a large reduction in the number of prob-
abilities that need to be assessed. In fact, the method
could even require more probabilities to be assessed
than there are in the CPT. Roughly this occurs when
the number of states of the variable for which the CPT
is to be derived is greater than the number of condi-
tions (i.e. the number of different assignments of the
conditioning variables).

Finally we would like to remark that the interpolation
used, in its current form, does not take into account
synergetic effects that may exist between conditioning
variables.
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Table 2: Performance of the three approximation methods on the measures specified in Section

regarding CPT regarding posteriors in scenarios
unmatched same likelh  same most
Variable av abs diff av Je-Sh  max Je-Sh 1/0 av abs diff av Je-Sh  max Je-Sh ranking likely state
EBBN
CombVerMo 0.074 0.028 0.099 0 (256) 0.034 0.002 0.025 93.6% 96.8%
CombMoisture 0.029 0.010 0.045 3 (64) 0.205 0.031 0.663 72.0% 82.4%
AreaMoDryAir 0.056 0.035 0.148 9 (64) 0.221 0.030 0.178 61.0% 82.0%
CombClouds 0.061 0.021 0.127 0 (27) 0.251 0.025 0.164 78.1% 82.8%
CldShadeOth 0.131 0.058 0.188 18 (144) 0.361 0.047 0.254 60.8% 70.9%
CldShadeConv 0.071 0.034 0.219 1 (36) 0.223 0.029 0.235 62.5% 73.8%
CompPIFcst 0.065 0.013 0.064 0 (324) 0.044 0.003 0.085 91.0% 92.4%
Copula vine
CombVerMo 0.090 0.053 0.314 76 (256) 0.039 0.002 0.037 92.0% 95.2%
CombMoisture 0.075 0.040 0.153 7 (64) 0.274 0.037 0.607 60.0% 73.6%
AreaMoDryAir 0.053 0.023 0.072 16 (64) 0.195 0.019 0.094 61.0% 84.0%
CombClouds 0.105 0.043 0.133 1(27) 0.315 0.036 0.240 76.6% 78.1%
CldShadeOth 0.103 0.040 0.127 23 (144) 0.279 0.032 0.265 78.1% 83.3%
CldShadeConv 0.056 0.015 0.067 2 (36) 0.157 0.012 0.079 71.2% 78.8%
CompPIFcst 0.143 0.069 0.408 0 (324) 0.085 0.012 0.428 86.9% 88.3%
Uniform
CombVerMo 0.219 0.234 0.549 76 (256) 0.120 0.021 0.229 82.4% 82.4%
CombMoisture 0.130 0.117 0.415 7 (64) 0.797 0.205 0.549 23.2% 23.2%
AreaMoDryAir 0.238 0.273 0.520 16 (64) 0.819 0.218 0.524 25.0% 25.0%
CombClouds 0.289 0.199 0.408 1(27) 0.810 0.188 0.445 28.1% 29.7%
CldShadeOth 0.293 0.225 0.459 23 (144) 0.747 0.175 0.550 26.2% 41.5%
CldShadeConv 0.149 0.092 0.250 2 (36) 0.404 0.072 0.274 31.2% 50.0%
CompPIFcst 0.142 0.063 0.253 0 (324) 0.089 0.011 0.315 83.4% 85.4%

underlined: best score for the three methods.
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Abstract

Fault isolation is the art of localizing faults in
a process, given observations from it. To do
this, a model describing the relation between
faults and observations is needed. In this pa-
per we focus on learning such models both
from training data and from prior knowledge.
There are several challenges in learning fault
isolators. The number of data, as well as the
available computing resources, are often lim-
ited and there may be previously unobserved
fault patterns. To meet these challenges we
take on a Bayesian approach. We compare
five different methods for learning in fault iso-
lation, and evaluate their performance on a
real fault isolation problem; the diagnosis of
an automotive engine.

1 INTRODUCTION

We consider the problem of fault isolation, i.e. the
problem of localizing faults that are present in a pro-
cess given observations from this process. To do this, a
model of the relations between observations and faults
is needed. In the current work we investigate and com-
pare different methods for learning from training data
and prior knowledge.

We are motivated by the problem of fault isolation in
an automotive engine, and the learning methods are
evaluated using experimental training data and evalu-
ation data from real driving situations. In engine fault
isolation there may be several hundreds of faults and
observations. There will be fault patterns, i.e. co-
occuring faults, from which there are no training data.
Furthermore, training data is typically experimental
and obtained by implementing faults, running the pro-
cess, and collecting observations. On the other hand,
there is often engineering knowledge available about
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the process. The engineering knowledge can for exam-
ple be used to determine the structure of dependencies
between faults and observations. This kind of knowl-
edge is often the only basis in previous algorithms for
fault isolation [6, 12, 19].

Due to the fact that there are previously unobserved
fault patterns in training data, frequentist and purely
data-based methods are bound to fail. To meet these
challenges we use a Bayesian approach to learning in
fault isolation. We consider five different methods of
learning a model from training data, which are all pre-
viously present in the literature in different forms. We
taylor these methods to incorporate the available back-
ground information. The methods we consider are Di-
rect Inference (DI), Logistic Regression (LogR), Lin-
ear Regression (LinR), Naive Bayes (NB) and general
Bayesian Networks (BN).

The main contributions of the current work are the in-
vestigation of Bayesian learning methods and regres-
sion models for fault isolation by comparing the five
methods mentioned above, the application and evalu-
ation of the methods on real-world data, and the com-
bination of data-driven learning and prior knowledge
within these methods. In order to do this investiga-
tion, we first discuss the characteristics of the fault
isolation problem in terms of probability theory, and
performance measures that are meaningful for fault
isolation. Consecutively we show how the five meth-
ods can be adopted to the isolation problem. We apply
them to the task of fault isolation in an automotive
diesel engine. Finally, we compare the five methods,
and discuss their advantages and drawbacks.

Bayesian methods for fault isolation are previously
studied in literature. In these previous works it is
generally assumed that the model is given [26, 15],
or can be derived from a physical model without us-
ing training data [17, 25]. In the current work on the
other hand, we focus on learning the models. Previous
works on Learning models for fault isolation typically
rely on pattern recognition methods described e.g. in



[1, 3]. Examples of such methods are presented for
example in [14]. Pattern recognition methods are ap-
plicable if there is sufficient training data available.
Unfortunately, this is rarely the case in fault isolation.
In [20] the problem of learning with missing fault pat-
terns is discussed. In [20] training data is combined
with fundamental methods for fault isolation described
in [2, 22]. This approach is referred to as Direct Infer-
ence in the current work, and compared to the other
four methods for learning.

The paper is structured as follows. We introduce no-
tation, and formulate the diagnosis problem in Sec-
tion 2. Therein we also define relevant performance
measures. In Section 3 we briefly describe the five
methods used, and in particular how they are applied
to the diagnosis problem, before we perform the evalu-
ating experiments and compare the results obtained in
Section 4. Finally, in Section 5 we conclude the paper
by summarizing our results and discussing future work
directions.

2 PROBLEM FORMULATION

Before going into the details of each of the learning
methods we introduce some notation, and discuss the
characteristics of the fault isolation problem. Then we
carefully state the problem at hand and define perfor-
mance measures.

2.1 BAYESIAN FAULT ISOLATION

The fault isolation problem can be formulated as a
prediction problem, where the task is to determine
the fault(s) present in a system, given a set of ob-
servations from the system. Let the faults be repre-
sented by the binary variables Y = (Y1,...,Yk), and
let the observations from the system be represented
by the variables X = (Xi,...,X), where each X; is
discrete or continuous. Generally, we use upper case
letters to denote variables, and lower case letters to
denote their values. Boldface letters denote vectors.
We write p(X = x) (or simply p(x)) to denote either
probabilities or probability distributions both in the
continuous and in the discrete case. The meaning will
be clear from the context.

We are given a set of training data D, consisting of
samples (y",x™), n = 1,..., Np, pairs of fault and
observation variables. The training data is collected
by implementing faults and then collecting observa-
tions, meaning that training data is experimental. To
evaluate the system we use a set £ consisting of Ng
samples. The evaluation data is collected by running
the system, meaning that it is observational. Further-
more, we assume that the fault isolation algorithm is

Figure 1: A Bayesian network describing a typical
fault isolation problem.

triggered by a fault detector telling us there must be
at least one fault present in the process.

The structure of dependencies between the faults and
observations has three basic properties, illustrated in
the example Bayesian network of Figure 1.

The first property is that faults assumed to be a priori
independent, i.e. that

=

K
p(y) = [ pCwlvr, - oe-1) = [ [ plwr), (D)
k=1

k=1

meaning that faults cannot cause other faults to occur.
Although not necessary for the methods in the current
work, this is a standard assumption in many fault iso-
lation algorithms [6], and it simplifies the reasoning in
the following sections.

Second, faults may causally affect one or several of
the observation variables introducing dependencies be-
tween faults and variables. A dependency between
fault variable Y;, and observation variable X; means
that the fault may be visible in the observation.

The third property is that an observation variable X;
may be dependent on other observation variables. De-
pendencies between observation variables may arise
due to several reasons. For example they can be caused
by unobserved factors, such as humidity, driver behav-
ior, and operation point of the process. These unob-
served factors could be modeled using hidden nodes,
but since they are numerous and unknown they are
here simply modeled with dependencies between ob-
servation variables. This is more carefully discussed in
[21].

We take a Bayesian view point on fault isolation. The
objective is to find the probability for each fault to
be present given the current observation, the training
data, and the prior knowledge I, i.e. to compute the
probabilities p(yx|x,D,I), k = 1,..., K. The proba-
bility for each fault can be found by marginalizing over

Yt = Y1 U1 Ykt1y - o YK )5
Pyl D, 1) =Y py—kuklx,D.1).  (2)
Y-k

Note that (y_k,yx) =y, and (2) means that we seek
the conditional distribution p(y|x, D, I). To simplify



the notation we will omit the background information
I in the equations.

Computing the conditional distribution p(y|x,D) is
generally difficult. To approximate it we need a model
M and a method for determining the parameters of
the model.

2.2 PERFORMANCE MEASURES

To evaluate the different models to be used in Bayesian
fault isolation, we use two performance measures: log-
score and percentage of correct classification.

The log-loss is a commonly used measure [1], and given
by

wE, M) Zlogp (y'|x), M), (3)

The scoring function p measures two important prop-
erties of the fault isolation system; both the ability to
assign large probability mass to faults that are present,
and also the ability to assign small probability mass
to faults that are not present. Furthermore, the log-
score is a proper score. A proper score has the char-
acteristic that it is maximized when the learned prob-
ability distribution corresponds to the empirically ob-
served probabilities. In the fault isolation problem the
conditional probabilities for faults is often combined
with decision theoretic methods for troubleshooting
[8], where optimal decision making requires conditional
probabilities close to the generating distribution.

The second measure we use is not proper. It is closely
related to the 0/1-loss used e.g. in pattern classifica-
tion [1]. However, in case of multiple faults present it
suffices to assign highest probability to any of them.
We define

V(‘c/'?M) = #{J : yﬁnam(XJ’M) = 1}/N57 (4)
where yJ, .. (x7, M) is the fault assigned highest prob-
ability by M given x7. The v-score reflects the per-
formance of the fault isolation system combined with
the simple troubleshooting strategy “check the most
probable fault first”.

3 MODELLING APPROACHES

In this section we briefly present the inference meth-
ods used to tackle the fault isolation problem. We
carefully state all assumptions made, and describe the
adjustments of each method to apply it to the diag-
nosis problem. However, we begin by describing two
assumptions that need to be made for all methods ex-
cept DI

3.1 MODELLING ASSUMPTIONS

All the methods considered in this paper — with the
exception of DI — build separate models for each fault
and thus assume independence among these. A priori
this corresponds to approximation (1). However, when
we build separate models for each fault, we also make
a stronger assumption, namely that the faults remain
independent given the observations,

K
p(ylx) = Hp vklx,y1s k1) & [ [ pluelx) (5)
k=1

This approximation is (after applying Bayes’ rule and
canceling terms) equivalent to

K
H (x|yr) ~

meaning that the observation x is dependent on each
fault yi, but this dependency is assumed to be inde-
pendent of all other faults yi/, k' # k. In other words,
we assume no “explaining away” [10]. Looking at Fig-
ure 1 we observe, that this indeed is a strong assump-
tion, since there are unshielded colliders (V-structures,
bastards, common children of non-connected nodes) of
the faults present.

K

Iy, o), (6)

k=1

Assumption (5) is primarily made for technical rea-
sons, in order to be able to build separate models for
each fault. But often it is also the case (as in the
application of Section 4) that there is training data
only from single faults. This means we do not have
any training data telling us about the joint effect of
multiple faults.

Remember that it is known that there is at least one
fault present when the fault isolator is employed, see
Section 2.1. Therefore, instead of computing p(y|x),
we search

p(y|x, Zyk > 0)

Unfortunately
p(y1% > yk > 0) # [ p(uklx Y we > 0),  (8)
k k k

a fact which recouples the single-fault models intro-
duced in (5). This fact is ignored during the learning
phase and the single-fault models are trained individ-
ually. We then apply (7) in the evaluation phase.

p(y[¥) (1 —p(y =0Ix)). (7)

3.2 DIRECT INFERENCE

Several previous fault isolation algorithms rely on prior
knowledge about which observations may be affected



Table 1: An example of an FSM
RARARY
X |1 1 0
X1 0 1

by each fault [2, 22, 12]. Such information is typi-
cally expressed in a so called Fault Signature Matrix
(FSM). An example of an FSM is given in Table 1.
In the FSM, a zero in position (k,!) means that fault
Y. can never affect observation X;. The direct infer-
ence method aims at combining the information given
by the FSM with the training data available. Assume
that observations are binary and that the background
information I containing the FSM is given. Then, un-
der certain assumptions it can be shown [20] that

0 X €y
p(ylx,D) = {nxy+axy p(yl1)

Nt Ay mo otherwise,
where 7 is a normalization constant, nyy is the count
of training data with fault y and observations x, oxy
is a parameter describing the prior belief in the ob-
servation x when the fault is y (a Dirichlet prior),
Ny = > . ngy, and Ay = >, axy. The sets v
are determined by the background information as de-
scribed in [20].

The direct inference method is developed for sparse
sets of training data, particularly when there is only
training data from a subset of the fault patterns to
isolate.

3.3 BAYESIAN NETWORKS

When using Bayesian networks for prediction, we
search the joint distribution p(y, x|6), where 6 are pa-
rameters describing the conditional probability distri-
butions in the network. From the joint distribution,
the conditional distribution for y can be computed.
We consider two types of Bayesian networks: Naive
Bayes and general Bayesian Networks.

3.3.1 Naive Bayes

The Naive Bayes classifier assumes that the observa-
tions are independent given the fault. Naive Bayes is
is one of the standard methods for Bayesian prediction
and often performs surprisingly well [3, 23]. However,
due to the erroneous independence assumptions it is
poorly calibrated when there are strong dependencies
between the observations. To alleviate this problem,
we apply variable selection according to an internal

leave-one-out scoring function:

Np
(V) = Nip 3 log Py Ix™, V, D\ {(y", x")}, ),

n=1

(10)

where V' C X is the variable set under consideration
and « is the Dirichlet hyper-parameter for the NB-
model.

3.3.2 General Bayesian Network

Since it is known that the faults causally precede the
observations, and since the observations are known to
be dependent given the faults, a natural step forward
from the Naive Bayes structure is a Bayesian network.
In the network we constrain the fault to be a root
node, but otherwise leave the structure unconstrained.
One such network was learned for each fault using a
BDe score (with an equivalent sample size parameter
of 1.0). For small systems (< 30 variables) learning can
be performed using the exact algorithm in [27], while
for larger systems approximate methods, e.g. [9], can
be used.

3.4 REGRESSION

Fault isolation is a discriminative task, where we are
to predict the fault vector y given the observations x,
i.e. estimate the conditional likelihood

plylx,0) = 7211(;(’;'29). (11)

It is well known [18, 11] that in such case it can be
of great benefit to employ a discriminative learning
method, that only learns the probabilities asked, in-
stead of wasting training data to learn the joint data
likelihood as in the Bayesian network methods of Sec-
tion 3.3. Regression models form a family of such
methods.

3.4.1 Linear Regression

The most straight-forward regression method is linear
regression, where each fault variable is assumed to be a
linear combination of the observations plus a gaussian
noise term,

Y = WiX 4+ wpo + €x, €~ N(0,0).
Here wyg, wio, and o are parameters to be determined.
This gives the probability distribution

1 (WEx + wro — yx)?
plyslx) = — exp(—-—t=——

), (12)



where Z is a normalization constant. To determine the
parameters we use the standard methods described for
example in [1].

Np
w* = argmin — Z log p(yg|x™, w)
w n=1
Np
: T n n\2
= argmin — W, X + Wgo — .
gw Z( k k0 — Yi)

n=1

When the parameters w* are known, the parameter o
can also be computed. The normalization constant in
(12) is given by Z = exp(—((w*)Ix+wj,—1)?/20%)+
exp(—((W*)x + wig — 0)*/202).

3.4.2 Logistic Regression

Learning parameters to maximize (11) for a Bayes Net
B is known to be equivalent to logistic regression under
the condition that no child of the class can be a “bas-
tard”, a common child of two variables that are not
interconnected directly. More formal definition and
proofs can be found in [24]. In our case, this implies
approximation (5).

To start with, for each fault we learn a logistic regres-
sion model corresponding to a discriminative Naive
Bayes classifier .

We name the parameters of the logistic regression
model « and 3 such that the conditional likelihood
is defined as

— Py— eXpS(X7 a? ﬂ)
Pl = 16 00 = o e ) + exp s, )
(13)
where
L
s(x,a, B) :== a—l—Zwlﬁl. (14)

=1

We also include a smoothing term ¢(a, 3) in our ob-
jective function which takes the place of a prior in
the corresponding NB classifier. To unify its role for
different observations, we first normalize our data by
shifting and scaling such that for [ =1,... L

Zx? =0 and max|z}| =1 (15)

Starting out from the uniform prior, we pretend to
have seen one vector of each class at node Yj and two
vectors of each class with extreme values £1 at each
node X;, with all other values zero (~unobserved).

!possible other choices include tree-augmented Naive
Bayes (TAN) [24, 5]

This amounts to a smoothing term
c(a, B) — 2log(exp(a) + exp(—a))

L
— 42 log(exp(B1) + exp(—51)). (16)

=1

However, we found this smoothing term problematic,
since it is flat near zero. Therefore, we never get any
parameters exactly zero. But in logistic regression
many small parameters can make a difference, while
they may be weakly supported. We choose to replace
log(exp(z) + exp(—=x)) by |z|. This is a good approxi-
mation away from zero, but forces unsupported param-
eters to zero, implicitly performing attribute selection.

For fault Y3 we search parameters as to maximize
Ing(yk|X’ Q, ﬁ) + C(O" ﬁ)

Np L
= logp(ui|x", o, B) = 2al — 4> |B]. (17)
=1

n=1

We do this by simple line search, one parameter at a

time?2.

Finally, we try a variant of this algorithm which
weights the training vectors. We have prior knowl-
edge about the probabilities p(y) with which to ex-
pect some fault y; in the real-world setting or, in this
case, the evaluation set. These probabilities differ from
the relative frequencies observed in the training set.
The idea is to weight the training vectors in the objec-
tive as to focus the optimization on areas of the data
space more likely to be seen later on. The correspond-
ing objective for fault Y; becomes

Np

> loguwpp(yp'[x", @, B) + c(a, B) (18)

n=1

where the weight wy, is the prior p(yx) divided by the
observed relative frequency #{n : y? = yi}/Np.

4 EXPERIMENTS

To evaluate the different methods learning fault isola-
tion models, we apply them to the diagnosis of the gas
flow in a 6-cylinder diesel engine in a Scania truck. In
automotive engines, sensor faults are one of the most
common faults, and here we consider five faults that
may appear in different sensors. The faults are listed
together with their prior probabilities in Table 2.

2There are much faster optimization techniques, some
of which are compared in [16], but for our purposes this
did nicely



Table 2: The faults considered

| Fault | description | p(yi) |
Y1 exhaust gas pressure | 0.4
Yo intake pressure 0.13
Y3 intake air pressure | 0.057
Ya EGR vault position | 0.13
Ys mass flow 0.057

4.1 EXPERIMENTAL SETUP

For the gas flow of the diesel engine there is physical
model from which a set of 29 diagnostic tests are au-
tomatically generated using structural analysis [4, 13].
Each of the observations is constructed to be sensitive
to a subset of the faults.

For training and evaluation data we use measurements
from real operation of the truck, with faults imple-
mented. The training data consists of 100 samples
each from the five single faults. Evaluation data con-
sists of data from the five single faults, but also of data
from two multiple faults y1&yq, and y1&yys. Evalua-
tion data is observational, and consists of 1000 sam-
ples, distributed roughly according to the prior prob-
abilities in Table 2.

The data we consider is originally continuous, but all
except the regression algorithms take in discrete data.
The data is discretized in two different ways: binary,
with thresholds set such that all fault free data is
known to be contained in the same bin; and discretized
using k-means clustering [7] with k& = 4. DI is applied
to the discrete data. NB and BN are run both on dis-
crete and binary data. The regression methods LinR
and LogR are applied to the continuous data.

As described in Section 3 the NB and DI algorithms
perform best if not all observations are used. For both
DI and NB we perform variable selection such that an
internal log-score is maximized. For DI, the best result
is obtained by using only six of the observations. In
NB between seven and 18 observations are used for
each fault.

4.2 RESULTS

In Table 3 the log-score (1) and percentage of cor-
rect classification (v) are presented for the different
methods. In addition we report the number of param-
eters used by each predictor. This is relevant, since
for on-board fault isolation the computing and stor-
age capacity is often limited. For comparison we also
report the default which is obtained by simply using
the prior probabilities given in Table 2.

Table 3: Comparison of the methods

| method | log-score | v-score | F#£pars |
DI -1.088 0.781 106
NB-bin. -1.340 0.748 293
NB-disc. -1.044 0.843 335
BN-bin. -1.297 0.782 287
BN-disc. -1.398 0.840 1136
LinR -1.839 0.834 150
LogR -1.071 0.829 46
LogR+weights | -0.953 0.829 44
| default | -1.738 | 0.592 | 5 |

Table 4: Comparision of DI and LogR on single faults

| fault | w DI | 1« LogR+w |

y1 | -0346 ] -0.385
ys | -0.324 | -0.287
ys | -0.087 | -0.008
ys | 0334 -0.294
ys | 0177 | -0.133

We observe, that among the four best methods in Ta-
ble 3 three are discriminative and learn the conditional
distribution instead of the joint distribution. Further-
more, LogR with training sample weighting performs
best on this data in log-score sense, while using a
small number of parameters. Surprisingly the weight-
ing trick has made quite a difference and LogR without
weights it is outperformed by NB-disc. NB performs
better when it is fed with discretized observations in-
stead of binary, while for BN the effect is reversed.
Clearly the discretized data contain more information,
but it seems that in more complex Bayes Nets the con-
ditional probability tables easily grow too large. In DI
good results are obtained by exploiting prior knowl-
edge in terms of that some faults never cause an ob-
servation to pass certain thresholds.

Measured by the v-score the relative differences be-
tween the methods become smaller. We observe
that this score favors the regression models and the
Bayesian methods using binary data. The reason for
the good performance of the methods using binary
data is the particular way of thresholding the data
such that all fault free samples are contained in the
same bin.

Table 4 compares the log-scores of the predictions
given for the single faults by DI and LogR-+weights.
Note that because of inequality (8) the columns do
not sum to the corresponding entries in Table 3. Not
surprisingly, both methods (as all others) have most



trouble with faults y1, y» and y4, the ones appearing
simultaneously in evaluation data, but not in training
data. This gives evidence for explaining away being
important in this problem. Figure 2, in which the
probabilities for each fault using LogR + weights are
plotted, shows this in more detail. In the Figure we
have ordered the evaluation data such that the right-
most samples have multiple faults, visualizing that the
double faults are most difficult to predict.
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Figure 2: The predicted probability for the different
faults given by LogR+w. Evaluation data is ordered
after their fault patterns. The true fault is marked
with a solid line.

5 CONCLUSIONS

We have considered the problem of fault isolation in
an automotive diesel engine. We have discussed the
special characteristics of this problem. There is ex-
perimental training data available which is distributed
differently from what we expect to see in the real-world
setting. In particular, evaluation data consists partly

of previously unseen fault patterns. In addition there
is prior knowledge available about which faults may
affect each observation, and also the knowledge that
at least one fault is present.

We have studied different Bayesian and regression ap-
proaches to combine this by nature heterogeneous in-
formation into probability distributions for the faults
conditioned on given observations. We have compared
the performance of the methods using real-world data,
and have found that the discriminative logistic regres-
sion method to perform best. Among the best methods
we have also found the naive Bayes classifier and the
direct inference method.

One of the clearest implications of this work is that
all methods have difficulties with handling unobserved
fault patterns. Unfortunately, unobserved patterns are
common in fault isolation, so this problem should be
tackled in future work. All the methods used, except
direct inference, ignore explaining away. However, this
explaining away effect can possibly be helpful when di-
agnosing unseen patterns. Furthermore, it is crucial to
include background information in the learning phase
whenever it is available.

In our work to come we will investigate models capa-
ble of both explaining away and taking prior knowl-
edge into account, while providing an efficient infer-
ence procedure, as on-board computers offer very lim-
ited resources. We expect further improvement of per-
formance is possible.
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Abstract

This article discusses a design pattern for
building belief networks for application do-
mains in which causal models are hard to
construct. In this approach we pursue a
modular belief network structure that is
easily extended by the users themselves,
while remaining reliable for decision sup-
port. The Hypothesis Management Frame-
work proposed here is a pragmatic attempt to
enable analysts and domain experts to con-
struct and maintain a belief network that can
be used to support decision making, with-
out requiring advanced knowledge engineer-
ing skills.

1 INTRODUCTION

Since their introduction by Kim and Pearl [10] belief
networks have become a popular framework for deci-
sion support and automated reasoning. Also at TNO,
the Netherlands Organisation for Applied Scientific
Research, Bayesian reasoning is used in an increasing
number of projects and application domains. One of
these application domains is decision support for crim-
inal investigations. The typical application in this field
is to perform a quick scan on available evidence to se-
lect the most likely hypothesis, and to prioritize un-
available evidence to aid further investigations. The
need for sound probabilistic reasoning is quite large
in this area, and belief networks are becoming an ac-
cepted tool for modeling reasoning.

Well-known examples of belief networks such as the
Alarm [2] and Hailfinder [1] networks are quite com-
plex and their development requires the co-operation
between both Bayesian specialists and domain ex-
perts.  Also, currently available software packages

(e.g. HUGIN, Netica and GeNie)! for modeling and
analysing belief networks require expertise and skill in
belief networks. Whereas in the field of criminal in-
vestigations, the typical user of such decision support
software is usually not a Bayesian specialist but either
an analyst or an expert on the area being analyzed,
a so-called domain expert. To get belief networks ac-
cepted as a standard tool in criminal investigations,
we should improve the usability to such a degree that
a domain expert is able to produce useful models with-
out the assistance of a Bayesian specialist. Obviously,
analysts should find it beneficial for performing their
analyses as well.

Besides offering criminal investigators a method to use
belief networks, also some effort should be focused on
preventing bias arising in analyses. Where much at-
tention goes into getting unbiased and accurate prior
probabilities, in this paper we are more concerned with
any bias within the topology; the choice of variables
included in the model. When an analyst looks for sup-
port for a certain hypothesis, it is easy to get into a
so-called tunnel view in which contradicting evidence
and alternate hypotheses are neglected. When a plau-
sible alternative perspective is missing in the model,
a potential bias is present yet invisible. It seems im-
possible to always exclude such a bias, but applying
certain strategies in the design of a belief network may
lead to more balanced and less biased models. Among
others, the following strategies might be considered.
Firstly, different domain experts can add an alterna-
tive point of view to the same model. Secondly, each
domain expert can work independently on a different
hypothesis or counter-hypothesis. And finally, domain
experts can design reusable templates that are not tai-
lored for a specific case, but for generic classes of cases.
Whatever combination of strategies may work best to
avoid a bias, the case for a flexible and modular way

The software packages HUGIN Expert, Netica and
GeNie are respectively found at: http://www.hugin.
com, http://www.norsys.com/netica.html and http://
genie.sis.pitt.edu/



to design belief networks to aid better decision making
should be apparent.

Various systematic techniques are available to guide
the modeling of a belief network in a systematic man-
ner. Many of these generate a belief network by trans-
lation of another type of model, e.g. ontologies [19],
rule-based systems [11], causal maps [16], or by merg-
ing quantitative and qualitative statements in a canon-
ical form [5]. However, all these techniques rely on a
sound understanding of the application domain to es-
tablish the qualitative aspect of a belief network: the
topology of the graph. When a domain is modeled
that is dynamic in nature and of which causality is
not fully known, the technique used to construct a
belief network must above all be modular and easily
extendible as new insights constantly change the per-
spective of what variables matter to the hypotheses of
interest.

This led to the development of the hypothesis manage-
ment framework (HMF) at TNO. This design pattern
enables a domain expert to independently create and
maintain a belief network, and an analyst to evalu-
ate evidence in a criminal investigation. The HMF
is a modular belief network structure that is easily
expandable by the users themselves, while remaining
reliable for decision support. The HMF adds a layer
of abstraction to the belief network, so the belief net-
work can be kept hidden from the user. Multiple users
can independently modify or extend the model based
on his or her domain knowledge. The HMF ensures
that all parts of the model remain a coherent whole,
suitable for consistent reasoning.

2 THE PURPOSE OF HMF

While devising the HMF' design pattern we had one
particular goal in mind: to enable the design of modu-
lar and extendible Bayesian models for users that are
no Bayesian specialist. Once a first version of a model
has been developed, it should be easily extended and
maintained later-on. It is likely that the set of vari-
ables as well as the subjective priors for conditional
probability tables require regular revisions as the field
of investigation changes over time. Therefore it should
be possible to reconsider the set of variables, without
having to elicit all of the priors on each change of the
model. The need for multiple revisions of a develop-
ing model was addressed by the Al group at the Uni-
versity of Kentucky in [14]. A design pattern should
preferably be such that it enables the use of templates,
generalized submodels within the belief network, that
can be maintained independently by a group of domain
experts. Such templates should be applicable within
multiple belief networks.

To maximize its applicability in real world applications
the following two requirements should be met:

1 Reliability (or consistency) The belief network
should capture the knowledge of domain experts.
Given the same set of evidence, the domain ex-
perts should agree on the same most likely hy-
potheses and the results of the model should in-
tuitively make sense.

2 Usability The number of priors to be elicited
should be kept to a practical minimum. We pre-
fer to have a limited set of well founded priors,
rather than a larger set of priors of which the do-
main expert is less confident. Conditional prob-
ability tables with a small set of priors are eas-
ier to maintain and validate, especially when the
number of conditioning parent variables is lim-
ited. Furthermore, it should be unambiguous to
domain experts (as well as the analysts) what the
variables and their priors stand for.

These requirements are indeed very common, and gen-
erally accepted as basic requirements in the context of
system development. We think, however, that they are
hard to comply with without the use of a generalized
framework.

3 AN OVERVIEW OF HMF

The HMF places each variable of interest within a pre-
defined structure, as visualized in Figure 4(c). Fur-
thermore it prescribes which variables may be instanti-
ated with evidence, and for some variables the content
of conditional probability tables. All variables must
be categorized by the user in hypotheses, indicators or
information sources. Each type has its own place and
role within the topology of the belief network:

1 Hypotheses are statements of which we would like
to get a posterior probability distribution. In gen-
eral, hypotheses are unobserved. The user can
specify unconditional priors for each hypothesis,
or use a uniform nondiscriminative distribution
instead. As an option, one can add alternative
hypotheses to represent known facts that explain
observed indicators in an other way than existing
hypotheses.

2 Indicators are statements related to hypotheses.
Knowledge of an indicator helps to reveal the
states of related hypotheses. Indicators describe
events that are dependent on the occurrence of
one or more hypotheses. Causal relations between
hypotheses and indicators are not always obvious,
or present at all. Indicators are assumed to be



‘caused’ by hypotheses, not the other way around.
For each relation between an indicator and a hy-
pothesis, a domain expert should specify condi-
tional probabilities for that specific relation.

3 Information Sources are used to express the re-
liability of sources related to an indicator, when
the user does not want to enter "hard evidence’.
For instance, an information source may be a re-
port, a sensor or a person. An indicator can be
associated to multiple information sources.

Although common, it is not necessary for an arc in a
belief network to imply causality. The HMF makes use
of this freedom by taking a more abstract perspective
on the relations between variables of interest. The
structure is based on the relatively simple notion of
hypotheses and indicators. Indicators may all support
or contradict any of the hypotheses, but the indicators
themselves are assumed independent of one another.
Hypotheses are independent (root nodes) and typically
have many children. Quite similar, so-called 'naive
Bayes’ structures [6], have been effective in other areas
where causality is unknown or too dynamic in nature
(e.g. e-mail spam filtering [15]).

If more structure is desired, this modeling style may
be applied in a recursive fashion in which a hypothe-
sis may have sub-hypotheses, who are modeled in an
similar way. This is not demonstrated in this article.

It is good practice to use a causal model whenever
possible [17], and it should be stressed that HMF does
not aim to substitute such models. The HMF design
pattern is specifically designed for domains in which
causal dependencies are debated or not fully known.
As pointed out by Biedermann and Taroni [3], in foren-
sic science the availability of hard numerical data is
not a necessary requirement for quantifying belief net-
works and Bayesian inference could therefore be used
nonetheless. By using HMF, a Bayesian model can
be constructed even when the qualitative aspects of a
belief network are hard to obtain.

I i{ E
Figure 1: Indicators are substituted by multiple inter-
mediate variables and one combining variable.

There are various options to elicit priors for such large
CPTs. One could apply linear interpolation over a
subset of elicited priors [20], but this requires more
elicited priors and is less flexible than the solution
found for HMF. Rather than connecting indicators di-
rectly to hypotheses, the HMF uses intermediate vari-
ables. In this article all variables are booleans. This
is not a strict requirement, but a general recommen-
dation when it simplifies the elicitation of prior prob-
abilities. Elicited priors will be stored in the interme-
diate variable between the indicator and the hypoth-
esis. This reduces the number of prior probabilities
to elicit, and conditions to consider for each prior. In
fact, the HMF splits up each indicator in multiple vari-
ables (Figure 1): one or more intermediate variables
(i",4"?) and a variable that combines them (i'). For
three hypotheses i would require 16 priors, instead of
12 priors for the three intermediate variables together.

When evidence is available for an indicator, we in-
stantiate all associated intermediate variables. Alter-
natively, one can use information sources. An infor-
mation source for an indicator (s in Figure 1) may
exist as multiple variables with identical priors in the
HMF belief network (s"!,s"2?). The priors of an in-
formation source variable represent the reliability of
the source in regard the associated indicator. Infor-
mation source variables are children of intermediate
variables, and have only one parent and no children.
Either all information sources of an indicator are in-
stantiated for evidence, or all associated information
source variables. Instantiating intermediate variables
of an indicator d-separates information sources from
hypotheses, rendering all information sources for that
indicator obsolete.

When there is no evidence for an indicator, the com-
bining indicator variable (i) will resemble the poste-
rior probability of the original indicator (i) by taking
the average probability of all intermediate variables.
This information is useful to predict the likelihood of
unobserved indicators or for selecting the most influ-
ential unobserved indicator. Equation 1 is used to con-
struct the conditional probability table of the combin-
ing indicator variable. Note, that the HMF does not
use a logical function (e.g. OR/MAX, AND/MIN or
XOR). Logical functions that assume independence of
causal influence, in a discrete or noisy variant, have
been long in use [8] as a solution for variables with
many parents. An extensive overview of such methods
are described by Diez and Drudzel in [4]. Although
many alternatives may be considered, our preference
goes to an averaging method to avoid scalability prob-
lems. The scalability problem will be further discussed
in Section 5, while the results of using the averaging
method in Equation 1 are discussed in Section 6.



maxValueO f(parents(X))

valueO f (parents(X))

(1)
This article focuses on how HMF can aid the construc-
tion of belief networks. It does not elaborate on how
a software tool might facilitate this process. Nonethe-
less, we would like to discuss briefly how we envision
such a tool and how the HMF might be presented to
the user. We differentiate two types of roles for users:
domain experts and analysts. A user may have both
roles in practice. By using the HMF, the GUI can ef-
fectively hide the underlying belief network from the
user. Both types of users need a different user inter-
face.

P(X|parents(X)) =1.0—

Hypothesis Manager - Analyst

= Indicators
o3 testimonies

[} passenger had drunk alcohol @ true O false QO unknown

[y driver's testimony @ true QO false O unknown
[  technical evidence

[} handbrake in pulled position @ true O false O unknown
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[} observed yawmarks @ true O false O unknown

Figure 2: The GUI for an analyst.
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Figure 3: The GUI for a domain expert.

An analyst processes information sources and selects
evidence for indicators to support or contradict hy-
potheses. For analysts the GUI (Figure 2) shows indi-
cators in a foldable tree-like structure. The indicators
are organized in categories and sub-categories. For
each indicator the analyst can choose a state (e.g. true
or false) based on observed evidence. If the analyst is
uncertain about an observation, the analyst is given
the ability the express the reliability of each informa-
tion source for that specific indicator. This requires
a prior probability for both positive observations and
false positives, given that the indicator is a boolean.

Domain experts evaluate the conditional probabilities
of an indicator given an hypothesis, and choose prior
probabilities for hypotheses. The GUI should enable a
domain expert to construct and maintain a list of in-
dicators and hypotheses. A domain expert is respon-
sible for relating indicators to hypotheses in a sensible

manner, and assign conditional probabilities to each
relation. Figure 3 shows how this may be presented to
the domain expert. There is a column for each hypoth-
esis. Assuming only booleans are used, the respective
column requires only two elicited priors: one prior for
the likelihood of observing the indicator given the hy-
pothesis is true, and another for when the hypothesis
is false. Qualitative descriptions or frequencies can be
more effective than probabilities [7]. Such notations
can be used instead of probabilities, as long these de-
scriptions are consistently translated into conditional
probability tables.

4 HMF WALKTHROUGH BY AN
EXAMPLE

To explain how the HMF may be used and why we
have chosen this specific topology, we will now dis-
cuss three different models based on a civil case con-
cerning a car accident. The first is a logical causal
model by Prakken and Renooij [18]. The second
is a Bayesian belief network by Huygen [9], directly
based on Prakken’s logical model. Third and finally, a
Bayesian belief network that follows the HMF is con-
structed for the same case. 2

The legal case concerns a nightly car accident involving
a driver and a passenger, after a party which both per-
sons attended. The police that arrived at the scene af-
ter the accident observed that the car crashed just be-
yond an S-curve and the handbrake was in a pulled po-
sition. The police did observe tire marks (skid marks
and jaw marks), but did not observe any obstacles.
The driver claims that the passenger was drunk and
pulled the handbrake. The passenger claims that the
driver speeded through the S-curve. The judge had
to decide whether it is plausible that the passenger
caused the accident, rather than the driver.

The logical model about this case by Prakken and
Renooij is aimed at reconstructing the reasoning be-
hind the court decision on this case. Figure 4(a) shows
the causal structure for the case. Nodes within the
structure visualize causal concepts (propositions), and
arcs represent causal rules between them. Each arc is
annotated to show whether the proposition at the head
supports (+) or contradicts (-) the proposition at the
tail of the arc. By using abductive-logical reasoning
on the structure given evidence for some concepts, one
can determine whether other concepts are plausible.
Although such a model, a causal map, like the one in
Figure 4a may resemble a belief network, it lacks the
quantitative information required for Bayesian infer-

ence. Nadkarni and Shenoy [16] discussed how a causal

2the belief networks discussed in this article are avail-
able for download at: http://www.science.uva.nl/~spg
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Figure 4: Three different models of the same case. The colour red is used to highlight the proposed extensions.

map, can be used as a foundation for constructing be-
lief networks when supplemented with casual values
that express the strength of a causal connection.

There is evidence for the following facts: —obstacles,
tire marks present, observed nature of tire marks after
S-curve, handbrake in pulled position, driver’s testi-
mony and drunk passenger. The hypotheses speeding
in S-curve and loss of control over vehicle explain two
facts but contradicts three others. Whereas the hy-
pothesis passenger pulled handbrake of moving vehi-
cle explains three rules and contradicts nothing. This
makes the drivers point of view more convincing.

Huygen used the causal model of Prakken to construct
a belief network for the same case (Figure 4b). The
topology was slightly changed: the node for obstacles
has been removed and the propositions for speeding
and slowing down in S-curve have been replaced by
a single boolean that represents both. Furthermore,
each node is accompanied with a conditional probabil-
ity table or prior probability distribution (not visible

in Figure 4(b)). This effectively replaces the annota-
tions along arcs in the causal map. Huygen decided
not to use evidence for variables on tire marks, be-
cause in the sentence of the court it was not explicitly
stated that the nature of the tire marks were proof for
not speeding, but gave insufficient support for the sug-
gestion that the driver had speeded. Huygens suggests
to change the priors, when one would like to use this
evidence.

Given evidence for: pulled position, driver’s testimony,
passenger drunk and crash, it is highly likely that the
passenger pulled the handbrake (=~ 100%). Since the
evidence against the passenger explains away the car
crash, it is unlikely that the crash was caused by lost
control of the vehicle after speeding through the S-
curve (0.1%). The bayesian belief network comes to
the same conclusion as the causal map of Prakken and
Renooij.

When we model the same case using the HMF, we get
a radically different topology (Figure 4(c)) that does



not resemble the causal map of Prakken and the belief
network of Huygen. Both claims are modeled as hy-
potheses in the HMF model: accident caused by speed-
ing and passenger pulled handbrake of moving vehicle.
These hypotheses correspond to similarly named pred-
icates in Figure 4a and probability variables in Figure
4b. Uniform probability distributions were used as pri-
ors for these hypotheses. We use indicators to support
our beliefs in the hypotheses, these are: driver’s tes-
timony directly after incident, handbrake in pulled po-
sition after incident, passenger had drunk alcohol, o0b-
served yawmarks of sliding vehicle and observed skid-
marks beyond the curve.

By choosing different priors, the evidence for tire
marks is now usable. Some intermediate variables that
relate facts with the two hypotheses are no longer in
use. These are locking of wheels and loss of control
over vehicle. The information source of passenger had
drunk alcohol is undisclosed. Suppose the source was
a guest at the party, than the reliability of this testi-
mony is represented by an information source variable
(Figure 4(c)).

Given the available evidence, we get a high likelihood
for the passenger pulling the handbrake of the mov-
ing vehicle (= 100%). The propability for speeding is
much lower (= 27%), and therefore far less convincing,.

All three approaches can adequately model the case
and derive equally sensible conclusions. Abductive-
logical reasoning over a causal map explains the logi-
cal correctness and contradictions of propositions. The
advantage of a Bayesian approach is that by quanti-
fying influence, it is able to give insight in what hy-
pothesis is most credible as well as the relevance of
evidence. The models of Prakken, Renooij and Huy-
gen are based on a causal map. Although HMF follows
a different approach to the construction of belief net-
works, and therefore uses a rather different topology,
it does derive the same conclusions.

5 ISSUES REGARDING
EXTENDIBILITY

Extendibility as well as modularity are important re-
quirements. The models by Prakken and Huygen are
‘static’ models in the sense that they were designed to
model one single case with a fixed set of evidence and
hypotheses. This is feasible when consensus has been
developed on all aspects of the case. However, sup-
porting decision making at an earlier stage requires a
high level of flexibility. The HMF was developed to
facilitate decision making when the set of evidence (or
indicators) and hypotheses is still evolving and a con-
stant topic of discussion. Models designed with the

HMF are flexible, meaning that a model is decompos-
able into independent modules. So that each module
can be maintained or extended by a different domain
expert. This section will discuss issues that concern
the extendibility of models developed with the HMF.
These issues will be illustrated by extending the exist-
ing models from the previous section.

We have pursued extendibility by modular indepen-
dence of the elicited priors. When an indicator is
added to the model, the only priors to elicit are those
for the intermediate nodes of that specific indicator.
Priors that were elicited before do not have to be
reconsidered. The same holds for adding hypothe-
ses. We will illustrate this by considering an addi-
tional hypothesis for the car accident case. Suppose
the driver pulled the handbrake of the moving vehi-
cle. If the driver was under influence of alcohol, that
would have also influenced the driving behavior and
therefore the likelihood of speeding as well as the pos-
sibility of pulling the handbrake of the moving vehicle.
In all three models we would have to add and update
existing prior knowledge.

To add the alternative hypothesis to the logical model
of Prakken and Renooij a proposition is needed for the
new hypothesis, and another to represent the possibil-
ity that the driver was under the influence of alcohol.
These additional causal relations are highlighted in red
in Figure 4(a). Together, these additions extend the
existing set of 12 rules with 6 more.

number of priors:
+ for 5 indicators

priors to be elicited:
o for 5 indicators

100000  for 10 indicators
@ for 20 indicators

0 for 10 indicators
O for 20 indicators

10000

4+—— Hailfinder

number of prior probailities

1000

HMF

6 7 8 9
number of alternate hypotheses

Figure 5: How extending the model affects the number
of priors to elicit.



Table 1: Extending the models.

priors [ Prakken Huygen elicited HMF

in original model 12 44 36
after extension 18 64 58
unchanged 12 30 36
updated and added 6 34 22
relative workload 50% 7% 61%

When we add similar variables and relations to the
belief network of Huygen, we need to specify new con-
ditional probability tables for locking of wheels, hand-
brake in pulled position and driver’s testimony. Fur-
thermore, we would have to replace the prior proba-
bility distributions of speeding through S-curve with a
new conditional probability table. These changes com-
prise the elicitation of 34 new priors that substitute 14
previously elicited priors.

To add to the HMF model the hypothesis driver pulled
the handbrake of the moving vehicle, requires a new col-
umn in the model in Figure 4. The possibility of the
driver being under the influence of alcohol is modeled
as an indicator, which adds a new row to the model.
Table I shows how many elicited priors are required
for extending the models. The extensions of the HMF
model comprise only 22 elicited priors, all 36 existing
priors remain unchanged. This makes HMF consid-
erably cheaper to extend than the belief network of
Huygen. The original causal model of Prakken is even
simpler to extend. That model, however, lacks quan-
titative support for probabilistic inference.

As the car accident case shows, the HMF is tolerant to
extensions. Figure 5 shows the general effect of adding
hypotheses and indicators to a model by outlining the
maximum number of elicited priors. While the to-
tal number of parameters grows exponentially when
more hypotheses are added, the amount of elicited
priors grows in a linear fashion. The figure assumes
the worst case in which each indicator is associated to
all hypotheses. Although the model assumes boolean
variables and two priors for each intermediate variable
would suffice, it is assumed that all priors for inter-
mediate variables are elicited as well as a prior prob-
ability distribution for each hypothesis. Note that we
have excluded all other parameters that require elici-
tation such as variable names and state definitions. As
a reference Figure 5 includes the number of priors of
Hailfinder (3741), Alarm (752), the original belief net-
work of Huygen (44) and the HMF model from Section
4 (36). The extensions proposed in this Section were
excluded from the HMF model.

As mentioned in Section 3 indicators are modeled
by intermediate variables and one combining variable.
The more hypotheses are associated to an indicator,
the more probabilities of intermediate variables will

have to be combined. On each extension the combin-
ing variable gets an extra parent, and as a consequence
its conditional probability table (CPT) doubles in size.
In the HMF an averaging function has been chosen as
the preferred option for these CPTs. By default, the
CPT of a combining variable effectively takes the aver-
age posterior distribution of all intermediate variables
(Equation 1).

Arguably, one might find a logical OR-function [8]
more intuitive. However, we have chosen not to use an
OR or AND function for these CPTs since a method-
ical bias may arise in the model if it is extended. A
practical drawback of using OR-tables in this situation
arises when more than (approximately) five alternative
hypotheses are connected to an indicator. By adding
more parents to a deterministic OR-table the proba-
bility for the child variable quickly converges to unity,
or alternatively a pre-defined upper bound. This is
shown in Figure 6(a). It is likely that this will lead
to unintentional overestimation of the occurrence of
unobserved indicators. This can be illustrated by ex-
tending the belief network of Huygen, where the vari-
able locking of wheels is modeled as an OR-table with
an upper bound of 0.80. Suppose the case would be
extended to include one or two additional drunk back-
seat passengers who may have pulled the handbrake
of the moving vehicle. The extra backseat passengers
are modeled in the same way as the passenger in front,
using the original priors P(locking|pulled) = 80% and
P(locking|—pulled) = 0% (where pulled is true when
any of the persons in the vehicle pulled the handbrake).
Given that the driver is sober and all passengers are
drunk, the probability of locking the wheels increases
rapidly (one drunk passenger: 2.4%, two drunk pas-
sengers: 4.7%, three drunk passengers: 7.0%). Even
when we have not instantiated any other variables
(e.g. crash or driver’s testimony). After these exten-
sions, one might like to reconsider the original priors of
P(pull|drunk) to prevent overestimating the probabil-
ity of locked wheels. This potential problem is avoided
when the method in Equation 1 is used.

Another potential problem that is associated with OR-
tables is the asymmetric influence of an indicator: pos-
itive observations have less impact than a negative
observation. This is shown in Figure 6(b)). Where
observed indicators will only have marginal impact
on hypotheses when observed true, the impact on in-
termediate variables of an indicator observed as false
is deterministic and therefore usually stronger. It is
likely that the user will be unaware of these effects.
This makes the model relatively vulnerable to errors
in the priors. Therefore, we advice to use Equation 1
as the default method. Other methods for construct-
ing CPTs of combining variables may hinder extending
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Figure 6: Extending the model affects the probabilities.

the model.

6 ISSUES REGARDING
RELIABILITY

To evaluate the outcomes of HMF belief networks we
have translated the Asia belief network, as introduced
by Lauritzen and Spiegelhalter in [12], into the HMF
format.

We will use abbreviations that correspond to the first
character of each variable. The original model is shown
in Figure 7 (left), the HMF version of Asia is shown on
the right. In the HMF model of Asia we distinguish hy-
potheses: {b,1,t}, indicators: {s,v,z,d} and interme-
diate nodes: {sy, 81, vt, Tp, X1, Tt, dp, di,dr }. The vari-
able TbOrCa is missing from the HMF model, which
in the original belief network combines the probabili-
ties of tuberculosis and lung cancer with a logical OR
function has become obsolete.

In the HMF model of Asia, the prior information for
the indicators is specified separately for each associ-
ated hypothesis. This assumes that the influence of
e.g. lung cancer on dyspnea is unaffected by bron-
chitis. The following probabilities will have to be
elicited from a domain expert, when using HMF on
Asia. Unconditional priors for each hypothesis: P(b),
P(l), P(t) and conditional priors for all intermedi-
ate nodes: P(sp|b), P(si]l), P(ve]t), P(xp|b), P(xy|l),
P(ailt), Pdyb), P(dill), Pdy]t).

The Asia model uses only boolean variables and there-

fore only one probability for each hypothesis has to be
elicited and two for each association of an indicator
with a hypothesis. For Asia this gives a total of 21
probabilities. In this case the priors for the hypothe-
ses and intermediate nodes were derived from the joint
probability table of the original Asia belief network.

We computed the posteriors of the hypotheses for all
possible scenario’s of evidence for the indicators. In
each of these scenarios each indicator was either ob-
served or not. Note that we instantiate the interme-
diate nodes for evidence, rather than the combining
variables. As mentioned in Section 3 an indicator is
represented by both intermediate variables and a com-
bining variable. The conditional probability table of
the combining variable is implemented by Equation
1, whereas the elicited priors are stored in the inter-
mediate variables. Instantiating only the combining
variable would undervalue those elicited priors.

The results are shown in Table II. For each indica-
tor and hypothesis, the table shows the average and
maximum absolute difference in posteriors, as well as
the Jensen-Shannon divergence [13]. The bottom row
shows the percentage of scenario’s in which the out-
comes (i.e. the most likely state) for the variables
were equal. Especially this last criterion is important
for decision making, as the 'real’ priors and posteriors
will always be open to debate when a causal model
is hard to obtain. The table shows that while poste-
rior distributions may vary between both versions, on
average the difference is relatively small (< 4 percent-
age points). For almost all scenario’s the outcomes
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Figure 7: Left: the original Asia belief network. Right: HMF version of Asia. Both with evidence for Smoking.

Table 2: Divergence between HMF verion of Asia and
the original.

vertice d v X b t c s

max dif 0,162 0,004 0,071 0,308 | 0,193 0,209 0,095
av. dif 0,023 0,000 0,000 0,036 | 0,020 0,017 0,014
max J-S 0,021 0,000 0,006 0,074 | 0,029 0,035 0,008
av. J-S 0,002 0,000 0,001 0,006 | 0,002 0,002 0,001
match(%) | 91,4  100,0 100,0 97,5 98,8 98,8 97,5

are identical. The few exceptions are caused by the
synergistic effect between an abnormal X-Ray and the
presence of dyspnea. This synergistic affect is absent
in the HMF version, and in those situations we get
the relatively large differences in the posterior distri-
butions of bronchitis and long cancer.

7 CONCLUSIONS

The current HMF design pattern is extendible and
modular. In our opinion the HMF succeeds in its pur-
pose. We have confidence that HMF comes as a relief
to those application domains that so far have been
relatively underequipped with practical decision sup-
port tools, due to the lack of ’hard and solid’” domain
knowledge that can be used as a basis for probabilistic
models.

The arrangement of the HMF supports a working
method which deals with tunnel-view in a well con-
sidered manner. The HMF will not explicitly reduce
or prevent bias occurring within the topology of a
model. However, it offers the possibility to use certain
strategies during the design of a model which lead to
more balanced and thus less biased models. Using such
strategies will enlarge the awareness about tunnel-view
(and bias) and as such may partly prevent it.

Although the requirements of reliability and usabil-
ity are not validated by domain experts and analysts,
several issues concerning these requirements have been

discussed in this paper. The Asia example shows that
posteriors via a HMF model can be quite similar to
those derived via a belief network based on causality.
The issues that we have encountered so far in applying
belief networks for criminal investigations have been
addressed in this paper. However, it is a continuous
effort to further improve the HMF.

8 FUTURE RESEARCH

One of the complementary wishes of the authors in-
volves a bias measurement combined with automated
commentary that highlights useful missing evidence.
By calculating how discriminative the indicators and
the evidence is to each hypothesis and counterhypoth-
esis, we can evaluate whether tunnel vision may be
present. It can also be used to investigate the added
value of collecting evidence for unobserved indicators.
One way of getting this information is by simulating
evidence and evaluate the posteriors of all hypotheses.
Since the maximum potential impact of an indicator
may only occur at a certain combination of evidence
for other indicators, the simulation should consider all
possible combinations of evidence for all unobserved
indicators. This may be a costly operation. Alter-
natively one may derive the maximum impact directly
from the conditional probability tables of the variables,
and use message passing to investigate the maximum
potential impact of each indicator.

The naive structure of a HMF belief network may in
some occasions not capture the targeted effects. In
those cases we would like to extend the HMF model
with constraining variables that model the synergistic
effect between indicators (or in between hypotheses).
We have not been able to test such mechanisms in real-
istic cases so far. Therefore these need further investi-
gation to test the feasibility of adding constraints, and
whether the implications of such mechanisms violate
the extendibility and modularity.



The HMF has been applied on several study cases
based on real data by the authors. In the foreseeable
future it is expected that domain experts will work
with this framework. Their experience will be very
useful for validating the usability and reliability of this
method, and for finding ways to further improve it.

References

[1]

[9]

B. Abramson, J. Brown, W. Edwards, A. Mur-
phy, and R.L. Winkler. Hailfinder: A bayesian
system for forecasting severe weather. Interna-
tional Journal of Forecasting, 12(1):57-72, 1996.

Ingo Beinlich, Jaap Suermondt, Martin Chavez,
and Gregory Cooper. The alarm monitoring sys-
tem: A case study with two probabilistic infer-
ence techniques for belief networks. In Second
European Conference on Artificial Intelligence in

Medicine, 1988.

A. Biedermann and F. Taroni. Bayesian networks
and probabilistic reasoning about scientific evi-
dence when there is a lack of data. Forensic Sci-
ence International, (157):163-167, 2006.

F. J. Diez and M. J. Druzdzel. Canonical proba-
bilistic models for knowledge engineering. Techni-
cal Report CISTAD-06-01, UNED, Madrid, Spain,
2006.

Marek J. Druzdzel and Linda C. van der Gaag.
Elicitation of probabilities for belief networks:
Combining qualitative and quantitative informa-
tion. In Proceedings of the Eleventh Annual Con-
ference on Uncertainty in Artificial Intelligence,
pages 141-148. Morgan Kaufmann, 1995.

N Friedman, D Geiger, and M Goldszmidt.
Bayesian network classifiers. In Machine Learn-
ing, volume 29, pages 131-163, 1997.

Gerd Gigerenzer and Ulrich Hoffrage. How
to improve bayesian reasoning without instruc-
tion: Frequency formats. Psychological Review,
102:684-704, October 1995.

Max Henrion. Some practical issues in construct-
ing belief networks. In Proceedings of the 3rd
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-87), pages 161-174, New York,
NY, 1987. Elsevier Science.

P.E.M. Huygen. Use of bayesian belief networks
in legal reasoning. In 17th BILETA Annual Con-
ference, 2002.

[10]

[11]

[12]

[16]

[17]

[18]

[19]

[20]

J. H. Kim and J. Pearl. A computation model for
causal and diagnostic reasoning in inference sys-
tems. Proceedings of the 8th International Joint
Conference on Al pages 190-193, 1983.

M. Korver and P. Lucas. Converting a rule-based
expert system into a belief network. Medical In-
formatics, 18(3):219-241, 1993.

S.L. Lauritzen and D.J. Spiegelhalter. Local com-
putations with probabilities on graphical struc-
tures and their application to expert systems.
Readings in uncertain reasoning table of contents,
pages 415448, 1990.

J. Lin. Divergence measures based on the shannon
entropy. Information Theory, IEEE Transactions
on, 37(1):145-151, 1991.

Krol Kevin Mathias, Cynthia Isenhour, Alex
Dekhtyar, Judy Goldsmith, and Beth Goldstein.
When domains require modeling adaptations. In
4th Bayesian Modelling Applications Workshop at
UAI 2006.

V Metsis, I Androutsopoulos, and G Paliouras.
Spam filtering with naive bayes: which naive
bayes. In In 3rd Conference on Email and Anti-
Spam, Mountain View, ca, 2006.

Sucheta Nadkarni and Prakash P. Shenoy.
A causal mapping approach to constructing
bayesian networks. Decision Support Systems,
38(2):259-281, November 2004.

J. Pearl. Causality: Models, Reasoning, and In-
ference. Cambridge University Press, 2000.

H. Prakken and S. Renooij. Reconstructing causal
reasoning about evidence: a case study. In Le-
gal Knowledge and Information Systems. JURIX
2001: The Fourteenth Annual Conference, pages
131-142. 1I0S Press, Amsterdam, The Nether-
lands, 2001.

Rita Sharma, David Poole, and Clinton Smyth.
A system for ontologically-grounded probabilis-
tic matching. In Proceedings of the Fifth UAI
Bayesian Modeling Applications Workshop, 2007.

B.W. Wisse, S.P. van Gosliga, N.P. van Elst, and
Al Barros. Relieving the elicitation burden of
bayesian belief networks. Sizth Bayesian Mod-
elling Applications Workshop on UAI 2008.



An Experimental Procedure for Evaluating User-Centered Methods
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Abstract

Bayesian networks (BNs) are excellent tools for
reasoning about uncertainty and capturing
detailed domain knowledge. However, the
complexity of BN structures can pose a
challenge to domain experts without a
background in artificial intelligence or
probability when they construct or analyze BN
models. Several canonical models have been
developed to reduce the complexity of BN
structures, but there is little research on the
accessibility and usability of these canonical
models, their associated user interfaces, and the
contents of the models, including their
probabilistic relationships. In this paper, we
present an experimental procedure to evaluate
our novel Causal Influence Model structure by
measuring users’ ability to construct new models
from scratch, and their ability to comprehend
previously constructed models. [Results of our
experiment will be presented at the workshop.]

1. INTRODUCTION AND MOTIVATION

A Bayesian network (BN) (Jensen, 2001; Pearl, 1988) is a
probabilistic model used to reason under uncertainty.
Successful efforts in applying Bayesian modeling to a
variety of domains (e.g., computer vision (Rimey &
Brown, 1994), social networks (Koelle et al., 2006),
human cognition (Guarino et al., 2006; Glymour, 2001),
and disease detection (Pang et al., 2004)) have inspired
knowledge engineers to use BNs to capture domain
knowledge from experts. However, expressing an expert’s
domain knowledge in a BN is cumbersome due to the
complex, tedious, and mathematical nature of conditional
probability table (CPT) construction. Adding states and
parents to a node quickly results in an exponential
explosion in the number of CPT entries required (Pfautz
et al., 2007). Canonical models such as Noisy-OR
(Henrion, 1989; Pearl, 1988), Noisy-MAX (Diez &
Galan, 2003; Diez, 1993; Henrion, 1989), Qualitative
Probabilistic Networks (Wellman, 1990) and Influence
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Networks (IN) (Jensen, 1996; Rosen & Smith, 1996a;
Rosen & Smith, 1996b) have been developed to mitigate
this problem. In response to some issues raised by those
models, and to simplify the Bayesian modeling process
through novel user interface techniques, we developed a
new canonical model, the Causal Influence Model (CIM)
(Cox & Pfautz, 2007; Pfautz et al.,, 2007). The CIM
paradigm was inspired by anecdotal evidence gained by
developing systems for domain experts interacting with
BNs and by an analysis of other canonical models to
determine the constraints that limit their generalizability
and applicability.

There have been few user-centered evaluation efforts to
assess how (and if) canonical models help domain experts
elicit their knowledge and understanding of models
presented to them, or how graphical interfaces and their
features and properties impact the way people create,
interpret, reason with, or base actions on Bayesian
networks. The purpose of our study is to provide baseline
information on how people construct and describe CIMs
presented and created within a graphical user interface.

1.1 BACKGROUND

A canonical model (Diez & Druzdzel, 2001) is a
modeling pattern that allows probabilistic relationships
between nodes to be specified by a reduced set of
parameters (i.e., without completing every cell in a CPT).
By assuming that the reduced parameters can still
accurately represent the domain being modeled, users can
quickly build a complex BN that would otherwise take a
large amount of time. Most canonical models achieve
their reduced parameters by assuming the independent
effects of parents. This assumption allows a linear number
of parameters to quantify an entire CPT; in the best-case
scenario, only a single parameter per parent is needed.
Canonical models can also serve as a “front-end” tool for
the initial model-building effort, since the CPTs can
always be refined by hand or with data at a later time.
Some of the simplified patterns followed by canonical
models have been motivated by the process followed
when eliciting key factors and probabilistic relationships



from domain experts (O'Hagan et al., 2006; Hastie &
Dawes, 2001).

A review of canonical models sheds light on the
advantages and drawbacks of each model. The Influence
Network (IN) model can only be used with Boolean
nodes. It assumes that the child node has a baseline
probability of occurring independently of any parent
effects and that each parent independently influences the
child to be more or less likely to be true. Since a single
baseline probability for the child and a single change in
probability for each parent are simple parameters for users
to specify, the IN represents a powerful mechanism for
capturing domain knowledge. However, since only
Boolean nodes are allowed in the IN model, model
flexibility is significantly reduced. BNs commonly
contain nodes that represent concepts other than the
occurrence or non-occurrence of events, and INs cannot
be used to simplify these BNs without considerably re-
architecting the model.

The Noisy-OR model is also used only with Boolean
nodes and assumes that a true state in any parent can
cause the child to be true independently of the other
parents, with some uncertainty. Similar to INs, the main
drawback of the Noisy-OR is its limitation to only
Boolean nodes. The Noisy-MAX model generalizes the
Noisy-OR and allows ordinal nodes at the expense of
increasing the complexity of parameters. Although Noisy-
MAX does work with ordinal nodes, it cannot be used
with more general discrete nodes that do not have ordered
states. These nodes, referred to as categorical nodes, have
an arbitrary number of unordered states and usually
represent the category or type of something. Qualitative
Probabilistic Networks (QPNs) allow for the construction
of purely qualitative relationships between nodes in a
network, to abstract from the highly quantitative and
numerical nature of typical Bayesian models. QPNs
consider the “signs” inherent in probabilistic relationships
between nodes, and consider the additive synergies
between nodes to capture more complicated probabilistic
relationships between them (i.e., if A and B both have a
positive influence on node C, their influences may be
synergistic in nature: if A and B are both true, their
cumulative influence upon C may be greater than just the
sum of their individual influences.) QPNs allow for more
qualitative model elicitation and may therefore be
appropriate for interactions with non-technical experts,
but they are limited in their ability to provide hard,
numerical estimates of the likelihood of events.

The Causal Influence Model (CIM) is a canonical model
that retains the desirable properties of the IN while
providing solutions to its problems. The CIM assumes
that each node is discrete and has an arbitrary number of
states with arbitrary meaning. Each node has a baseline
probability distribution, independent of any parent effects.
Each parent independently influences these baseline
probabilities to be more or less likely. The CIM also
introduces simplifications that govern the generation of

conditional probability relationships, enabling Boolean,
ordinal, and categorical nodes to be included. A full
description of the mathematical formulas that govern
CIMs, including formulas to translate CIM link strengths
into conditional probability tables, is provided in (Cox et
al., 2007).

Studies have been conducted to analyze and mitigate
complexities that arise in the construction of Bayesian
models as a result of knowledge elicitation (Onisko,
Druzdzel, & Wasyluk, 2001), but no studies to date have
assessed the accessibility and usability of various
canonical models and associated user interfaces when
provided directly to domain experts. The following study
investigates how users interpret and create CIMs within a
particular user interface.

2. METHOD

2.1 PARTICIPANTS

Up to twenty participants are recruited from the university
community to perform the study. After providing
informed consent, participants are given the Ishihara Test
for color blindness. Participants who pass this screening
continue with the study.

2.2 EXPERIMENTAL SYSTEM

We have developed an CIM-enabled version of our
BNet.Builder product to allow us to experiment with
graphical interfaces for Bayesian network modeling
(Pfautz et al., 2007). Using a simple point-and-click
interface, users can create, label, connect, and move nodes
in the model. Users can also create and modify causal
links to represent positive or negative influences between
nodes and the strength of those relationships. Users can
also post or remove evidence to any node and view the
effects of posted evidence on the belief states of other
nodes. Link strengths are converted using CPTs based on
algorithms provided in (Cox et al., 2007; Pfautz et al.,
2007). The positivity or negativity of a causal link and the
link strength are represented visually by the color and
thickness of the link, respectively.

To simplify model construction for this particular
experiment, the CIM interface has been constrained so
that all nodes are Boolean; initial beliefs are set to 0.5 for
all nodes and cannot be changed directly by the user (but
can change based on evidence or link strengths); and only
“hard” evidence can be posted (e.g., evidence that the
node was either fully true, or fully false). This represents
a set of simplifications we have found useful in other
work, particularly among users less familiar with
Bayesian modeling techniques. Our main goal in this
study is to determine whether participants can reason
about previously constructed CIMs and construct models
to match a given situation. Since these are specific, novel,
and fundamental questions with little previous research
behind them, we have started with a simple case. The



inclusion of additional node types, in particular, is useful
for future work in comparing CIMs to other canonical
models such as INs, Noisy-OR, and Noisy-MAX.

2.3 EXPERIMENTAL TASKS

Participants will be asked to provide descriptions of and
answer questions about a series of CIMs shown in the
BNet.Builder interface. In the first task, participants will
be shown a model and asked questions about the structure
and nature of relationships in the model (specifically,
questions asking them to describe elements of the model,
and questions related to abductive and deductive
reasoning using the model). For instance, given the
following example model (Figure 1), participants would
be asked:

e Description: This picture shows a model of part of a
car. Describe what causes headlights to be dim, or not
dim.

e Abductive Reasoning: If the headlights are dim, what
does that mean about the other parts of the car?

e Deductive Reasoning: The alternator is working.
What does that suggest about the headlights? The
battery is old. What does that suggest about the
headlights? What if the battery is new and the
alternator is failing?

Alternator is Failing

%05

Batteryis New

F—F—718

F—I1—r18&

Headlights are Dim

%05
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Figure 1. Example model used in the experiment. The
green link represents positive influence, while the red link
represents negative influence within our CIM-enabled
interface.

In the second task, participants can manipulate the causal
links and post evidence to see how changing the strength
and directionality of the links between the nodes, and
evidence about the state of the nodes, affects beliefs about
whether the nodes are true or false. They will respond to
similar sets of questions as provided in the first task.
Finally, in the third task, participants will be asked to
construct models from scratch using the interface based
on several different vignettes, such as the following:

The headlight system on a car is dependent on two
components: a battery, which stores energy to power
the lights, and an alternator, which converts
mechanical energy from the car’s engine into stored

energy in the battery. When the car is running, the
alternator “recharges” the battery. This process only
works if the alternator is working, and the battery is
new.

Four models/vignettes have been constructed for each
task (a total of 12). Each model has the following
relationships: 1 child/l parent, 2 children/l parent, 1
child/2 parents, 2 children/2 parents. In all cases, all
children are linked to all parents. Also, in all but the 1
child/1 parent case, one parent-child link is negative. This
simplification provides the basis for the initial study. We
expect to expand upon this simple representation with
later empirical work.

2.4 INDEPENDENT VARIABLE

Two stimuli sets are created based on the 12 models.
Either the nodes in the models (or phrases in the vignette)
are phrased positively, or they include at least one node
that uses negative phrasing (e.g., “battery is not new”).
This difference allows us to investigate how semantic
properties of the model or situation affect task
performance. This condition has been inspired by our
experience in domain expert interaction with CIM
modeling interfaces, where we observed the articulation
of variable names as a source of common confusion. The
use of negatives in the variable name (e.g., “not raining”)
or logical antonyms (e.g., “happy” and “sad”) tends to
lead to later confusion in expressing causal relationships
(e.g., “if it is not not-raining, then it is unlikely that
Rakesh will not bring his umbrella”). By including this
specific independent variable, we will be able to assess
which specific patterns of reasoning are most difficult for
users. Participants are randomly assigned to one of the
two stimuli sets (up to 10 participants per condition). This
sample size is consistent with those used in usability type
tests, and will allow us to analyze verbal protocols of
participants to look for patterns across conditions.

2.5 DEPENDENT MEASURES AND ANALYSIS

Throughout all three tasks, participants are asked to “talk
aloud” while performing the task to describe how they are
thinking about or creating the models. Screen capture
software is used to record participants’ interaction with
and construction of models. Participants are also fitted
with a view point eye tracker (lightweight glasses that
have an attached camera that tracks the corneal
movements of the participant’s eye to assess gaze relative
to the computer screen they are working on). The eye
tracking system is used to record aspects of gaze position
and dwell time at a screen location. Time to complete the
tasks is also being recorded.

Data from the audio, eye track, and screen capture
processes is combined to create a “process trace” of each
participant’s behavior describing and creating CIMs
(Woods, 1993). Verbalizations and actions are coded and
analyzed (Bainbridge & Sanderson, 1995; Sanderson &
Fisher, 1994; Woods, 1993) to identify the correctness



and completeness of the descriptions and answers
provided by participants in the first task, the processes
with which participants constructed the models in the
second task, and the form and content of the models
produced in the third task.

3. ANTICIPATED RESULTS AND
DISCUSSION

The purpose of this study is to provide baseline
information regarding how people construct and describe
CIM models presented and created within the
BNet.Builder interface. There is continued interest in
simplifying the manner in which domain expertise is
elicited, and the creation and presentation of Bayesian
network models through direct manipulation and
visualization. However, information on how these tools
are used by practitioners, how they affect the models that
people produce, and how they affect the way that people
interpret models or predict outcomes is missing. We
anticipate that users will have more difficulty explaining
and constructing models with more parent-child
connections. We also anticipate users having more
difficulty explaining and constructing models when there
are more nodes with negative causal links because of the
increase in complexity of the models.

In this study, we intend to measure reasoning patterns
involving negative quantities that give users the most
trouble. We anticipate that users will have the most
difficulty interpreting and creating models when nodes
are presented with “negatively phrased” labels (e.g.,
assessing the influence of a node labeled “battery is not
new” on a node labeled “headlights are dim”). If this is
the case, it suggests a need for developers of CIMs (and
BNs in general) to encourage users to employ certain
modeling patterns, possibly by constraining the
description of nodes. These constraints, in turn, can be
accomplished through prior training or interface wizards,
or through intelligent, automatic processing of user
entries, and provision of suggested alternatives (e.g., pop-
up suggestions). These interventions could be tested in
further studies.

The primary contribution of this paper will be process-
and product-oriented descriptions of how this graphical
tool is used to interpret and create CIMs. Future research
could compare how models created within the CIM
framework compare to those using more traditional BN
structures, from the point of view of the user. This study
used simple Bayesian models, with constrained
parameters and interaction capabilities, and used only
Boolean nodes. Future studies, guided by these initial
findings, can be conducted using more complex models, a
greater variety of node types (e.g., categorical, ordinal),
and allow subjects greater flexibility in manipulating
CPTs and posting evidence. Other issues for investigation
include measuring and mitigating user tendencies to
confuse “evidence” and “belief” (both as terms, and in the
values these terms represent), measuring tendencies to

disregard parental independence when constructing CIMs,
and further observation of user reaction to non-intuitive
but correct behavior (e.g., becoming confused when
particular variables appear overly sensitive or insensitive
to posted evidence.)

The CIM interface provides a user-friendly way to
express causal influences between nodes, vastly
decreasing the number of parameters needed to construct
causal models and providing the capability for a much
broader base of users to perform Bayesian modeling.
Within the experimental interface, participants express
relative degrees of influence over a range of 11 steps
(from positive to negative 5, with a neutral intermediate
value). Additional studies are necessary to clarify the
appropriate level of granularity of influence assignment
(e.g., 3 steps? 11 steps? 51 steps?) as well whether other
methods of assigning strengths across sets of links (e.g.,
normalized strengths, rank ordered strengths) have merit.
Finally, detailed studies with real-world models,
situations, and domain experts are required.
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Abstract

In this paper, we examine the influence
of overconfidence in parameter specification
on the performance of a Bayesian network
model in the context of HEPAR II, a sizeable
Bayesian network model for diagnosis of liver
disorders. We enter noise in the parameters
in such a way that the resulting distributions
become biased toward extreme probabilities.
We believe that this offers a systematic way
of modeling expert overconfidence in proba-
bility estimates. It appears that the diagnos-
tic accuracy of HEPAR II is less sensitive to
overconfidence in probabilities than it is to
underconfidence and to random noise, espe-
cially when noise is very large.

1 INTRODUCTION

Decision-analytic methods provide an orderly and co-
herent framework for modeling and solving decision
problems in decision support systems [5]. A popu-
lar modeling tool for complex uncertain domains is a
Bayesian network [13], an acyclic directed graph quan-
tified by numerical parameters and modeling the struc-
ture of a domain and the joint probability distribution
over its variables. There exist algorithms for reason-
ing in Bayesian networks that typically compute the
posterior probability distribution over some variables
of interest given a set of observations. As these algo-
rithms are mathematically correct, the ultimate qual-
ity of reasoning depends directly on the quality of the
underlying models and their parameters. These pa-
rameters are rarely precise, as they are often based
on subjective estimates. Even when they are based
on data, they may not be directly applicable to the
decision model at hand and be fully trustworthy.

Search for those parameters whose values are critical
for the overall quality of decisions is known as sensi-

tivity analysis. Sensitivity analysis studies how much
a model output changes as various model parameters
vary through the range of their plausible values. It
allows to get insight into the nature of the problem
and its formalization, helps in refining the model so
that it is simple and elegant (containing only those
factors that matter), and checks the need for precision
in refining the numbers [8]. It is theoretically pos-
sible that small variations in a numerical parameter
cause large variations in the posterior probability of
interest. Van der Gaag and Renooij [17] found that
practical networks may indeed contain such parame-
ters. Because practical networks are often constructed
with only rough estimates of probabilities, a question
of practical importance is whether overall imprecision
in network parameters is important. If not, the effort
that goes into polishing network parameters might not
be justified, unless it focuses on their small subset that
is shown to be critical.

There is a popular belief, supported by some anecdo-
tal evidence, that Bayesian network models are overall
quite tolerant to imprecision in their numerical pa-
rameters. Pradhan et al. [14] tested this on a large
medical diagnostic model, the CPCS network [7, 16].
Their key experiment focused on systematic introduc-
tion of noise in the original parameters (assumed to be
the gold standard) and measuring the influence of the
magnitude of this noise on the average posterior prob-
ability of the true diagnosis. They observed that this
average was fairly insensitive to even very large noise.
This experiment, while ingenious and thought provok-
ing, had two weaknesses. The first of these, pointed
out by Coupé and van der Gaag [3], is that the ex-
periment focused on the average posterior rather than
individual posterior in each diagnostic case and how
it varies with noise, which is of most interest. The
second weakness is that the posterior of the correct
diagnosis is by itself not a sufficient measure of model
robustness. The weaknesses of this experiment were
also discussed in [6] and [9]. In our earlier work [9],
we replicated the experiment of Pradhan et al. using



HEPAR 11, a sizeable Bayesian network model for diag-
nosis of liver disorders. We systematically introduced
noise in HEPAR II’s probabilities and tested the di-
agnostic accuracy of the resulting model. Similarly
to Pradhan et al., we assumed that the original set
of parameters and the model’s performance are ideal.
Noise in the original parameters led to deterioration
in performance. The main result of our analysis was
that noise in numerical parameters started taking its
toll almost from the very beginning and not, as sug-
gested by Pradhan et al., only when it was very large.
The region of tolerance to noise, while noticeable, was
rather small. That study suggested that Bayesian net-
works may be more sensitive to the quality of their nu-
merical parameters than popularly believed. Another
study that we conducted more recently [4] focused on
the influence of progressive rounding of probabilities
on model accuracy. Here also, rounding had an ef-
fect on the performance of HEPAR II, although the
main source of performance loss were zero probabili-
ties. When zeros introduced by rounding are replaced
by very small non-zero values, imprecision resulting
from rounding has minimal impact on HEPAR II’s per-
formance.

Empirical studies conducted so far that focused on the
impact of noise in probabilities on Bayesian network
results disagree in their conclusions. Also, the noise
introduced in parameters was usually assumed to be
random, which may not be a reasonable assumption.
Human experts, for example, often tend to be over-
confident [8]. This paper describes a follow-up study
that probes the issue of sensitivity of model accuracy
to noise in probabilities further. We examine whether
a bias in the noise that is introduced into the network
makes a difference. We enter noise in the parameters
in such a way that the resulting distributions become
biased toward extreme probabilities. We believe that
this offers a systematic way of modeling expert over-
confidence in probability estimates. Our results show
again that the diagnostic accuracy of HEPAR II is sen-
sitive to imprecision in probabilities. It appears, how-
ever, that the diagnostic accuracy of HEPAR II is less
sensitive to overconfidence in probabilities than it is to
random noise. We also test the sensitivity of HEPAR 11
to underconfidence in parameters and show that un-
derconfidence in paramaters leads to more error than
random noise.

The remainder of this paper is structured as follows.
Section 2 introduces the HEPAR II model. Section 3
describes how we introduced noise into our probabili-
ties. Section 4 describes the results of our experiments.
Finally, Section 5 discusses our results in light of pre-
vious work.

2 THE HEeprar II MODEL

Our experiments are based on HEPAR II [10, 11], a
Bayesian network model consisting of over 70 vari-
ables modeling the problem of diagnosis of liver dis-
orders. The model covers 11 different liver diseases
and 61 medical findings, such as patient self-reported
data, signs, symptoms, and laboratory tests results.
The structure of the model, (i.e., the nodes of the
graph along with arcs among them) was built based
on medical literature and conversations with domain
experts and it consists of 121 arcs. HEPAR II is a
real model and it consists of nodes that are a mix-
ture of propositional, graded, and general variables.
There are on the average 1.73 parents per node and
2.24 states per variable. The numerical parameters of
the model (there are 2,139 of these in the most recent
version), i.e., the prior and conditional probability dis-
tributions, were learned from a database of 699 real pa-
tient cases. Readers interested in the HEPAR II model
can download it from Decision Systems Laboratory’s
model repository at http://genie.sis.pitt.edu/.

As our experiments study the influence of precision of
HEPAR II’s numerical parameters on its accuracy, we
owe the reader an explanation of the metric that we
used to test the latter. We focused on diagnostic accu-
racy, which we defined in our earlier publications as the
percentage of correct diagnoses on real patient cases.
When testing the diagnostic accuracy of HEPAR 11, we
were interested in both (1) whether the most probable
diagnosis indicated by the model is indeed the correct
diagnosis, and (2) whether the set of w most probable
diagnoses contains the correct diagnosis for small val-
ues of w (we chose a “window” of w=1, 2, 3, and 4).
The latter focus is of interest in diagnostic settings,
where a decision support system only suggest possi-
ble diagnoses to a physician. The physician, who is
the ultimate decision maker, may want to see several
alternative diagnoses before focusing on one.

With diagnostic accuracy defined as above, the most
recent version of the HEPAR II model reached the di-
agnostic accuracy of 57%, 69%, 75%, and 79% for win-
dow sizes of 1, 2, 3, and 4 respectively [12].

3 INTRODUCTION OF NOISE
INTO HepAr II PARAMETERS

When introducing noise into parameters, we used es-
sentially the same approach as Pradhan et al. [14],
which is transforming each original probability into
log-odds function, adding noise parametrized by a pa-
rameter o (as we will show, even though o is propor-
tional to the amount of noise, in our case it cannot be
directly interpreted as standard deviation), and trans-



Figure 1: Transformed (biased, overconfident) vs. original probabilities for various levels of o.

forming it back to probability, i.e.,

p' = Lo *[Lo(p) + Noise(0, o)] (1)

where
Lo(p) = logyolp/(1 —p)] - (2)

3.1 Overconfidence bias

Now, we designed the Noise() function as follows.
Given a discrete probability distribution Pr, we iden-
tify the smallest probability pg. We transform this
smallest probability pg into ply by making it even
smaller, according to the following formula:

ps = Lo~ *[Lo(ps) — |Normal(0,c)|] .

We make the largest probability in the probability dis-
tribution Pr, p; larger by precisely the amount by
which we decreased pg, i.e.,

pL =pL+ps —Dps .

We are by this guaranteed that the transformed pa-
rameters of the probability distribution Pr’ add up to
1.0.

Figure 1 shows the effect of introducing the noise. As
we can see, the transformation is such that small prob-

abilities are likely to become smaller and large prob-
abilities are likely to become larger. Please note that
distributions have become more biased towards the ex-
treme probabilities. It is straightforward to prove that
the entropy of Pr’ is smaller than the entropy of Pr.
The transformed probability distributions reflect over-
confidence bias, common among human experts.

An alternative way of introducing biased noise, sug-
gested by one of the reviewers, is by means of build-
ing a logistic regression/IRT model (e.g., [1, 2, 15])for
each conditional probability table and, subsequently,
manipulating the slope parameter.

3.2 TUnderconfidence bias

Now, we designed the Noise() function as follows.
Given a discrete probability distribution Pr, we iden-
tify the highest probability pg. We transform this
largest probability py into p; by making it smaller,
according to the following formula:

py = Lo [Lo(pr) — |Normal(0, o)|] .

We make the smallest probability in the probability
distribution Pr, pg larger by precisely the amount by
which we decreased py, i.e.,

ps=ps+prL -] -



Figure 2: Transformed (biased, underconfident) vs. original probabilities for various levels of o.

We are by this guaranteed that the transformed pa-
rameters of the probability distribution Pr’ add up to
1.0.

Figure 2 shows the effect of introducing this noise. The
transformed probability distributions reflect undercon-
fidence bias.

3.3 Random noise

For illustration purpose, Figure 3 shows the transfor-
mation applied in our previous study [9]. For o > 1
the amount of noise becomes so large that any value
of probability can be transformed in any other value.
This suggests strongly that o > 1 is not really a region
that is of interest in practice. The main reason why we
look at such high o values is that this was the range
used in Pradhan et al. paper.

4 EXPERIMENTAL RESULTS

We have performed an experiment investigating the
influence of biased noise in HEPAR II’s probabilities
on its diagnostic performance. For the purpose of our
experiment, we assumed that the model parameters
were perfectly accurate and, effectively, the diagnos-
tic performance achieved was the best possible. Of
course, in reality the parameters of the model may not
be accurate and the performance of the model can be

improved upon. In the experiment, we studied how
this baseline performance degrades under the condi-
tion of noise, as described in Section 3.

We tested 30 versions of the network (each for a dif-
ferent standard deviation of the noise o0 €< 0.0,3.0 >
with 0.1 increments) on all records of the HEPAR data
set and computed HEPAR II’s diagnostic accuracy. We
plotted this accuracy in Figures 4 and 5 as a function
of o for different values of window size w.

Figure 4: The diagnostic accuracy of HEPAR II for
various window sizes as a function of the amount of
biased overconfident noise (expressed by o)

It is clear that HEPAR II’s diagnostic performance de-
teriorates with noise. In order to facilitate compari-
son between biased and unbiased noise and, by this,



Figure 3: Transformed (unbiased) vs. original probabilities for various levels of o.
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Figure 5: The diagnostic accuracy of HEPAR II for
various window sizes as a function of the amount of
biased underconfident noise (expressed by o)

judgment of the influence of overconfidence bias on
the results, we reproduce the experimental result of
[9] in Figure 6. The results are qualitatively similar,
although it can be seen that performance under over-
confidence bias degrades more slowly with the amount
of noise than performance under random noise. Perfor-
mance under underconfidence bias degrades the fastest
of the three. Figure 7 shows the accuracy of HEPAR 11
(w = 1) for biased and unbiased noise on the same
plot, where this effect is easier to see.

It is interesting to note that for small values of o, such
as 0 < 0.2, there is only a minimal effect of noise on
performance. This observation may offer some justi-
fication to the belief that Bayesian networks are not
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Figure 6: The diagnostic accuracy of HEPAR 11 for var-
ious window sizes as a function of amount of unbiased
noise (expressed by o) [9].

too sensitive to imprecision of their probability param-
eters.

5 SUMMARY

This paper has studied the influence of bias in param-
eters on model performance in the context of a prac-
tical medical diagnostic model, HEPAR II. We believe
that the study was realistic in the sense of focusing on
a real, context-dependent performance measure. Our
study has shown that the performance of HEPAR II
is sensitive to noise in numerical parameters, i.e., the
diagnostic accuracy of the model decreases after intro-
ducing noise into numerical parameters of the model.



Figure 7: The diagnostic accuracy of HEPAR II as a
function of the amount of noise (random, underconfi-
dent, and overconfident), window w =1

While our result is merely a single data point that
sheds light on the hypothesis in question, it looks like
overconfidence bias has a smaller negative effect on
model performance than random noise. Underconfi-
dence bias leads to most serious deterioration of per-
formance. While it is only a wild speculation that
begs for further investigation, one might see our re-
sults as an explanation of the fact that humans tend
to be overconfident rather than underconfident in their
probability estimates.
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Abstract

Bias is intrinsic to observation and reasoning in
both humans and automated systems. Bayesian
Belief Networks (BBNs) are well suited for
representing these biases and for applying bias
models to improve reasoning practices, but there
are a number of different ways that bias can be
represented and integrated into reasoning
processes using BBNs. In this paper, we describe
a number of methods to model biases using
BBNs and discuss the strengths and weaknesses
of each method.

1. INTRODUCTION

Bias is intrinsic to observation and reasoning. Though the
concept carries connotations of human judgment, bias
also applies to automated systems, introduced by the
limitations of their capabilities. Reasoning about
information that includes bias (i.e., processed information,
whether from human of machine) requires reasoning
about the information, itself, and about the biases that
influenced it. Humans do this naturally. In rich human-to-
human interactions, each person derives an understanding
of the biases involved from shared context and estimates
of the other’s attitudes and beliefs. In other circumstances,
such as shallow person-to-person interactions (e.g.,
reading a restaurant review from an unknown person) or
interactions involving automated processes (e.g., getting
directions from a GPS; incorporating human reports into
an automated decision aide; integrating contributions
from multiple sensor systems in a data fusion system),
biases and their influences need to be made explicit. As
Hastie & Dawes (2001) argue, incorporating an explicit
model of biases and their influences into reasoning
processes can lead to more robust and accurate reasoning
in both humans and automated systems.

Bayesian Belief Networks (BBNs) are well suited for
modeling biases in automated processing systems and
decision aides. Many factors contribute to bias,
interacting in a complex manner with each other and with
the overall bias. BBNs represent the type of probabilistic

influences and causal relationships required to capture
this interaction (Pearl & Russell, 2000; Pearl, 2001).
Furthermore, the graphical nature of BBNs further
supports the expression of these relationships by
providing an intuitive method to capture contributing
factors and influences. In addition to providing an
applicable modeling approach for capturing biases, BBNs
are already applied in many fields where consideration of
biases has the potential to make significant contributions
to performance and realism, such as military intelligence
(Koelle et al., 2006; Pfautz et al., 2005a; Pfautz et al.,
2005b), medical diagnostics (Kononenko, 1993;
Parmigiani, 2002; Nikovski, 2000), and human behavior
modeling (Guarino et al., 2006; Hudlicka & Pfautz, 2002;
Neal Reilly et al., 2007; Pfautz & Lovell, 2008).

To advance the incorporation of bias models in these
fields and others, in this paper we discuss the role of
biases in the decision making process (which includes, for
our purposes here, observation, reasoning, and decision
selection), several ways bias can be modeled using BBNS,
and the benefits and drawbacks of each of these methods.

2. BACKGROUND

The study of biases to date largely focuses on cognitive
biases. Several attempts have been made to categorize
different types of bias and to identify how they affect the
decision-making process. One method for classification is
to look at the source of the bias, for instance, dividing
uncertainty into forms that come from computational
models as opposed to human interpretation (Schunn,
Kirschenbaum, & Trafton, 2003). Another method is to
examine the use of bias and uncertainty in the decision-
making process, resulting in categories, which has
resulted in categories such as executional uncertainty,
goal uncertainty, and environmental uncertainty (Yovits
& Abilock, 1974). Another set of classifications
developed by Lipshitz and Strauss (1996) divides forms
of uncertainty into inadequate understanding, lack of
information, and conflicted alternatives.  Similar
taxonomies were developed by Schunn et al. (2003) and
Klein (1998). These taxonomies can prove to be useful in
attempts to develop descriptive models of human
reasoning. For example, Lipshitz & Straus (1996) discuss



five strategies for reasoning under uncertainty: 1) reduce
uncertainty by collecting more information; 2) use
assumptions to fill in gaps of knowledge; 3) weigh pros
and cons; 4) forestall; and 5) suppress uncertain
information. While these classifications of uncertainty
and an understanding of biases they introduce to decision-
making have been useful in the development of models of
human behavior, they may not generalize to other types of
biases.

3. ROLE OF BIAS

For the purpose of incorporating consideration of bias into
reasoning process, we are concerned with bias in two
separate roles. First, because bias impacts the creation of
the products of observations and reasoning processes, it
must be accounted for in the interpretation of those
products. Limitations, methods, and, in the case of
humans, preferences and cognitive biases introduce a
systematic modification into an observed product. This
modification must be identified and defined to properly
reason based on these products. Elaborating on the earlier
example, consider a negative review of a French
restaurant written by someone who dislikes French food.
Whether he is cognizant of this influence or not, the
product of his observation—the review—incorporates his
pre-existing preference. To reason based on this review,
anyone reading it needs to recognize and correct for the
preferences of the reviewer. Automated systems may not
have personal preferences, but their technical limitations
can introduce similar biases. Consider a sensor that
detects the presence of humans based on heat signatures.
Because readings are based on the contrast between the
person and the ambient temperature, this sensor has a
higher occurrence of false negatives when the temperature
is above body temperature. So, a reading showing no
people present on a 100°F day may be disingenuous
because it is the product of both the reading and the
hidden bias introduced by its technical limitations. As
with the previous example of human bias, the consumer
of this automated report—human or automated system—
must reason about both the contributing bias and the
information, itself, to accurately use the product.

Second, bias impacts the reasoning process applied to
make decisions based on information products. The
consumer introduces its own systematic modification of
the information based both on its own biases and on the
perceived biases incorporated in the product. For
example, the analysis system using reports from the heat
sensor may incorporate the fact that it does not function if
the temperature is over 100°F , and disregard the sensor’s
information products on a particularly hot days. Similarly,
the analysis may favor one sensor type over another for
gathering specific information, regardless of specific
conditions (e.g., an analysis system may trust a radar over
an eye witness due to a bias against non-technical
sources). In this role, bias is not considered solely in the
context of information production (though this may be

considered); these biases consider how the information is
being used and the reasoning processes involved.

These two roles are cyclic, as the results of a reasoning
process can be viewed as its own information product. If
there are known biases in that product, an estimate of
those biases may become an element in a new consumer’s
reasoning processes, alongside other reasoning biases of
the consumer. When the information product being
interpreted pertains to an observable truth (e.g., a sensor
detecting some object), understanding the influence of
bias allows the consumer to determine the accuracy of the
product and to integrate that accuracy information into its
own reasoning processes. When the product pertains to a
subjective belief or assessment (e.g., an opinion about a
restaurant), understanding the contributing biases allows
the consumer to determine how to integrate those biases
with its own biases.

These two roles comprise use cases for bias models, each
with their own concerns motivating different design
decisions. In the interpretation role, a model of bias can
serve as a mechanism to correct for biases. Here, the
details of the sources of those biases may not necessarily
be important. Rather, it is important to correct for errors
caused by biases. In the reasoning role, a model can be
used to self-regulate against the introduction of additional
biases, as well as to increase the accuracy of the
consumer’s estimation of biases contributing to a product,
which allows information to be incorporated into the
consumers own reasoning at the highest fidelity possible.
Here, the details of the sources of those biases may be
extremely important, as different meta-information and
information may have a direct influence in the reasoning
process.

4. THE STRUCTURE OF BIAS

As a concept, bias is closely related to meta-information.
Meta-information is information about information. That
is, information that serves to qualify and give context to
other information. For example, if a sensor reading is
information, the fact “the reading is two weeks old” is
meta-information—information about the report. For a
more extensive discussion of meta-information, see
(Guarino et al., 2006). Whereas meta-information is a
statement of fact (“the report is old”), bias is the effect
meta-information has on observations and reasoning
processes (“because the report is old, its contents are
probably inaccurate™). Thus, information types can be
divided into three levels:

1) the information, itself (e.g., the contents of the report)
2) meta-information (e.g., information about the report)

3) biases (e.g., the impact information about the
report—the meta-information—has on the
information in the report)

Biases are derived from meta-information by combining
that meta-information with elements of the information.



For example, a two week old sensor reading showing the
location of people in an open setting would not convey
their current location with high confidence, while a two
week old sensor reading showing the location of buildings
would represent their current position with a high degree
of certainty. So, in this example, the bias (“the
information in the reading is wildly inaccurate”) is
derived from a factor of the information (“people move
frequently”) combined with meta-information (“the report
is ten days old”). This same logic holds for subjective
assessments. In the restaurant review example,

e Meta-information: The reviewer hates French food
e Information: The restaurant is French

e Bias: The reviewer was predisposed to hate the
restaurant, regardless of its quality

These definitions of information types and the derivation
of bias are the basis for the structure of our bias models.

5. BIAS MODELS

In this section, we present a number of ways to model
bias, and we discuss the advantages and disadvantages of
each model in light of the roles of bias (see section 3) and
additional concerns about model use and creation. Bias
models vary along two dimensions: the level of detail
expressed about the bias and the level of integration with
the reasoning model to which it is meant to contribute.

5.1 IMPLICIT BIAS MODEL

The implicit bias model does not contain a representation
of the bias in its structure. Instead bias is expressed in the
relationship between nodes of the existing elements of the
model. Insomuch as it exists anywhere, the bias exists in
each node’s Conditional Probability Tables (CPTs). The
effect this bias exerts on the product of the model—the
observation, decision, behavior, etc.—is a change in the
beliefs of the nodes. The bias, itself, is not explicitly
represented separate from the state information of the
model. For example, see Figure 5-1, an implicit bias
model of our previous heat sensor example.
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;
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Figure 5-1: Implicit bias model structure of the heat
sensor example. Bias is represented only in the CPTs.

The sole factor represented as contributing to whether
people are present is the number of people detected by the
sensor. The bias in this model is expressed as uncertainty
in the outcome. For positive readings, the likelihood of

people being present is high. Because there are conditions
that can increase the likelihood of false negatives, though,
a negative reading leads to a lower certainty of people not
being present (see Figure 5-2).
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Figure 5-2: (a) left, shows the high belief that people are
present based on a positive reading of the heat-based
sensor; (b), right, shows a less certain belief that people
are not present based on a negative reading of the same
sensor. The bias is reflected in the increased uncertainty
due to the possibilities of false negatives.

The implicit bias model reflects the simplest case. Though
it does reflect the reality of the situation, this model is
insufficient in most other ways. Because elements that
contribute to the bias (i.e., meta-information) are not
explicitly represented, the bias is reflected in a permanent
change in confidence rather than reflecting specific
conditions (e.g., because the ambient temperature is not
explicitly represented, the confidence cannot change
based on the specific value of that variable). Instead, this
model merely represents that bias is possible in the
reasoning process. This model may be sufficient for
representing bias while interpreting data because the
value of the relevant meta-information may not be
available to the consumer. However, because it does not
explicitly describe the contributing factors and applies the
bias as a consistent change in certainty rather than on a
case-by-case basis, it is ineffective at providing a nuanced
bias model for reasoning.

5.2 INTEGRATED BIAS MODEL

In an integrated model, the factors that contribute to bias
(i.e., meta-information) are explicitly represented as
nodes in the network and are fully integrated into the
model of the observation, reasoning process, behavior,
etc. The bias—the effect of this meta-information—is still
contained in the CPTs. Like the implicit model, there is a
bias in the computational process, but that bias is not
explicitly represented as a node in the BBN. Figure 5-3
expands Figure 5-1 into an integrated model by adding
Ambient Temperature as an input node.
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Figure 5-3: An integrated bias model of the heat sensor
example. Meta-informational factors are represented. Bias
is represented in the CPTs.

This inclusion of factors that moderate biases allows the
bias model to account for the exact value of relevant
meta-information, allowing the bias to change
dynamically (see Figure 5-4). Furthermore, because each
factor is expressed independently, their combined effect
on the reasoning process can be nuanced.
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Figure 5-4: Integrated bias model of the heat sensor
example. In (a), a high ambient temperature increases
uncertainty. In (b), a low ambient temperature decreases
uncertainty. The bias reacts in real-time to conditions,
increasing accuracy of the model.

In an integrated bias model, factors contributing to bias
are explicitly expressed, so these models are more
accurate, and, therefore, better than implicit models in an
interpretation role. However, as in the implicit model, the
effect of these factors is still captured fully in the CPTs.
For this reason, expansion of the model is difficult, as
additions could require significant modifications to those
CPTs. Therefore, in a reasoning role it is difficult to adapt

parts of an integrated bias model for reuse in a larger
reasoning model.

5.3 CONSOLIDATED UNKNOWN BIAS MODEL

In a consolidated unknown bias model, bias is expressed
as a single node in the network, with connections to each
of the nodes in the network. This single node is a “black
box” meant to represent the amount of bias in the model
with no concern for the cause of the bias (note: this node
could be a placeholder for bias calculated using the
standalone bias model discussed in sections 5.5 and 5.6).
For an example of a consolidated unknown bias model,
see Figure 5-5.
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Figure 5-5: A consolidated unknown bias model, where
the strength of the bias present is represented by a single
node, which connects to all elements of the reasoning
model.

This model does contain a mechanism to express bias in
every part of the model, but it makes a large assumption
about the distribution of that bias. The effect bias has on
each element is expressed in the CPTs, which means that
the specific effects of the bias strength is individual to
each node, but the strength is shared. This model does
represent the effect of bias on a gross level, so it can be
used somewhat in an interpretation role, albeit with lower
fidelity since all biases are expressed in a single
dimension. The effect of the bias is hidden in the CPTs,
and the factors that contribute to the bias are completely
unstated, so in a reasoning role biases cannot be utilized
by addition elements of a reasoning model.

5.4 DISTRIBUTED UNKNOWN BIAS MODEL

The distributed unknown bias model represents bias as a
number of “black boxes”, each having an effect on one or
more elements of the reasoning model. Again, as black
boxes, the factors contributing to each bias are not
explicit. Bias nodes provide an overall representation of
the biases in the reasoning components to which they are
attached. For an example, see Figure 5-6.
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Figure 5-6: A distributed unknown bias model, where bias
is represented as a number of unknowns, each connected
to elements of the reasoning model.

Distributed unknown bias models are superior to
consolidated unknown bias models because they express a
more nuanced situation reflecting the susceptibility of
various elements of the model to different biases. The bias
nodes play a similar role to meta-information nodes in an
integrated bias model, but, as black-box bias modules,
they consolidate all factors contributing to a particular
bias into a single node. In an interpretation role, these
models are more useful than implicit bias models because
at least some gauge of the strength of bias active in each
element is present. However, unlike the integrated bias
model, the meta-information factors that affect their
strength are unknown. This reduces the already limited
ability of bias factors in distributed unknown bias models
to be integrated into an external reasoning model. Unlike
the models representing meta-information factors
explicitly, the ability to add factors is not a concern
because they are aggregated together in a single node, so
no CPTs need to be changed. However, without
expressing the composition of the bias, the bias strengths
and relationships are highly subjective.

5.5 STANDALONE BIAS MODEL

A standalone bias model expresses bias in an independent
model separate from the reasoning model. This is distinct
from the integrated model where factors are represented
but are integrated with the reasoning model itself. The
measure of bias resulting from this model can then be
applied to the reasoning model, filling the black-box need
of the consolidated or distributed bias model, or used
alone. Bias is expressed explicitly as a single node. Each
element in a reasoning model where bias is a factor would
require an independent bias model. The mechanism by
which each factor contributes to bias is hidden in the
CPTs. For an example of a standalone bias model, in the
heat-based human detector the meta-information factor
“Ambient Temperature” could be expressed (alongside
any other relevant factors) as explicit nodes. The effect
that each factor has (i.e., that high temperature increases
the uncertainty of negative readings) is still expressed
only in the CPTs. This example is depicted in Figure 5-7.
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Figure 5-7: A standalone bias model of detection bias for
a heat-based person detector. The product of this
standalone model could then be applied in a reasoning
model.

Like the integrated model, because standalone bias
models represent the contribution of each of a set of
factors to a bias explicitly, these models can dynamically
capture bias, providing greater accuracy. Expressing
factors in a separate model allows them to easily be
applied as a factor in a large or frequently changing
model. For this reason, standalone bias models excel in
circumstances where a bias model might be applied
independently at multiple points in a reasoning process.

For example, consider a data fusion application that
receives sporadic inputs from a host of sensors. Rather
than use a single monolithic model that integrates
information from all sensors, standalone bias models
could be used to dynamically assemble a model that
represents only those sensors that are currently active.
Because the majority of the sensors are silent at any given
time, this improves the efficiency of bias application in
such conditions. However, this autonomy has a tradeoff in
that bias is consolidated into a single metric resulting in
the influence of specific pieces of meta-information
having limited nuance in their effect on the reasoning
process. Furthermore, an element or even a network
fragment might be repeated in multiple standalone models
leading to wasteful repetitive computation. Nevertheless,
due to the explicit representation of meta-informational
factors and simple portability, this type of model applies
well in both interpretation and reasoning roles.

5.6 FULLY ENUMERATED STANDALONE BIAS
MODEL

Fully enumerated standalone bias models explicitly
represent both the meta-information that causes the bias
and the element that defines how that meta-information
contributes to bias (as discussed in Section 4). Rather than
a single model for each bias type as with the standalone
bias model, fully enumerated standalone bias model have
a single model for each element of the information that,
when paired with meta-information, could introduce a
bias. These models express all factors contributing to bias
and the bias itself as elements in the network, rather than
being contained in the CPTs. For an example of fully
enumerated standalone bias models, see Figure 5-8.
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Figure 5-8: Fully enumerated standalone bias models for
(a) bias related sensors whose performance is affected by
temperature, and (b) bias related to sensors whose
performance is affected by power supply.
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Similar to the way standalone bias model can be applied
dynamically based on the biases present, fully enumerated
standalone bias models can be applied based on the
definition of the system creating the product. So, a system
using these needs a model for each possible property of
the data sources. It can then apply them based on the
definition of each source. For example, in a fusion system
designed to dynamically calculate bias for any
configuration of sensors, a bias model could be
automatically assembled for each sensor based on the
operating characteristics of that sensor. The heat sensor,
defined as requiring low temperature, would incorporate
biases related to that requirement. Because these networks
determine the bias introduced by each factor separately,
their integration into a reasoning process can be more
nuanced than representations that consolidate bias into a
single measure. This, along with the transparency of
contributing factors, makes them ideal in a reasoning role.

6. CONCLUSIONS

There are numerous ways to represent bias as a BBN,
each of which has its own strengths and weaknesses.
Models of bias provide a mechanism to correct for bias to
increase accuracy and to integrate biased information into
human and automated reasoning processes. The most
advantageous form of model for a particular situation
depends on its intended use.

By systematically examining the composition of bias, we
have identified factors in its composition. The various
model types we discussed make use of this definition by
incorporating various factors at a range of fidelities,
making specific elements more or less accessible.
Additionally, we have defined two separate roles bias can
play in reasoning processes. These roles form the basis for
use cases, which we have used to evaluate each of the
types of models. Of the models discussed, the more

nuanced the application of bias to elements that
contributed to the production of information, the greater
the benefit in accurately interpreting the product of
reasoning processes without introducing additional biases.
To reason based on those products, those models that
include the greatest level of detail and autonomy for
factors that contribute to bias can be more easily and
accurately integrated into reasoning processes.

7. DISCUSSION

This set of bias representations encapsulates a significant
range of capabilities and tradeoffs. Among the most
prominent difference between these representations is the
degree of specificity about the sources of bias. In certain
applications, like accounting for bias from a technical
sensor, these bias factors can be easily identified and
described. In others, like accounting for bias in human
reasoning, these sources are obscured and can only be
hypothesized through intense effort, and are largely
unverifiable. In light of these impediments, going forward
we need to determine what guidelines could be
established to govern the applicability of different styles.
How can uncertainty about the causes of bias be
mitigated? Is there a way to create representations that
don’t incorporate unspecified sources of bias, but that are
applicable in situations where those sources are vaguely
defined? Or, are there ways to use black box bias
measures without fully sacrificing the attribution that
identifying specific sources provides? Is this attribution of
bias to particular sources necessarily important (e.g., for
accountability, trust)? What conditions of use make
attribution important (e.g., frequent updates, logic
exposed to the user)? The complexity of specificity
results, too, in a gain in precision in the end bias measure.
Can factors contributing to bias be calculated precisely
enough to warrant this precision in the end product?
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