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Abstract
Typically agent evaluation is done through
Monte Carlo estimation. However, stochas-
tic agent decisions and stochastic outcomes can
make this approach inefficient, requiring many
samples for an accurate estimate. We present a
new technique that can be used to simultaneously
evaluate many strategies while playing a single
strategy in the context of an extensive game. This
technique is based on importance sampling, but
utilizes two new mechanisms for significantly re-
ducing variance in the estimates. We demon-
strate its effectiveness in the domain of poker,
where stochasticity makes traditional evaluation
problematic.

1. Introduction
Evaluating an agent’s performance is a component of
nearly all research on sequential decision making. Typ-
ically, the agent’s expected payoff is estimated through
Monte Carlo samples of the (often stochastic) agent act-
ing in an (often stochastic) environment. The degree of
stochasticity in the environment or agent behavior deter-
mines how many samples are needed for an accurate esti-
mate of performance. For results in synthetic domains with
artificial agents, one can simply continue drawing samples
until the estimate is accurate enough. For non-synthetic
environments, domains that involve human participants, or
when evaluation is part of an on-line algorithm, accurate
estimates with a small number of samples are critical. This
paper describes a new technique for tackling this problem
in the context of extensive games.

An extensive game is a formal model of a sequential in-
teraction between multiple, independent agents with im-
perfect information. It is a powerful yet compact frame-
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work for describing many strategic interactions between
decision-makers, artificial and human1. Poker, for ex-
ample, is a domain modeled very naturally as an exten-
sive game. It involves independent and self-interested
agents making sequential decisions based on both public
and private information in a stochastic environment. Poker
also demonstrates the challenge of evaluating agent per-
formance. In one typical variant of poker, approximately
30,000 hands (or samples of playing the game) are some-
times needed to distinguish between professional and ama-
teur levels of play. Matches between computer and human
opponents typically involve far fewer hands, yet still need
to draw similar statistical conclusions.

In this work, we present a new technique for deriving
low variance estimators of agent performance in extensive
games. We employ importance sampling while exploit-
ing the fact that the strategy of the agent being evaluated
is typically known. However, we reduce the variance that
importance sampling normally incurs by selectively adding
synthetic data that is derived from but consistent with the
sample data. As a result we derive low-variance unbiased
estimators for agent performance given samples of the out-
come of the game. We further show that we can efficiently
evaluate one strategy while only observing samples from
another. Finally, we examine the important case where we
only get partial information of the game outcome (e.g., if
a player folds in poker, their private cards are not revealed
during the match and so the sequence of game states is not
fully known). All of our estimators are then evaluated em-
pirically in the domain of poker in both full and partial in-
formation scenarios.

This paper is organized as follows. In Section 2 we in-
troduce the extensive game model, formalize our problem,
and describe previous work on variance reduction in agent
evaluation. In Section 3 we present a general procedure
for deriving unbiased estimators and give four examples of

1In this work we use the words “agent”, “player”, and
“decision-maker” interchangeably and, unless explicitly stated,
aren’t concerned if they are humans or computers.
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these estimators. We then briefly introduce the domain of
poker in Section 4 and describe how these estimators can
be applied to this domain. In Section 5 we show empirical
results of our approach in poker. Finally, we conclude in
Section 6 with some directions for future work.

2. Background
We begin by describing extensive games and then we for-
malize the agent evaluation problem.

2.1. Extensive Games

Definition 1 (Osborne & Rubenstein, 1994, p. 200) a fi-
nite extensive game with imperfect information has the fol-
lowing components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of
actions, such that the empty sequence is in H and ev-
ery prefix of a sequence in H is also in H . Z ⊆ H
are the terminal histories (those which are not a pre-
fix of any other sequences). A(h) = {a : (h, a) ∈ H}
are the actions available after a non-terminal history
h ∈ H ,

• A player function P that assigns to each non-terminal
history (each member of H\Z) a member of N ∪{c},
where c represents chance. P (h) is the player who
takes an action after the history h. If P (h) = c, then
chance determines the action taken after history h.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on
A(h) (fc(a|h) is the probability that a occurs given
h), where each such probability measure is indepen-
dent of every other such measure.

• For each player i ∈ N a partition Ii of {h ∈ H :
P (h) = i} with the property that A(h) = A(h′)
whenever h and h′ are in the same member of the par-
tition. Ii is the information partition of player i; a set
Ii ∈ Ii is an information set of player i.

• For each player i ∈ N a utility function ui from the
terminal states Z to the reals R. If N = {1, 2} and
u1 = −u2, it is a zero-sum extensive game.

A strategy of player i σi in an extensive game is a func-
tion that assigns a distribution over A(Ii) to each Ii ∈ Ii.
A strategy profile σ consists of a strategy for each player,
σ1, σ2, . . ., with σ−i referring to all the strategies in σ ex-
cept σi.

Let πσ(h) be the probability of history h occurring if play-
ers choose actions according to σ. We can decompose
πσ = Πi∈N∪{c}π

σ
i (h) into each player’s contribution to

this probability. Hence, πσ
i (h) is the probability that if

player i plays according to σ then for all histories h′ that
are a proper prefix of h with P (h′) = i, player i takes
the subsequent action in h. Let πσ

−i(h) be the product of
all players’ contribution (including chance) except player
i. The overall value to player i of a strategy profile is
then the expected payoff of the resulting terminal node, i.e.,
ui(σ) =

∑
z∈Z ui(z)πσ(z). For Y ⊆ Z, a subset of possi-

ble terminal histories, define πσ(Y ) =
∑

z∈Y πσ(z), to be
the probability of reaching any outcome in the set Y given
σ, with πσ

i (Y ) and πσ
−i(Y ) defined similarly.

2.2. The Problem

Given some function on terminal histories V : Z → < we
want to estimate Ez|σ [V (z)]. In most cases V is simply
ui, and the goal is to evaluate a particular player’s expected
payoff. We explore three different settings for this problem.
In all three settings, we assume that σi (our player’s strat-
egy) is known, while σj 6=i (the other players’ strategies) are
not known.

• On-policy full-information. In the simplest case, we
get samples z1...t ∈ Z from the distribution πσ .

• Off-policy full-information. In this case, we get sam-
ples z1...t ∈ Z from the distribution πσ̂ where σ̂ dif-
fers from σ only in player i’s strategy: πσ

−i = πσ̂
−i. In

this case we want to evaluate one strategy for player i
from samples of playing a different one.

• Off-policy partial-information. In the hardest case,
we don’t get full samples of outcomes zt, but rather
just player i’s view of the outcomes. For example, in
poker, if a player folds, their cards are not revealed
to the other players and so certain chance actions are
not known. Formally, in this case we get samples
of K(zt) ∈ K, where K is a many-to-one mapping
and zt comes from the distribution πσ̂ as above. K
intuitively must satisfy the following conditions: for
z, z′ ∈ Z, if K(z) = K(z′) then,

– V (z) = V (z′), and
– ∀σ πσ

i (z) = πσ
i (z′).

2.3. Monte Carlo Estimation

The typical approach to estimating Ez|σ [V (z)] is through
simple Monte Carlo estimation. Given independent sam-
ples z1, . . . , zt from the distribution πσ , simply estimate
the expectation as the sample mean of outcome values.

1
t

t∑
i=1

V (zi) (1)
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As the estimator has zero bias, the mean squared error of
the estimator is determined by its variance. If the variance
of V (z) given σ is large, the error in the estimate can be
large and many samples are needed for accurate estimation.

Recently, we proposed a new technique for agent eval-
uation in extensive games (Zinkevich et al., 2006). We
showed that value functions over non-terminal histories
could be used to derive alternative unbiased estimators. If
the chosen value function was close to the true expected
value given the partial history and players’ strategies, then
the estimator would result in a reduction in variance. The
approach essentially derives a real-valued function Ṽ (z)
that is used in place of V in the Monte Carlo estimator
from Equation 1. The expectation of Ṽ (z) matches the ex-
pectation of V (z) for any choice of σ, and so the result
is an unbiased estimator, but potentially with lower vari-
ance and thus lower mean-squared error. The specific ap-
plication of this approach to poker, using an expert-defined
value function, was named the DIVAT estimator and was
shown to result in a dramatic reduction in variance. A sim-
pler choice of value function, the expected value assuming
the betting is “bet-call” for all remaining betting rounds,
can even make a notable reduction. We refer to this concep-
tually and computationally simpler estimator as (Bet-Call)
BC-DIVAT.

Both traditional Monte Carlo estimation and DIVAT are fo-
cused on the on-policy case, requiring outcomes sampled
from the joint strategy that is being evaluated. Further-
more, DIVAT is restricted to full-information, where the
exact outcome is known. Although limited in these re-
gards, they also don’t require any knowledge about any of
the players’ strategies.

3. General Approach
We now describe our new approach for deriving low-
variance, unbiased estimators for agent evaluation. In this
section we almost exclusively focus on the off-policy full-
information case. Within this setting we observe a sampled
outcome z from the distribution πσ̂ , and the goal is to esti-
mate Ez|σ [V (z)]. The outcomes are observed based on the
strategy σ̂ while we want to evaluate the expectation over
σ, where they differ only in player i’s strategy. This case
subsumes the on-policy case, and we touch on the more dif-
ficult partial-information case at the end of this section. In
order to handle this more challenging case, we require full
knowledge of player i’s strategies, both the strategy being
observed σ̂i and the one being evaluated σi.

At the core of our technique is the idea that synthetic his-
tories derived from the sampled history can also be used
in the estimator. For example, consider the unlikely case
when σ is known entirely. Given an observed outcome

z ∈ Z (or even without an observed outcome) we can ex-
actly compute the desired expectation by examining every
outcome.

VZ(z) ≡
∑
z′∈Z

V (z′)πσ(z′) = Ez|σ [V (z)] (2)

Although impractical since we don’t know σ, VZ(z) is an
unbiased and zero variance estimator.

Instead of using every terminal history, we could restrict
ourselves to a smaller set of terminal histories. Let U(z′ ∈
Z) ⊆ Z be a mapping of terminal histories to a set of ter-
minal histories, where at least z′ ∈ U(z′). We can con-
struct an unbiased estimator that considers the history z′

in the estimation whenever we observe a history from the
set U(z′). Another way to consider things is to say that
U−1(z) is the set of synthetic histories considered when
we observe z. Specifically, we define the estimator VU (z)
for the observed outcome z as,

VU (z) ≡
∑

z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))
(3)

The estimator considers the value of every outcome z′

where the observed history z is in the set U(z′). Each
outcome though is weighted in a fashion akin to impor-
tance sampling. The weight term for z′ is proportional to
the probability of that history given σ, and inversely pro-
portional to the probability that z′ is one of the considered
synthetic histories when observing sampled outcomes from
σ̂. Note that VU (z) is not an estimate of V (z), but rather
has the same expectation.

At first glance, VU may seem just as impractical as VZ since
σ is not known. However, with a careful choice of U we
can insure that the weight term depends only on the known
strategies σi and σ̂i. Before presenting example choices of
U , we first prove that VU is unbiased.

Theorem 1 If πσ̂
i (z) is non-zero for all outcomes z ∈ Z,

then,

Ez|σ̂ [VU (z)] = Ez|σ [V (z)] ,

i.e., VU is an unbiased estimator.

Proof: First, let us consider the denominator in the weight
term of VU . Since z′ ∈ U(z′) and πσ̂

i is always positive,
the denominator can only be zero if πσ̂

−i(z
′) is zero. If this

were true, πσ
−i(z

′) must also be zero, and as a consequence
so must the numerator. As a result the terminal history z′

is never reached and so it is correct to simply exclude such
histories from the estimator’s summation.

Define 1(x) to be the indicator function that takes on the
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value 1 if x is true and 0 if false.

Ez|σ̂ [VU (z)]

= Ez|σ̂

 ∑
z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))

 (4)

= Ez|σ̂

[∑
z′

1(z ∈ U(z′))V (z′)
πσ(z′)

πσ̂(U(z′))

]
(5)

=
∑
z′

V (z′)
πσ(z′)

πσ̂(U(z′))
Ez|σ̂ [1(z ∈ U(z′))] (6)

=
∑
z′

V (z′)
πσ(z′)

πσ̂(U(z′))
πσ̂(U(z′)) (7)

=
∑
z′

V (z′)πσ(z′) = Ez|σ [V (z)] (8)

The derivation follows from the linearity of expectation, the
definition of πσ̂ , and the definition of expectation.

We now look at four specific choices of U for which the
weight term can be computed while only knowing player
i’s portion of the joint strategy σ.

Example 1: Basic Importance Sampling. The simplest
choice of U for which VU can be computed is U(z) = {z}.
In other words, the estimator considers just the sampled
history. In this case the weight term is:

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)
πσ̂(z′)

(9)

=
πσ

i (z′)πσ
−i(z

′)
πσ̂

i (z′)πσ̂
−i(z′)

(10)

=
πσ

i (z′)
πσ̂

i (z′)
(11)

The weight term only depends on σi and σ̂i and so is a
known quantity. When σ̂i = σi the weight term is 1 and
the result is simple Monte Carlo estimation. When σ̂i is
different, the estimator is a straightforward application of
importance sampling.

Example 2: Game Ending Actions. A more interest-
ing example is to consider all histories that differ from the
sample history by only a single action by player i and that
action must be the last action in the history. For exam-
ple, in poker, the history where the player being evalu-
ated chooses to fold at an earlier point in the betting se-
quence is considered in this estimator. Formally, define
S−i(z) ∈ H to be the shortest prefix of z where the re-
maining actions in z are all made by player i or chance. Let
U(z) = {z′ ∈ Z : S−i(z) is a prefix of z′}. The weight

term becomes,

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)

πσ̂(S−i(z′))
(12)

=
πσ
−i(z

′)πσ
i (z′)

πσ̂
−i(S−i(z′))πσ̂

i (S−i(z′))
(13)

=
πσ
−i(S−i(z′))πσ

i (z′)
πσ̂
−i(S−i(z′))πσ̂

i (S−i(z′))
(14)

=
πσ

i (z′)
πσ̂

i (S−i(z′))
(15)

As this only depends on the strategies of player i, we can
compute this quantity and therefore the estimator.

Example 3: Private Information. We can also use all
histories in the update that differ only in player i’s pri-
vate information. In other words, any history that the other
players wouldn’t be able to distinguish from the sampled
history is considered. For example, in poker, any history
where player i receiving different private cards is consid-
ered in the estimator since the opponents’ strategy cannot
depend directly on this strictly private information. For-
mally, let U(z) =

{
z′ ∈ Z : ∀σ πσ

−i(z
′) = πσ

−i(z)
}

. The
weight term then becomes,

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)∑

z′′∈U(z′) πσ̂(z′′)
(16)

=
πσ
−i(z

′)πσ
i (z′)∑

z′′∈U(z′) πσ̂
−i(z′′)π

σ̂
i (z′′)

(17)

=
πσ
−i(z

′)πσ
i (z′)∑

z′′∈U(z′) πσ̂
−i(z′)π

σ̂
i (z′′)

(18)

=
πσ
−i(z

′)πσ
i (z′)

πσ̂
−i(z′)

∑
z′′∈U(z′) πσ̂

i (z′′)
(19)

=
πσ

i (z′)
πσ̂

i (U(z′))
(20)

As this only depends on the strategies of player i, we can
again compute this quantity and therefore the estimator as
well.

Example 4: Combined. The past two examples
show that we can consider histories that differ in the
player’s private information or by the player mak-
ing an alternative game ending action. We can also
combine these two ideas and consider any history
that differs by both an alternative game ending action
and the player’s private information. Define Q(z) ={
h ∈ H : |h| = |S−i(z)| and ∀σπσ

−i(h) = πσ
−i(S−i(z))

}
,
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Let U(z) = {z′ ∈ Z : a prefix of z′ is in Q(z)}.

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)

πσ̂(Q(z′))
(21)

=
πσ
−i(z

′)πσ
i (z′)∑

h∈Q(z′) πσ̂
−i(h)πσ̂

i (h)
(22)

=
πσ
−i(z

′)πσ
i (z′)∑

h∈Q(z′) πσ̂
−i(S−i(z))πσ̂

i (h)
(23)

=
πσ
−i(S−i(z′))πσ

i (z′)
πσ̂
−i(S−i(z′))

∑
h∈Q(z′) πσ̂

i (h)
(24)

=
πσ

i (z′)
πσ̂

i (Q(z′))
(25)

Once again this quantity only depends on the strategies of
player i and so we can compute this estimator as well.

We have presented four different estimators that try to ex-
tract additional information from a single observed game
outcome. We can actually combine any of these estima-
tors with other unbiased approaches for reducing variance.
This can be done by replacing the V function in the above
estimators with any unbiased estimate of V . In particular,
these estimators can be combined with our previous DIVAT
approach by choosing V to be the DIVAT (or BC-DIVAT)
estimator instead of ui.

3.1. Partial Information

The estimators above are provably unbiased for both the-
policy and off-policy full-information case. We now briefly
discuss the off-policy partial-information case. In this case
we don’t directly observe the actual terminal history zt but
only a many-to-one mapping K(zt) of the history. One
simple adaptation of our estimators to this case is to use the
history z′ in the estimator whenever it is possible that the
unknown terminal history could be in U(z′), while keep-
ing the weight term unchanged. Although we lose the un-
biased guarantee with these estimators, it is possible that
the reduction in variance is more substantial than the error
caused by the bias. We investigate empirically the mag-
nitude of the bias and the resulting mean-squared error of
such estimators in the domain of poker in Section 5.

4. Application to Poker
To analyze the effectiveness of these estimators, we will
use the popular game of Texas Hold’em poker, as played
in the AAAI Computer Poker Competition (Zinkevich &
Littman, 2006). The game is two-player and zero-sum. Pri-
vate cards are dealt to the players, and over four rounds,
public cards are revealed. During each round, the players
place bets that the combination of their public and private
cards will be the strongest at the end of the game. The game
has just under 1018 game states, and has the properties of

imperfect information, stochastic outcomes, and observa-
tions of the game outcome during a match exhibit partial
information.

Each of the situations described in Section 2, on-policy and
off-policy as well as full-information and partial informa-
tion, have relevance in the domain of poker. In particular,
the on-policy full-information case is the situation where
one is trying to evaluate a strategy from full-information
descriptions of the hands, as might be available after a
match is complete. For example, this could be used to more
accurately determine the winner of a competition involving
a small number of hands (which is always the case when
humans are involved). In this situation it is critical, that the
estimator is unbiased, i.e., it is an accurate reflection of the
expected winnings and therefore does not incorrectly favor
any playing style.

The off-policy full-information case is useful for examin-
ing past games against an opponent to determine which of
many alternative strategies one might want to use against
them in the future. The introduction of bias (depending on
the strategy used when playing the past hands) is not prob-
lematic, as the goal in this case is an estimate with as little
error as possible. Hence the introduction of bias is accept-
able in exchange for significant decreases in variance.

Finally, the off-policy partial-information case corresponds
to evaluating alternative strategies during an actual match.
In this case, we want to evaluate a set of strategies, which
aren’t being played, to try and identify an effective choice
for the current opponent. The player could then choose a
strategy whose performance is estimated to be strong even
for hands it wasn’t playing.

The estimators from the previous section all have natural
applications to the game of poker:

• Basic Importance Sampling. This is a straightfor-
ward application of importance sampling. The value
of the observed outcome of the hand is weighted by
the ratio of the probability that the strategy being eval-
uated (σi) takes the same sequence of actions to the
probability that the playing strategy (σ̂i) takes the se-
quence of actions.

• Game ending actions. By selecting the fold betting
action, a player surrenders the game in order to avoid
matching an opponent’s bet. Therefore, the game
ending actions estimator can consider all histories in
which the player could have folded during the ob-
served history.2 We call this the Early Folds (EF) es-
timator. The estimator sums over all possible prefixes

2In the full-information setting we can also consider situations
where the player could have called on the final round of betting to
end the hand.
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of the betting sequence where the player could have
chosen to fold. In the summation it weights the value
of surrendering the pot at that point by the ratio of
the probability of the observed betting up to that point
and then folding given the player’s cards (and σi) to
the probability of the observed betting up to that point
given the player’s cards (and σ̂i).

• Private information. In Texas Hold’em, a player’s
private information is simply the two private cards
they are dealt. Therefore, the private information esti-
mator can consider all histories with the same betting
sequence in which the player holds different private
cards. We call this the All Cards (AC) estimator. The
estimator sums over all possible two-card combina-
tions (excepting those involving exposed board or op-
ponent cards). In the summation it weights the value
of the observed betting with the imagined cards by the
ratio of the probability of the observed betting given
those cards (and σi) to the probability of the observed
betting (given σ̂i) summed over all cards.

5. Results
Over the past few years we have created a number of strong
Texas Hold’em poker agents that have competed in the
past two AAAI Computer Poker Competitions. To evalu-
ate our new estimators, we consider games played between
three of these poker agents: S2298 (Zinkevich et al., 2007),
PsOpti4 (Billings et al., 2003), and CFR8 (Zinkevich et al.,
2008). In addition, we also consider Orange, a competitor
in the First Man-Machine Poker Championship.

To evaluate these estimators, we examined records of
games played between each of three candidate strategies
(S2298, CFR8, Orange) against the opponent PsOpti4.
Each of these three records contains one million hands of
poker, and can be viewed as full information (both players’
private cards are always shown) or as partial information
(when the opponent folds, their private cards are not re-
vealed). We begin with the full-information experiments.

5.1. Full Information

We used the estimators described previously to find the
value of each of the three candidate strategies, using full-
information records of games played from just one of the
candidate strategies. The strategy that actually played the
hands in the record of games is called the on-policy strat-
egy and the others are the off-policy strategies. The results
of one these experiments is presented in Table 1. In this ex-
periment, we examined one million full-information hands
of S2298 playing against PsOpti4. S2298 (the on-policy
strategy) and CFR8 and Orange (the off-policy strategies)
are evaluated by our importance sampling estimators, as

Table 1. Full Information Case. Empirical bias, standard devi-
ation, and root mean-squared-error over a 1000 hand match for
various estimators. 1 million hands of poker between S2298 and
PsOpti4 were observed. A bias of 0* indicates a provably unbi-
ased estimator.

Bias StdDev RMSE
S2298
Basic 0* 5103 161

DIVAT 0* 1935 61
BC-DIVAT 0* 2891 91
Early Folds 0* 5126 162

All Cards 0* 4213 133
AC+BC-DIVAT 0* 2146 68

AC+EF+BC-DIVAT 0* 1778 56
CFR8
Basic 200 ± 122 62543 1988

DIVAT 62 ± 104 53033 1678
BC-DIVAT 84 ± 45 22303 710
Early Folds 123 ± 120 61481 1948

All Cards 12 ± 16 8518 270
AC+BC-DIVAT 35 ± 13 3254 109

AC+EF+BC-DIVAT 2 ± 12 2514 80
Orange

Basic 159 ± 40 20559 669
DIVAT 3 ± 25 11350 359

BC-DIVAT 103 ± 28 12862 420
Early Folds 82 ± 35 17923 572

All Cards 7 ± 16 8591 272
AC+BC-DIVAT 8±13 3154 100

AC+EF+BC-DIVAT 6±12 2421 77

well as DIVAT, BC-DIVAT, and a few combination estima-
tors. We present the empirical bias and standard deviation
of the estimators in the first two columns. The third col-
umn, “RMSE”, is the root-mean-squared error of the esti-
mator if it were used as the method of evaluation for a 1000
hand match (a typical match length). All of the numbers
are reported in millibets per hand played. A millibet is one
thousandth of a small-bet, the fixed magnitude of bets used
in the first two rounds of betting. To provide some intu-
ition for these numbers, a player that always folds will lose
750 millibets per hand, and strong players aim to achieve
an expected win rate over 50 millibets per hand.

In the on-policy case, where we are evaluating S2298, all of
the estimators are provably unbiased, and so they only dif-
fer in variance. Note that the Basic estimator, in this case,
is just the Monte-Carlo estimator over the actual money
lost or won. The Early Folds estimator provides no vari-
ance reduction over the Monte-Carlo estimate, while the
All Cards estimator provides only a slight reduction. How-
ever, this is not nearly as dramatic as the reduction pro-
vided by the DIVAT estimator. The importance sampling
estimators, however, can be combined with the DIVAT es-
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timator as described in Section . The combination of BC-
DIVAT with All Cards (“AC+BC-DIVAT”) results in lower
variance than either of the estimators separately.3 The
addition of Early Folds (“AC+EF+BC-DIVAT”) produces
an even further reduction in variance, showing the best-
performance of all the estimators, even though Early Folds
on its own had little effect.

In the off-policy case, where we are evaluating CFR8 or Or-
ange, we report the empirical bias (along with a 95% con-
fidence bound) in addition to the variance. As DIVAT and
BC-DIVAT were not designed for off-policy evaluation, we
report numbers by combining them with the Basic estima-
tor (i.e., using traditional importance sampling). Note that
bias is possible in this case because our on-policy strategy
(S2298) does not satisfy the assumption in Theorem 1, as
there are some outcomes the strategy never plays. Basic
importance sampling in this setting not only shows statis-
tically significant bias, but also exhibits impractically large
variance. DIVAT and BC-DIVAT, which caused consid-
erable variance reduction on-policy, also should consider-
able variance reduction off-policy, but not enough to offset
the extra variance from basic importance sampling. The
All Cards estimator, on the other hand, shows dramatically
lower variance with very little bias (in fact, the empirical
bias is statistically insignificant). Combining the All Cards
estimator with BC-DIVAT and Early Folds further reduces
the variance, giving off-policy estimators that are almost as
accurate as our best on-policy estimators.

The trends noted above continue in the other experiments,
when CFR8 and Orange are being observed. For space con-
siderations, we don’t present the individual tables, but in-
stead summarize these experiments in Table 2. The table
shows the minimum and maximum empirically observed
bias, standard deviation, and the root-mean-squared error
of the estimator for a 1000 hand match. The strategies be-
ing evaluated are separated into the on-policy case, when
the record involves data from that strategy, and the off-
policy case, when it doesn’t.

5.2. Partial Information

The same experiments were repeated for the case of partial
information. The results of the experiment involving S2298
playing against PsOpti4 and evaluating our three candidate
strategies under partial information is shown in Table 3.
For DIVAT and BC-DIVAT, which require full information
of the game outcome, we used a partial information vari-
ant where the full-information estimator was used when the

3The importance sampling estimators were combined with
BC-DIVAT instead of DIVAT because the original DIVAT esti-
mator is computationally burdensome, particularly when many
evaluations are needed for every observation as is the case with
the All Cards estimator.

Table 3. Partial-Information Case. Empirical bias, standard devi-
ation, and root mean-squared-error over a 1000 hand match for
various estimators. 1 million hands of poker between S2298 and
PsOpti4 with partial information were observed. A bias of 0* in-
dicates a provably unbiased estimator.

Bias StdDev RMSE
S2298
Basic 0* 5104 161

DIVAT 81±9 2762 119
BC-DIVAT 95±9 2759 129
Early Folds 47±1 5065 167

All Cards 5±13 4218 133
AC+BC-DIVAT 96±12 2650 127

CFR8
Basic 202±80 40903 1309

DIVAT 175±47 23376 760
BC-DIVAT 183±47 23402 762
Early Folds 181±78 39877 1274

All Cards 13±19 7904 250
AC+BC-DIVAT 101±16 4014 162

Orange
Basic 204±45 23314 765

DIVAT 218±22 10029 385
BC-DIVAT 244±21 10045 401
Early Folds 218±43 22379 741

All Cards 3±19 8092 256
AC+BC-DIVAT 203±16 3880 237

game outcome was known (i.e., no player folded) and win-
nings was used when it was not. This variant can result in a
biased estimator, as can be seen in the table of results. The
All Cards estimator, although also without any guarantee of
being unbiased, actually fares much better in practice, not
displaying a statistically significant bias in either the off-
policy or on-policy experiments. However, even though
the DIVAT estimators are biased their low variance makes
them preferred in terms of RMSE in the on-policy setting.
In the off-policy setting, the variance caused by Basic im-
portance sampling (as used with DIVAT and BC-DIVAT)
makes the All Cards estimator the only practical choice.
As in the full-information case we can combine the All
Cards and BC-DIVAT for further variance reduction. The
resulting estimator has lower RMSE than either All Cards
or BC-DIVAT alone both in the on-policy and off-policy
cases. The summary of the results of the other experiments,
showing similar trends, are shown in Table 4.

6. Conclusion
We introduced a new method for estimating agent perfor-
mance in extensive games based on importance sampling.
The technique exploits the fact that the agent’s strategy
is typically known to derive several low variance estima-
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Table 2. Summary of the Full-Information Case. Summary of empirical bias, standard deviation, and root-mean-squared error over
a 1000 hand match for various estimators. The minimum and maximum encountered values for all combinations of observed and
evaluated strategies is presented. A bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5102 – 5385 161 – 170

DIVAT 0* – 0* 1935 – 2011 61 – 64
BC-DIVAT 0* – 0* 2891 – 2930 91 – 92

AC+GE+BC-DIVAT 0* – 0* 1701 – 1778 54 – 56
Off Policy

Basic 49 – 200 20559 – 244469 669 – 7732
DIVAT 2 – 62 11350 – 138834 358 – 4390

BC-DIVAT 10 – 103 12862 – 173715 419 – 5493
AC+GE+BC-DIVAT 2 – 9 1816 – 2857 58 – 90

Table 4. Summary of the Partial-Information Case. Summary of empirical bias, standard deviation, and root-mean-squared error over a
1000 hand match for various estimators. The minimum and maximum encountered values for all combinations of observed and evaluated
strategies is presented. A bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5104 – 5391 161 – 170

DIVAT 56 – 144 2762 – 2876 105 – 170
BC-DIVAT 78 – 199 2759 – 2859 118 – 219

AC+BC-DIVAT 78 – 206 2656 – 2766 115 – 224
Off Policy

Basic 17 – 433 23314 – 238874 753 – 7566
DIVAT 103 – 282 10029 – 88791 384 – 2822

BC-DIVAT 35 – 243 10045 – 99287 400 – 3139
AC+BC-DIVAT 63 – 230 3055 – 6785 143 – 258

tors that can simultaneously evaluate many strategies while
playing a single strategy. We prove that these estimators
are unbiased in both the on-policy and off-policy case. We
empirically evaluate the techniques in the domain of poker,
showing significant improvements in terms of lower vari-
ance and lower bias. We show that the estimators can also
be used even in the challenging problem of estimation with
partial information observations.
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