
A Generalization of Haussler’s Convolution Kernel — Mapping
Kernel

Kilho Shin yshin@cmuj.jp

Carnegie Mellon CyLab Japan, 3-3 Higashi-kawasaki-cho, Chuo-ku, Kobe, Hyogo, Japan

Tetsuji Kuboyama kuboyama@gakushuin.ac.jp

Gakushuin University, Mejiro, Toshima-ku, Tokyo, Japan

Abstract

Haussler’s convolution kernel provides a suc-
cessful framework for engineering new positive
semidefinite kernels, and has been applied to a
wide range of data types and applications. In the
framework, each data object represents a finite
set of finer grained components. Then, Haus-
sler’s convolution kernel takes a pair of data ob-
jects as input, and returns the sum of the re-
turn values of the predetermined primitive posi-
tive semidefinite kernel calculated for all the pos-
sible pairs of the components of the input data
objects. On the other hand, the mapping kernel
that we introduce in this paper is a natural gener-
alization of Haussler’s convolution kernel, in that
the input to the primitive kernel moves over a
predetermined subset rather than the entire cross
product. Although we have plural instances of
the mapping kernel in the literature, their pos-
itive semidefiniteness was investigated in case-
by-case manners, and worse yet, was sometimes
incorrectly concluded. In fact, there exists a sim-
ple and easily checkable necessary and sufficient
condition, which is generic in the sense that it
enables us to investigate the positive semidefi-
niteness of an arbitrary instance of the mapping
kernel. This is the first paper that presents and
proves the validity of the condition. In addi-
tion, we introduce two important instances of the
mapping kernel, which we refer to as the size-of-
index-structure-distribution kernel and the edit-
cost-distribution kernel. Both of them are nat-
urally derived from well known (dis)similarity
measurements in the literature (e.g. the maxi-
mum agreement tree, the edit distance), and are
reasonably expected to improve the performance
of the existing measures by evaluating their dis-
tributional features rather than their peak (max-
imum/minimum) features.

1. Introduction

Haussler’s convolution kernel (Haussler, 1999) has
been used as a general framework to tailor known

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

primitive kernels to the context of specific applications.
In this section, we first review a degenerated form of
Haussler’s convolution kernel, which proves in fact to
be equivalent to the general form of Haussler’s con-
volution kernel (see 2.2). Let each data point x in a
space χ be associated with a finite subset χ′x of a com-
mon space χ′. Furthermore, we assume that a kernel
k : χ′×χ′ → R is given. Then, Haussler’s convolution
kernel K : χ× χ → R is defined as follows (see 2.2).

K(x, y) =
∑

(x′,y′)∈χ′x×χ′y

k(x′, y′) (1)

Haussler proved that, if k(x′, y′) is positive semidefi-
nite, then so is K(x, y). Haussler’s convolution kernel
is known to have a wide range of application (Lodhi
et al., 2001; Collins & Duffy, 2001; Suzuki et al., 2004).

On the other hand, the mapping kernel is a natural
generalization of Haussler’s convolution kernel, and is
defined by Eq. (2) for {Mx,y j χ′x × χ′y | (x, y) ∈
χ2}. The problem that the present paper addresses is
to determine whether the mapping kernel is positive
semidefinite.

K(x, y) =
∑

(x′,y′)∈Mx,y

k(x′, y′) (2)

The main contribution of the present paper is to
present a necessary and sufficient condition for the
mapping kernel K(x, y) defined by Eq. (2) to be pos-
itive semidefinite for all possible choices of positive
semidefinite k(x′, y′). More specifically, we prove that
the condition is that the mapping system {Mx,y |
(x, y) ∈ χ2} is transitive, i.e., (x′, y′) ∈ Mx,y∧(y′, z′) ∈
My,z ⇒ (x′, z′) ∈ Mx,z. Haussler’s convolution kernel
is indeed the special case of the mapping kernel for
{Mx,y = χ′x × χ′y}, which is apparently transitive.

We see plural instances of the mapping kernel in the
literature, and some of them were mistreated in re-
spective manners.

A Generalization of Haussler’s Convolution Kernel

• Although the elastic tree kernel (Kashima & Koy-
anagi, 2002) was treated as an instance of Haus-
sler’s convolution kernel, it is, in fact, an instance
of the mapping kernel. Therefore, the positive
semidefiniteness of the kernel should not have
been determined based on Haussler’s theorem.

• The codon-improved kernel (Zien et al., 2000) was
claimed to be unconditionally positive semidefi-
nite, since it was viewed as an instance of the poly-
nomial kernel. The kernel, in fact, is an instance
of the mapping kernel under certain settings of
weights.

That is to say, the positive semidefiniteness of the
aforementioned kernels were concluded on wrong
grounds, and in fact, the conclusion regarding the
codon-improved kernel is wrong — in reality, it is not
necessarily positive semidefinite.

The kernels introduced in (Menchetti et al., 2005) and
(Kuboyama et al., 2006) are also instances of the map-
ping kernel. In contrast to the elastic and codon-
improved kernels, their positive semidefiniteness was
properly investigated, albeit in specific manners.

This is the first paper that recognizes the mapping
kernel as a generic class of kernels, and presents a nec-
essary and sufficient condition that a mapping kernel
becomes positive semidefinite. Furthermore, the con-
dition is simple, intuitive and easy to check, and there-
fore, would make engineering of new instances of the
mapping kernel easier, more efficient and more effec-
tive to a large extent.

As the second contribution of the present paper, we
take advantage of the mapping kernel, and present a
way to augment a couple of well-known frameworks to
engineer similarity functions for discretely structured
objects (e.g. strings, trees, general graphs).

It is known that the maximum sizes of shared substruc-
tures of the objects can be used as a good measure of
similarities of the objects. The maximum agreement
subtree is a good example. Also, the edit distance has
been applied to various types of objects. An edit dis-
tance between two data objects is generally defined as
the minimum cost of edit scripts that transform one
object into the other.

These two frameworks are common in that they only
focus on the maximum/minimum values of the similar-
ity measures (i.e. the sizes of shared substructures and
the costs of edit scripts), and therefore, only those sub-
structures with the maximum sizes or those edit scripts
with the minimum costs can contribute to the similar-
ity functions. It is, however, reasonably presumable
that distributional features of the measurements may

carry useful information with regard to similarities of
objects, and more accurate similarity functions can be
engineered by evaluating the distributional features.

Based on the aforementioned consideration, we intro-
duce two novel classes of kernels (similarity functions)
each evaluating the distributional features of the sizes
of shared substructures or the costs of edit scripts.
Also, we show a general way to view them as mapping
kernels. By virtue of our simple criteria for positive
semidefinite mapping kernels, we can easily determine
whether instances of the new kernel classes are positive
semidefinite, and, if they are, we can take advantage
of sophisticated classifiers such as support vector ma-
chines (SVM). In 3.1 and 3.2, we see that the examples
of distribution-based similarity functions derived from
maximum agreement subtrees and general tree edit
distances are positive semidefinite, while those derived
from maximum refinement trees (Hein et al., 1996) and
less-constrained tree edit distance (Lu et al., 2001) are
not.

2. The Mapping Kernel

In this section, as a preliminary, we quickly review
the positive semidefinite kernel (2.1) and Haussler’s
convolution kernel (2.2). Then, we describe our main
theorem with regard to the mapping kernel (2.3).

2.1. The Positive Semidefinite Kernel

A kernel K : χ×χ −→ R is said to be positive semidef-
inite, if, and only if, for arbitrary x1, . . . , xn ∈ χ, the
corresponding Gram matrix G = [K(xi, xj)]i,j=1,...,n

is a positive semidefinite matrix. Positive semidefi-
niteness of kernels is a critical condition for reproduc-
ing kernel Hilbert spaces to exist. In simpler cases
where a data point space χ is finite, this condition is
equivalent to the property that there exists a mapping
Φ : χ −→ RN such that K(x, y) = Φ(x)Φ(y)T.

In this paper, by a positive semidefinite matrix, we
mean a real symmetric matrix (i.e. AT = A) that sat-
isfies one of, hence, all of the mutually equivalent con-
ditions stated below, where dim A = n.

• (c1, . . . , cn)A(c1, . . . , cn)T ≥ 0 for ∀(c1, . . . , cn) ∈
Rn.

• A has only non-negative real eigenvalues.
• There exists an n-dimensional orthogonal matrix

P (i.e. PTP = En) such that PTAP is a diagonal
matrix with non-negative elements.

• A = BTB for some m× n real matrix B.

A Generalization of Haussler’s Convolution Kernel

2.2. Haussler’s Convolution Kernel

Hausler’s theorem (Haussler, 1999, Theorem 1) as-
serts the positive semidefiniteness of Haussler’s R-
convolution kernel, and Theorem 1 presents its special
case for D = 1.

Theorem 1. Let k : χ′×χ′ → R be a positive semidefi-
nite kernel. Given a relation R j χ′×χ, K : χ×χ → R
defined by Eq. (3) is also positive semidefinite.

K(x, y) =
∑

(x′,x)∈R

∑

(y′,y)∈R

k(x′, y′) (3)

It is interesting to note that Haussler’s theorem for
D > 1 is obtained as a corollary to Theorem 1.

Corollary 1. (Haussler, 1999) Let kd : χ′d × χ′d −→
R be positive semidefinite kernels for d = 1, . . . , D.
Given a relation R ⊂ χ′1×· · ·×χ′D×χ, the kernel K :
χ×χ −→ R defined below is also positive semidefinite.

K(x, y) =
∑

(x′1,...,x′
D

,x)∈R

∑

(y′1,...,y′
D

,y)∈R

D∏

d=1

kd(x′d, y
′
d)

2.3. Definition and Main Theorem

Letting χ′x denote {x′ ∈ χ′ | (x′, x) ∈ R}, Eq. (1) gives
an equivalent form of Eq. (3). On the other hand, the
mapping kernel is defined so that (x′, y′) moves over
a subset Mx,y of χ′x × χ′y rather than the entire cross
product χ′x × χ′y (Eq. (2)).

The present paper shows that the mapping kernel is
positive semidefinite for all possible choices of posi-
tive semidefinite underlying kernels k, if, and only if,
{Mx,y | x, y ∈ χ} is transitive (Definition 2).

Therefore, for an arbitrary non-transitive {Mx,y}, a
positive semidefinite underlying kernel k(x′, y′) exists
such that the resulting K(x, y) is not positive semidef-
inite (4.1.2). On the other hand, K(x, y) may be posi-
tive semidefinite even for a non-transitive {Mx,y} and
a positive semidefinite k(x′, y′) (Example 1).

Example 1. The (k,m)-mismatch kernel K(k,m)(x, y)
is positive semidefinite (Leslie et al., 2004). When
χ′x and χ′y denote the sets of k-mers in x and y,
K(k,m)(x, y) can be regarded as a mapping kernel for
the non-transitive {Mx,y} defined as follows.

Mx,y = {(x′, y′) | K(k,m)(x′, y′) 6= 0} j χ′x × χ′y

K(k,m)(x, y) =
∑

(x′,y′)∈Mx,y

K(k,m)(x′, y′)

The result is formalized as follows.

Definition 1. A mapping system M is a triplet
(χ, {χ′x | x ∈ χ}, {Mx,y j χ′x × χ′y | (x, y) ∈ χ2}) such
that |Mx,y| < ∞ and (y′, x′) ∈ My,x if (x′, y′) ∈ Mx,y.
Definition 2. A mapping system (χ, {χ′x}, {Mx,y})
is said to be transitive, if, and only if, (x′1, x

′
2) ∈

Mx1,x2 ∧ (x′2, x
′
3) ∈ Mx2,x3 ⇒ (x′1, x

′
3) ∈ Mx1,x3 holds

for arbitrary xi ∈ χ and x′i ∈ χ′xi
(i = 1, 2, 3).

Definition 3. An evaluating system E for a mapping
system (χ, {χ′x}, {Mx,y}) is a triplet (χ′, k, {γx | x ∈
χ}) with a positive semidefinite underlying kernel k :
χ′ × χ′ → R and projections γx : χ′x → χ′.
Definition 4. For a mapping system M =
(χ, {χ′x}, {Mx,y}) and an evaluating system E =
(χ′, k, {γx}) for M, the mapping kernel with respect
to M and E is defined by Eq. (4).

K(x, y) =
∑

(x′,y′)∈Mx,y

k(γx (x′) , γy (y′)) (4)

Now, our main theorem is described as follows, and its
proof is given in Section 4.
Theorem 2. For a mapping system M, the following
are equivalent to each other.

1. M is transitive.
2. For an arbitrary evaluating system E for M, the

mapping kernel with respect toM and E is positive
semidefinite.

It is possible to prove (1) ⇒ (2) of Theorem 2 as a
corollary to Theorem 1. Nevertheless, our direction
in the present paper is opposite — we like to view
Theorem 1 as a trivial corollary to Theorem 2. In fact,
we will prove Theorem 2 without assuming Theorem 1
in Section 4.

3. Similarity Functions Based on
Distributions

In this section, we introduce two new classes of the
mapping kernel. The kernels are expected to im-
prove the classification performance of known simi-
larity measurements by evaluating their distributional
features.

3.1. Size-of-index-structure-distribution
Kernels

When some structures are commonly derived from two
data objects, the structures may carry information
with regard to similarities between the data objects.
In this paper, we call such structures index structures.

The agreement subtree is a good example of the in-
dex structure, when data objects are represented as

A Generalization of Haussler’s Convolution Kernel

trees. An agreement subtree between plural input
trees is usually defined as a subtree homeomorphically
included in all the input trees (Berry & Nicolas, 2004).
In the present paper, we assume that the input trees
are a pair of trees. Even when we fix the input tree
pair, there may exist more than one agreement sub-
tree, and the maximum size of the agreement subtrees
can be naturally viewed as a measure of similarities be-
tween the input trees. The maximum agreement sub-
trees (MAST) problem is the problem to determine at
least one agreement subtree with the maximum size
among the possible agreement subtrees for the input
trees. The MAST problem has been extensively stud-
ied from the application point of view (e.g. evolution-
ary trees (Hein et al., 1996; Berry & Nicolas, 2004),
shape-axis trees (Pelillo, 2002)) as well as from the
algorithm efficiency point of view.

When using the size of the maximum agreement sub-
trees as a similarity measurement between trees, we
discard those agreement subtrees smaller in size than
the maximum ones, and therefore, they do not con-
tribute to the final evaluation at all. It is, however,
reasonable to think that distributional features of the
sizes of agreement subtrees may carry useful informa-
tion with regard to similarities of the trees.

Based on the aforesaid consideration, we introduce the
kernel of Eq. (5), which evaluates distributional fea-
tures of the sizes of agreement subtrees. In Eq. (5), we
let AST(x, y) denote the set of the agreement subtrees
between x and y, and f : N → R+ = {y ≥ 0 | y ∈ R}
be an increasing function.

K(x, y) =
∑

t∈AST(x,y)

f(size of(t)) (5)

If x and y are rooted trees of bounded degree, and
if f(n) = αn or f(n) = n, for example, there ex-
ist polynomial-time efficient algorithms to calculate
K(x, y).

Beside the advantages due to the distributional fea-
tures, the kernel could provide the advantage of using
sophisticated classifiers such as SVM (Cristianini &
Shawe-Taylor, 2000). In fact, our contribution asserts
that K(x, y) is positive semidefinite as follows. First,
K(x, y) can be viewed as a mapping kernel under the
following notation.

• χ′x is the set of the subtrees of x.
• Mx,y = {(x′, y′) ∈ χ′x × χ′y | x′ ∼= y′}, where

x′ ∼= y′ means that they are homeomorphic as
trees.

• k(x′, y′) =

{
f(size of(x′)) if size of(x′) = size of(y′),
0 otherwise.

It is easy to see that {Mx,y} is transitive and k(x′, y′)
is positive semidefinite. Hence,

K(x, y) =
∑

t∈AST(x,y)

f(size of(t)) =
∑

(x′,y′)∈Mx,y

k(x′, y′)

is positive semidefinite by Theorem 2.

Besides the maximum agreement subtree, the max-
imum refinement subtree (Hein et al., 1996; Berry
& Nicolas, 2004), maximum subtree isomorphism
(Pelillo, 2002; Aoki et al., 2003) and maximum agree-
ment supertree (Jansson et al., 2005) are also used as
index structures for trees. As for general graphs, the
maximal common clique included in an input pair of
graphs is also studied in association with MAST in
(Pelillo, 2002).

For each of those index structures, we can define ker-
nels in the same way as for MAST. We have only to
replace AST(x, y) in Eq. (5) with the set of the re-
spective index structures. Moreover, except for the
maximum refinement subtree, through the same dis-
cussion as for MAST, the kernels prove to be positive
semidefinite.

Interestingly, Theorem 2 also implies that the kernels
defined based on the minimum refinement subtree are
not necessarily positive semidefinite. The minimum
refinement subtree for x′ j x and y′ j y is defined
as the minimum tree t such that both x′ and y′ can
be derived from t through a sequence of edge contrac-
tions, and the maximum refinement subtree problem
(a.k.a. the maximum compatible tree problem) is the
problem to find a minimum refinement subtree with
the largest size. Different from the agreement subtree,
the relation of having a refinement is not an equiva-
lence relation — even if x′ and y′, and y′ and z′, have
refinement subtrees, x′ and z′ do not necessarily have a
refinement subtree. This implies that the correspond-
ing Mx,y is not necessarily transitive. Therefore, The-
orem 2 asserts that the corresponding K(x, y) is not
necessarily positive semidefinite.

3.2. Edit-cost-distribution Kernels

The Edit distance is also used as an effective measure
of similarities between discrete data structures (e.g.
(Wagner & Fischer, 1974) for strings, (Barnard et al.,
1995) for trees, (Bunke, 1997) for general graphs).

Let x be an object consisting of one or more compo-
nents. For example, a string consists of one or more
characters which are laid out on a line. For another
example, a graph consists of one or more vertices and
edges, and each edge connects a vertex to another. We
first give a general definition of edit operations, edit

A Generalization of Haussler’s Convolution Kernel

scripts, edit costs and edit distances for such objects.

An edit operation is an operation on a component of
x, and is one of (i) substituting a component b for a
component a of x (denoted by 〈a → b〉), (ii) deleting
a component a of x (denoted by 〈a → •〉), and (iii)
inserting a component a into x (denoted by 〈• → a〉).
An edit script is a sequence of zero or more edit opera-
tions which transforms an object into another. When
a cost γ〈a → b〉 ∈ R is given for each edit operation
〈a → b〉1, the cost γ(σ) of an edit script σ is the sum
of the costs of the edit operations that comprise σ. Fi-
nally, an edit distance d(x, y) between objects x and y
is defined by:

d(x, y) = min{γ(σ) | σ transforms x into y}.

Therefore, those edit scripts with larger costs than the
minimum cost do not contribute to the final edit dis-
tance. In contrast, by introducing kernels by Eq. (6)
with a decreasing function f : R+ → R+, we try to
take advantage of the information that those discarded
edit scripts potentially carry.

K(x, y) =
∑

σ transforms x into y

f(γ(σ)) (6)

It is important to note that there exists a natural in-
terpretation of Eq. (6). In a natural setting where
the cost γ〈a → b〉 is defined as the negative logarithm
of the probability that the substitution of b for a (a
or b could be •) would occur (e.g. (Li & Jiang, 2005;
Salzberg, 1997)), we let f(x) = e−x. For an edit script
σ = 〈x′1 → y′1〉 · · · 〈x′n → y′n〉 transforming x into y,
f(γ(σ)) is evaluated as follows.

f(γ(σ)) = e−γ(σ) = e−
∑n

i=1
γ〈x′i→y′i〉

= e−
∑n

i=1
− log Pr(x′i→y′i) =

n∏

i=1

Pr(x′i → y′i)

Hence, K(x, y) by Eq. (6) equals the total probability
that x would be transformed into y.

Usage of sophisticated classifiers such as SVM is an-
other potential advantage of the kernels of the form of
Eq. (6). In fact, as shown below, the kernels can be
viewed as mapping kernels, if we can pose the following
four assumptions.

1Usually, components are labeled with elements of an
alphabet, and costs of edit operations are defined on the
labels rather than on the components. However, for sim-
plicity, we assume that the cost function is defined over the
space of objects in the present paper. In addition, to make
the resulting edit distance be a distance metric, the costs
are often assumed to be a distance metric.

1. The cost function is symmetric (i.e. γ〈a → b〉 =
γ〈b → a〉).

2. We let f(x) = e−cx for some positive constant c.
3. In order to avoid calculating infinite sums, we take

only irreducible edit scripts into consideration in
calculating Eq. (6) — Assume that σ = 〈x′1 →
y′1〉 . . . 〈x′n → y′n〉 transforms x into y. σ is irre-
ducible, if, and only if, (1) x′i (resp. y′i) is either
a component of x (resp. y) or • and (2) exactly
one edit operation 〈x′i → y′i〉 is applied to each
component of x and y.

4. If two irreducible edit scripts differ from each
other only in the order of the included edit op-
erations, they are identified in calculating Eq. (6),
that is, they are evaluated only once.

For σ = 〈x′1 → y′1〉 . . . 〈x′n → y′n〉, we assume that
x′i and y′i are respectively components of x and y,
if, and only if, i ∈ {1, . . . ,m(σ)}, and call 〈x′1 →
y′1〉 · · · 〈x′m(σ) → y′m(σ)〉 the core of σ. Then, γ(σ) and
K(x, y) are evaluated as follows.

γ(σ) =
m(σ)∑

i=1

(γ〈x′i → y′i〉 − γ〈x′i → •〉 − γ〈• → y′i〉)

+
∑

x′∈x

γ〈x′ → •〉+
∑

y′∈y

γ〈• → y′〉

K(x, y) = (7)∏

ξ∈x

f(γ〈ξ → •〉) ·
∏
η∈y

f(γ〈• → η〉) ·

∑

σ




m(σ)∏

i=1

f(γ〈x′i → y′i〉)
f(γ〈x′i → •〉)f(γ〈• → y′i〉)







In Eq. (7), the first two factors of the right-hand side
are functions of x and y, and therefore, we denote them
by g(x) and g(y), respectively. On the other hand, the
last factor is a function of x′ = (x′1, . . . , x

′
m(σ)) and

y′ = (y′1, . . . , y
′
m(σ)), and is denoted by k(x′, y′). We

define Mx,y as follows.

Mx,y = {((x′1, . . . , x′m), (y′1, . . . , y
′
m)) |

∃σ[〈x′1 → y′1〉 · · · 〈x′m → y′m〉 is the core of σ]}
Then, the following holds

K(x, y) = g(x) · g(y) ·

 ∑

(x′,y′)∈Mx,y

k(x′, y′)




= g(x) · g(y) · K̄(x, y)

In particular, K̄(x, y) is a mapping kernel, and K(x, y)
is positive semidefinite, if, and only if, so is K̄(x, y),

A Generalization of Haussler’s Convolution Kernel

since g(x) cannot take the value 0. The kernel K̄(x, y),
however, is not necessarily positive semidefinite, even
if k(x′, y′) is positive semidefinite, since {Mx,y} is not
necessarily transitive. We will investigate this problem
taking the tree edit distance as an example.

For the tree edit distance, the edit operations act on
vertices of trees. For a pair (x′, y′) to be the core of
some irreducible tree edit script, it is necessary and
sufficient that ϕ defined by ϕ(x′i) = y′i preserves the
ancestor-descendent relation and the sibling (left-to-
right) relation (Tai, 1979). Therefore, Mx,y for the
general tree edit distance is defined as follows, where
x′i < x′j means x′j is an ancestor of x′i and x′i ≺ x′j
means x′j is located on the right side of x′i.

Mx,y = {((x′1, . . . , x′m), (y′1, . . . , y
′
m)) | (8)

[x′i < x′j ⇔ y′i < y′j] ∧ [x′i ≺ x′j ⇔ y′i ≺ y′j]}
It is straightforward to verify that {Mx,y} is transi-
tive. Therefore, Theorem 2 asserts that, if k(x′, y′) is
positive semidefinite, so is K̄(x, y) for this {Mx,y}.
On the other hand, two subclasses of the general tree
edit distance have been proposed. They are con-
strained (a.k.a. structure-preserving) tree edit distance
(Zhang, 1995) and less-constrained (a.k.a. alignable)
tree edit distance (Lu et al., 2001).

Those subclasses of the general tree edit distance de-
termine respective Mx,y, which are generally proper
subsets of those define by (8). Since {Mx,y} for the
constrained tree edit distance is easily verified to be
transitive, the resulting K̄(x, y) turns out positive
semidefinite by virtue of Theorem 2. In contrast to
the constrained edit distance, {Mx,y} for the less-
constrained tree edit distance is not transitive. There-
fore, Theorem 2 implies that K̄(x, y) is not necessarily
positive semidefinite.

4. Proof of Theorem 2

4.1. Key Lemma

Let Xij be m-dimensional square matrices parameter-
ized by (i, j) = {1, . . . , n}2, and let X denote the de-
rived mn-dimensional square matrix [Xij]i,j=1,...,n —
the (m(i− 1) + k, m(j− 1) + l)-element of X, denoted
by Xij

kl , is defined to be the (k, l)-element of Xij .

Furthermore, for an m-dimensional square matrix A,
smryA(X) denotes the n-dimensional square matrix
[tr(ATXij)]i,j=1,...,n. Note that the (i, j)-element of
smryA(X) is given by Eq. (9).

tr(ATXij) =
m∑

k=1

m∑

l=1

AklX
ij
kl (9)

Proposition 1. For an m-dimensional square matrix
A, the following are equivalent to each other.

1. A is positive semidefinite.
2. smryA(X) is positive semidefinite for an arbitrary

mn-dimensional positive semidefinite matrix X.

Proof. First, we prove the assertion assuming that A
is diagonal, whose I-th diagonal element is αI .

The condition 2 implies 1, since we see αI ≥ 0 for any
I by letting X be the sparse matrix such that Xkl is
1, if k = l = I, and 0, otherwise.

On the other hand, the converse follows from Eq. (10),
since smryA(X) = ZTZ holds for the m2n× n matrix
Z such that Zmn(I−1)+m(k−1)+i,j =

√
αIY

kj
iI , where Y

is an mn-dimensional matrix such that X = Y TY .

trATXij =
m∑

I=1

αI

(
n∑

k=1

m∑

l=1

Y ki
lI Y kj

lI

)
(10)

=
m∑

I=1

n∑

k=1

m∑

l=1

(
√

αIY
ki
lI)(

√
αIY

kj
lI)

The general cases for non-diagonal A reduces to the
diagonal case, since, for P such that PTAP is di-
agonal, smryA(X) = smryP TAP (X̃) holds for X̃ =
[PTXijP]i,j=1,...,n.

4.2. (1) Implies (2)

Investigating whether K is positive semidefinite is
equivalent to investigating whether the Gram matrices
for finite subsets of χ are positive semidefinite. There-
fore, without any loss of generality, we may assume
that χ is a finite set {x1, . . . , xn}. Since Mxi,xj are
finite, we may also assume χ′xi

are finite.

We slightly extend the definition of (χ′, k, {γx}) by
adding a new element • ∈ χ′ such that k(•, •) =
k(•, x′) = k(x′, •) = 0 hold for an arbitrary x′ ∈ χ′.
Even after the extension, (χ′, k, {γx}) still remains an
evaluating system for M.

Next, we define χ̄′, M̄ and {γ̄x} as follows: χ̄′ is the
disjoint union

⊔n
i=1 χ′xi

; x̄′ denotes the image of x′ ∈
χ′x in χ̄′; M̄ = {(x̄′, ȳ′) | (x′, y′) ∈ Mx,y ∧ x, y ∈ χ};
γ̄x : χ̄′ −→ χ′ satisfies that γ̄x(x̄′) = γx (x′), if x′ ∈ χ′x,
and γ̄x(x̄′) = •, otherwise. Then, the mapping kernel
K with respect to M and E is rewritten as follows.

K(x, y) =
∑

(x̄′,ȳ′)∈M̄

k(γ̄x(x̄′), γ̄y(ȳ′))

Furthermore, K(xi, xj) = tr(ATXij) holds, when we
define m-dimensional matrices A and Xij for χ̄′ =

A Generalization of Haussler’s Convolution Kernel

{x̄′1, . . . , x̄′m}. Akl = 1 if (x̄′k, x̄′l) ∈ M̄ , and Akl = 0
otherwise; Xij

kl = k(γ̄xi(x̄
′
k), γ̄xj (x̄

′
l)).

To show the assertion, it suffices to prove A is posi-
tive semidefinite by Proposition 1 (X = [Xij]i,j=1,...,n

is positive semidefinite by definition). A is symmet-
ric, since (x′, y′) ∈ Mx,y ⇔ (y′, x′) ∈ My,x holds.
The hypothesis that {Mx,y} is transitive implies that
{1, . . . ,m} is decomposed into U1t· · ·tUM such that:
Ua ∩ Ub = ∅, if a 6= b; (x̄′k, x̄′l) ∈ M̄ , if, and only
if, k, l ∈ Ua for some a ∈ {1, . . . , M}. Therefore,
A =

⊕M
a=1 A[Ua] holds, and therefore, A is positive

semidefinite, since so are A[Ua].

4.3. (2) Implies (1)

We prove the cotraposition of the assertion. If M is
not transitive, A includes at least one of the following
sub-matrices (without any loss of generality, we may
assume k < l < b), where A[i1, . . . , in] denote the n-
dimensional matrix whose (α, β)-element is Aiα,iβ

.

A[k, l] =
[
0 1
1 0

]
(11)

A[k, l] =
[
1 1
1 0

]
(12)

A[k, l, b] =




1 1 0
1 1 1
0 1 1


 (13)

Note that any of them has a negative eigenvalue, since
detA < 0 holds.

We will see that there exists an instance of E =
(χ′, k, {γx}) such that smryA(X), which is the Gram
matrix for χ, is not positive semidefinite, if any of the
above three cases occurs. In the remaining of this
section, we will give a proof only for the case where
Eq. (13) holds. The assertion for the simpler cases,
that is, where either Eq. (11) or (12) holds, can be
proved in almost the same way.

Let i, j and a denote the indices such that x′k ∈ χ′xi
,

x′l ∈ χ′xj
and x′b ∈ χ′xa

(be reminded that χ̄′ is defined
as the disjoint union of χ′x for x ∈ χ). The indices are
not necessarily different from each other. Further, let
column vectors ~e1, ~e2 and ~e3 be an orthogonal basis of
R3 such that the following holds.

[~e1, ~e2, ~e3]
T
A[k, l, b][~e1, ~e2, ~e3] =




α1 0 0
0 α2 0
0 0 α3




We assume α1 < 0 without any loss of generality, and

define positive semidefinite K as follows.

K = [~e1, ~e2, ~e3]




1 0 0
0 0 0
0 0 0


 [~e1, ~e2, ~e3]

T

∴ tr(A[k, l, b]TK)

= tr







α1 0 0
0 α2 0
0 0 α3







1 0 0
0 0 0
0 0 0





 = α1 < 0

Now, we define E = (χ′, k, {γx}) as follows.

• χ′ = {•, ξ, η, ζ}

•



k(ξ, ξ) k(ξ, η) k(ξ, ζ)
k(η, ξ) k(η, η) k(η, ζ)
k(ζ, ξ) k(ζ, η) k(ζ, ζ)


 = K

• γx (x′) =





ξ, if x = xi and x′ = x′k,
η, if x = xj and x′ = x′l,
ζ, if x = xa and x′ = x′b,
•, otherwise.

Below, we investigate three cases: the indices take the
same value, that is, i = j = a; two of the indices
coincide with each other, where we can assume i = j 6=
a without loss of generality: the indices are different
from one another, that is, i 6= j 6= a 6= i. For each
case, we see that some diagonally located submatrix
of smryA(X) is not positive semidefinite. This implies
that smryA(X) itself is not positive semidefinite.

Case i = j = a: The submatrix smryA(X)[i] is not
positive semidefinite.

smryA(X)[i] = tr(A[k, l, b]TK) < 0

Case i = j 6= a: We will show that smryA(X)[i, k] is
not positive semidefinite.

tr(ATXii) = tr(A[k, l, b]T[1, 2]K[1, 2])

tr(ATXia) = A[k, l, b]T1,3K1,3 + A[k, l, b]T2,3K2,3

tr(ATXai) = A[k, l, b]T3,1K3,1 + A[k, l, b]T3,2K3,2

tr(ATXaa) = A[k, l, b]T3,3K3,3

∴ tr
(

smryA(X)[i, a]
[
1 1
1 1

])
= tr(A[k, l, b]TK) < 0

By Proposition 1 smryA(X)[i, a] turns out not to
be positive semidefinite.

Case i 6= j 6= a 6= i: For α, β = 1, 2, 3, the (α, β)-
element of smryA(X)[i, j, a] coincides with

A Generalization of Haussler’s Convolution Kernel

A[k, l, b]Tα,βKα,β .

tr


smryA(X)[i, j, a]




1 1 1
1 1 1
1 1 1







= tr(A[k, l, b]TK) < 0

By Proposition 1, smryA(X)[i, j, a] turns out not
to be positive semidefinite.

References

Aoki, K. F., Yamaguchi, A., Okuno, Y., Akutsu, T.,
Ueda, N., Kanehisa, M., & Mamitsuka, H. (2003).
Efficient tree-matching methods for accurate carbo-
hydrate database query. Genome Informatics, 14,
134 – 143.

Barnard, D., Clarke, G., & Duncan, N. (1995). Tree-
to-tree correction for document trees (Technical Re-
port 95-375). Queen’s University, Kingston, Ontario
K7L 3N6 Canada.

Berry, V., & Nicolas, F. (2004). Maximum Agreement
and Compatible Supertrees (Extended Abstract).
CPM (pp. 205–219).

Bunke, H. (1997). On a relation between graph edit
distance and maximum common subgraph. Pattern
Recognition Letters, 18, 689–694.

Collins, M., & Duffy, N. (2001). Convolution kernels
for natural language. Advances in Neural Infor-
mation Processing Systems 14 [Neural Information
Processing Systems: Natural and Synthetic, NIPS
2001] (pp. 625–632). MIT Press.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines and other
kernel-based learning methods. Cambridge Univer-
sity Press.

Haussler, D. (1999). Convolution kernels on discrete
structuresUCSC-CRL 99-10). Dept. of Computer
Science, University of California at Santa Cruz.

Hein, J., Jiang, T., Wang, L., & Zhang, K. (1996).
On the complexity of comparing evolutionary trees.
Discrete Applied Mathematics, 71, 153 – 169.

Jansson, J., Ng, J. H. K., Sadakane, K., & Sung, W. K.
(2005). Rooted maximum agreement supertrees. Al-
gorithmica, 293 – 307.

Kashima, H., & Koyanagi, T. (2002). Kernels for semi-
structured data. the 9th International Conference
on Machine Learning (ICML 2002) (pp. 291–298).

Kuboyama, T., Shin, K., & Kashima, H. (2006). Flexi-
ble tree kernels based on counting the number of tree
mappings. Proc. of Machine Learning with Graphs.

Leslie, C. S., Eskin, E., Cohen, A., Weston, J., &
Noble, W. S. (2004). Mismatch string kernels for
discriminative protein classification. Bioinformat-
ics, 20.

Li, H., & Jiang, T. (2005). A class of edit kernels for
svms to predict translation initiation sites in eukary-
otic mrnas. Trans. on Comput. Syst. Bio. II, LNBI
3680, 48 – 58.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., &
Watkins, C. J. C. H. (2001). Text classificatio us-
ing string kernels. Advances in Neural Information
Processing Systems, 13.

Lu, C. L., Su, Z.-Y., & Tang, G. Y. (2001). A New
Measure of Edit Distance between Labeled Trees.
LNCS (pp. pp. 338–348). Springer-Verlag Heidel-
berg.

Menchetti, S., Costa, F., & Frasconi, P. (2005).
Weighted decomposition kernel. Proc. of the 22nd
International Conference on Machine Learning.

Pelillo, M. (2002). Matching free trees, maximal
cliques, and monotone game dynamics. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 24, 1535 – 1541.

Salzberg, S. L. (1997). A method for identifying
splice sites and translational staqr sites in eukaryotic
mrna. Computer Applications in the Biosciences,
13, 365 – 376.

Suzuki, J., Isozaki, H., & Maeda, E. (2004). Con-
volution kernels with feature selection for natural
language processing tasks. Proc. of the 42nd An-
nual Meeting of the Association for Computational
Linguistics (ACL) (pp. 119–126).

Tai, K. C. (1979). The Tree-to-Tree Correction Prob-
lem. JACM, 26, 422–433.

Wagner, R., & Fischer, M. (1974). The string-to-string
correction problem. JACM, 21, 168–173.

Zhang, K. (1995). Algorithms for the constrained edit-
ing distance between ordered labeled trees and re-
lated problems. PR, 28, 463–474.

Zien, A., Rätsch, G., Mika, S., Schölkopf, B.,
Lengauer, T., & Müller, K. R. (2000). Engineer-
ing support vector machne kernels that recognize
translation initiation sites. Bioinformatics, 16, 799
– 807.

