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Abstract

In one-class classification we seek a rule to
find a coherent subset of instances similar to
a few positive examples in a large pool of
instances. The problem can be formulated
and analyzed naturally in a rate-distortion
framework, leading to an efficient algorithm
that compares well with two previous one-
class methods. The model can be also be ex-
tended to remove background clutter in clus-
tering to improve cluster purity.

1. Introduction

Often we are given a large set of data items among
which we would like to find a coherent subset. For
instance, in document retrieval we might want to re-
trieve a small set of relevant documents similar to a
few seed documents. In genomics, it is useful to find
the set of genes that are strongly co-expressed with a
few genes of interest. In both cases, we prefer high-
precision answers over high-recall ones.

A popular intuition for this one-class classification
problem is that of finding a small ball (under some
appropriate norm) that contains as many of the seed
elements as possible (Tax & Duin, 1999). Most previ-
ous approaches to the problem take the point of view
of outlier and novelty detection, in which most of the
examples are identified as relevant. However, Cram-
mer and Chechik (2004) seek a small subset of relevant
examples, rather than keep all but few outliers.

Most approaches to one-class classification use convex
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cost functions that focus on the large-scale distribution
of the data. Those functions grow linearly outside class
and and are constant inside it (Schölkopf et al., 1995;
Tax & Duin, 1999; Ben-Hur et al., 2001). In a related
study, Schölkopf et al. (2001) seek to separate most of
the examples from the origin using a single hyperplane.
More recently, Crammer and Singer (2003) generalized
that approach to the general case of Bregman diver-
gences. In all of those methods, the convexity of the
cost function forces the the solution to shrink to the
center of mass as the radius of the ball goes to zero,
thus ignoring any local substructure.

In contrast to the previous work, Crammer and
Chechik (2004) assumed that the distribution of points
outside the one class is not relevant, so they chose a
cost function that grows linearly inside the class but is
constant outside it. This cost function is thus indiffer-
ent to the values of the irrelevant instances. A flat cost
outside the class is expected to be better than a grow-
ing cost when the relevant instances are mostly in a
small region, or when there are relatively few relevant
instances. Unfortunately, their cost function leads to
a non-convex optimization problem that requires an
approximate solution.

Using ideas from rate-distortion theory (Cover &
Thomas, 1991), we express the one-class problem as
a lossy coding of each instance into a few possible
instance-dependent codewords. Unlike previous meth-
ods that use just two (Crammer & Chechik, 2004) or
a small number (Bekkerman & McCallum, 2005) of
possible codewords for all instances, the total num-
ber of codewords in our method is greater than the
number of instances. To preclude trivial codings, we
force each instance to associate only with a few pos-
sible codewords. Finding the best coding function is
an optimization problem for which we provide an ef-
ficient algorithm. The optimization has an “inverse
temperature” parameter that represents the tradeoff
between compression and distortion. As temperature
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decreases, the solution passes through a series of phase
transitions associated with different sizes for the one
class. This model outperforms two previous algo-
rithms proposed for the problem, which are effective
only in more restricted situations.

Our one-class model is also effective on the task of
clustering a set of instances into multiple classes when
some of the instances are clutter that should not be
included in any cluster. This task can be reduced to
an alternation between applications of the one-class al-
gorithm and hard clustering. Initial experiments with
synthetic and real world data show that by leaving
some instances out of the clusters, the quality of the
clustering improves.

2. One-Class as Rate-Distortion

Optimization

We are given a set of instances indexed by the integer
random variable 1 ≤ X ≤ m. Each instance is de-
scribed by a point vx ∈ R

d (possibly restricted to the
simplex), and p(x) = p(X = x) is a prior distribution
over instances. Our goal is to find a small coherent sub-
set of instances from a large set of possible instances.
In particular, the learning task is to find a centroid w

in the space such that there are many seed instances
vx close to it.

We formalize the task as a source coding problem. An
instance x is either coded with the one class, with dis-
tortion D (vx‖w), and assigned the code 0, or it is
coded as itself with zero distortion. The distortion
D can be any Bregman divergence (Censor & Zenios,
1997), which includes as special cases the Euclidean
distance and the KL divergence between distributions.

The random variable T represents the code for an in-
stance: if T = 0 , the instance was coded with the one
class, while if T = x > 0, the instance is coded as itself.
Although T has m + 1 distinct values, only one code
x is associated with the event T = x > 0. The coding
process is summarized by the conditional probability
q(t|x) of encoding x as t. These constraints mean that
q(t|x) = 0 if t /∈ {x, 0}, that is, the only nonzero prob-
ability outcomes for x are T = 0 or T = x.

The marginal

q(0) =
∑

x

p(x)q(0|x) , (1)

is the probability of assigning any instance to the one
class. The other marginals are a product of two terms
q(x) = p(x)q(x|x), because of the constraints that
q(t|x) = 0 for t 6= 0 and t 6= x. We explicitly al-
low soft assignments, 0 ≤ q(0|x) ≤ 1. As we will see

below, instances in the one class have a hard assign-
ment to the class, but instances outside have a soft
assignment.

We use the information bottleneck (IB) frame-
work (Tishby et al., 1999) to formalize the assignment
process. IB is an information-theoretic approach to
regularized unsupervised learning that aims to extract
a meaningful representation of some data X based on
its association with side information. For generality,
we choose here the rate-distortion formulation of the
IB, which solves for the assignment by optimizing the
tradeoff between two quantities: the amount of com-
pression applied to the source data X, measured by
the mutual information I(T ;X), and the average dis-
tortion between the data and its representation:

min
w,{q(0|x)}

I(T ;X) + βD(w, {q(0|x)}) . (2)

For one-class learning, the distortion term measures
how well on average the centroid w serves as a proxy
to each of the instances vx:

D(w, {q(0|x)}) =
∑

x

p(x)q(0|x)D (vx‖w) .

In contrast with standard rate distortion and IB for-
mulations, the average distortion is computed only for
T = 0, because the distortion is zero for T > 0.

We first rewrite the mutual information term using the
constraints q(t|x) = 0 if t 6= x and t 6= 0:

I(T ;X) =
∑

x,t p(x)q(t|x) log
(

q(t|x)
q(t)

)

=
∑

x p(x)
[

q(0|x) log
(

q(0|x)
q(0)

)

+q(x|x) log
(

q(x|x)
q(x)

)]

=
∑

x p(x)





q(0|x) log
(

q(0|x)
q(0)

)

+

(1− q(0|x)) log
(

q(x|x)
q(x|x)p(x)

)



 .

Then, the minimization (2) can be written as:

min
{q(t|x),w}

m
∑

x=1

p(x)

[

q(0|x) log

(

q(0|x)

q(0)

)

+(1− q(0|x)) log

(

1

p(x)

)]

+β
∑

x

p(x)q(0|x)D (vx‖w) (3)

s.t. 0 ≤ q(0|x) ≤ 1, 1 ≤ x ≤ m (4)

The corresponding Lagrangian is:

∑m
x=1 p(x)

[

q(0|x)log
(

q(0|x)
q(0)

)

+(1−q(0|x)) log
(

1
p(x)

)]

+β
∑

x p(x)q(0|x)D (vx‖w)+
∑

x p(x)νxq(0|x) .
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Setting to zero its derivative with respect to q(0|x), we
get:

p(x)

[

log

(

q(0|x)

q(0)

)

+βp(x)D (vx‖w)+log p(x)+νx

]

=0 ,

Using the KKT conditions, we solve for q(0|x):

q(0|x) = min

{

q(0)
e−βD(vx‖w)

p(x)
, 1

}

. (5)

Setting the derivative of the Lagrangian with respect
to w to zero we get:

w =

∑

x p(x)q(0|x)vx
∑

x p(x)q(0|x)
=

∑

x

q(x|0)vx . (6)

That is, the centroid is the average of all the points
vx weighted by their probability of membership in the
single class.Like in the IB, the solution has a set of
self-consistent equations: (1), (5), and (6).

Note that this rate-distortion formulation can be ex-
pressed as a tradeoff between two information quan-
tities, as in the original IB. When D is the KL diver-
gence, the optimization in (2) (or (3)) is equivalent to
minimizing the tradeoff I(X;T )− βI(T ;Y ) under the
above constraints, where the random variable Y gives
side information through the vectors vx.

3. Algorithm

The sequential algorithm of Slonim (2003) finds effi-
ciently a local maximum of the IB objective. The al-
gorithm alternates between selecting an instance and
deciding whether moving it to another cluster would
improve the objective. The item is reassigned to the
cluster which yields the best improvement. A simi-
lar algorithm has been proposed for one-class prob-
lems (Crammer & Chechik, 2004). At each round, an
instance is either removed from the class or added to
the class, depending on what would most improve the
objective.

We present a different algorithm for our model, in-
spired by Blahut-Arimoto algorithm and the original
IB algorithm. The new algorithm iterates between
the self-consistent equations (1), (5), and (6). Anal-
ogously to those algorithms, ours alternates between
fixing q(0|x) and q(0) and fixing w, and solving for the
other parameters. We solve easily for w by computing
the weighted average in (6). To solve for q(0|x) and
q(0), let w be fixed and define dx = D (vx‖w). We
now show how to compute q(0|x) and q(0) efficiently.

Eq. (5) cannot be solved directly for q(0|x) because
it involves q(0), which in turn depends on q(0|x).

However, we can break this cycle by analyzing more
carefully the properties of the solution. Let C =
{x : q(0|x) = 1}. From (1) we get:

q(0) =
∑

x

p(x)q(0|x) =
∑

x∈C

p(x) + q(0)
∑

x/∈C

e−βdx (7)

Assume that C 6= ∅. Solving for q(0), we obtain:
q(0) =

(
∑

x∈C p(x)
)

/
(

1−
∑

x/∈C e−βdx
)

. This equa-
tion is well defined if 0 ≤ q(0) ≤ 1, or equivalently:

∑

x/∈C

e−βdx ≤ 1−
∑

x∈C

p(x) . (8)

If C contains all the points, this is trivially satisfied. If
C = ∅, (7) becomes q(0)

(

1−
∑

x e−βdx
)

= 0 . There-
fore, there is a unique β0 such that for all β ≥ β0 we
have q(0) = 0. If p(x) > 0 for all x we then have
q(0|x) = 0.

In summary, the solution of the optimization problem
is given by the set C = {x : q(0|x) = 1}. We cannot
search for that set näıvely, but fortunately the follow-
ing lemma gives an efficient way to find the set by
sorting its possible members.

Lemma 1 Let x1, . . . , xm be a permutation of [1,m]
such that 0 < βdx1

+ log p(x1) ≤ · · · ≤ βdxm
+

log p(xm). Then C = {xi : 1 ≤ i ≤ k} for some k ∈
[0,m].

Proof: Assume that C 6= ∅. From (5) we know that
q(0|x) = min

{

q(0)e−βdx−log(p(x)), 1
}

. We now show
that if xk ∈ C for some k, then xj ∈ C for all 1 ≤ j < k.
If xk ∈ C, by definition q(0)e−βdxk

−log p(xk) ≥ 1. For
j < k, by hypothesis we have −βdxk

− log p(xk) ≥

−βdxj
− log p(xj). Thus, q(0)e−βdxj

−log p(xj) ≥ 1, and
thus xj ∈ C.

The lemma allows us to solve (3) easily for a fixed w.
The inputs for the algorithm are the prior over items
p(x), the distortions dx, and the tradeoff parameter
β. First, we order the items x in ascending order of
the combined distortion and log-prior βdx +log(p(x)).
As in the lemma, we obtain an ordering x1, . . . , xm.
Among the possible C = {xi : 1 ≤ i ≤ k} that satisfy
(8), we choose the one that minimizes the objective. A
näıve implementation would require O(m log m) time
to sort the items, and then additional O(m) steps for
each of the m candidate subsets C, yielding an overall
complexity of O(m2). However, we can use dynamic
programming to compute the objective for C ∪ {xk}
from quantities saved from computing the objective
for C. Equation (3) can be rearranged as:
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Input

• Distortion values dx for x ∈ {1 . . . m}

• Prior p(x) for x ∈ {1 . . . m}

• Tradeoff parameter β ≥ 0

Sort the words in accordance to their score

βdx1
+ log(p(x1)) ≤ · · · ≤ βdxm

+ log(p(xm))

Initialize k = m, ak = 1, pk = 1, Jk = β
∑

x p(x)dx,
cbest = k, Jbest = Jk.

Loop: While k > 0

1. Compute ak−1 = ak − e−βdxk−1

2. Compute pk−1 = pk − p(xk−1)
3. if pk−1 ≤ ak−1

• Compute Jk−1 using (10).
• If Jk−1 < Jbest then set kbest = k−1 and
Jbest = Jk−1.

4. Set k ← k − 1.

Compute: q(0|x) using (5) and (7)

Output: q(0|x)

Figure 1. Finding the one class for fixed distortion.

H [p(x)] +
∑

x

p(x)

[

q(0|x) log

(

p(x)q(0|x)

q(0)

)]

+

β
∑

x

p(x)q(0|x)dx

The sum can be split according to whether x ∈ C and
rearranged again:

H [p(x)] +
∑

x∈C p(x) [log (p(x)) + βdx]
−

(
∑

x∈C p(x)
)

log
(
∑

x∈C p(x)
)

+
(
∑

x∈C p(x)
)

log
(

1−
∑

x/∈C e−βdx
)

.
(9)

Let Ck = {xi : 1 ≤ i ≤ k}, Jk the value of the objec-

tive on Ck, pk =
∑k

j=1 p(xj) =
∑

x∈C p(x), and by

ac = 1 −
∑m

j=k+1 e−βdxj = 1 −
∑

x/∈C e−βdx . These
quantities can be computed recursively as follows. Let
Jm = β

∑

x p(x)dx, pm = 1 and am = 1. Given Jk,
pk and ak, we can compute the following in unit time:
ak−1 = ak − e−βdxk and pk−1 = pk − p(xk). Finally,
by examining (9) we get,

Jk−1 = Jk − p(xk−1)[βdxk−1
+ log p(xk−1)]

+[pk log(pk)− pk log(ak)]

−[pk−1 log(pk−1)− pk−1 log(ak−1)](10)
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Figure 2. Illustration of the seri-
ous of phase transitions of q(0|x)
as the temperature 1/β is modi-
fied.

Fig. 1 gives an
outline of the al-
gorithm.

The following
properties of
the solution
are worth not-
ing. When the
temperature
t = 1/β is high,
all the instances
belong to the
single cluster
with probability 1. As the temperature drops, in-
stances are pulled out of the class, one after the other,
as q(0|x) becomes strictly less than 1. Finally, at a
critical temperature t0, all the instances are pulled
out of the class, that is, q(0|x) = 0 for all x. We show
this process in Fig. 2. There are five points, indexed 1
through 5. The distortion of each point is proportional
to its index. The y axis is temperature t = 1/β. For
high values of t, all the instances belong to the class
with probability 1. At t ≈ 3.1 the model goes through
its first phase transition, as the instance with the
highest distortion is pulled out of the class, and its
probability of belonging there drops exponentially.
There are three more similar phase transition for
instances 4, 3 and 2 respectively. Then, at t ≈ 1.5 the
model goes through a discontinuous phase transition
and q(0|x) falls to zero for all instances.

In summary, the algorithm iterates between two steps:
compute w given q(0|x) and q(0) using (6) (expecta-
tion), and use the algorithm in Fig. 1 to find q(0|x)
and q(0) from dx = D (vx‖w) (maximization). In this
aspect the algorithm is similar to EM, and thus we
might suspect that it has a maximum-likelihood ana-
log (Slonim & Weiss, 2002).

4. Multiclass Clustering

It seems natural to generalize from one class to mul-
tiple classes by replacing the one class centroid with
k > 1 centroids. There are k + 1 outcomes for each
instance: either code it using one of the k centroids, or
code it with itself. We now formalize this extension.

We might at first think that we could just generalize
q(t|x) from the previous model to range over a set of
k +m values — m points and k centroids — where for
given x the value of q(t|x) is non-zero for at most k+1
values of t, the k clusters and self-coding. However,
this direct approach leads to a derivation that can not
be decomposed nicely as in the one class case, because
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1−q(x|x) is not informative about individual clusters,
just about their sum.

Instead, we break the coding scheme into two stages.
First, given an instance x, we determine whether
to code it using one of the centroids or by itself
t = x. Then, for non-self-coded instances, we de-
cide their cluster. Formally, given x we decide if we
want to code it by itself (with probability q(x|x)) or
by some centroid (with probability q(0|x)). Next, if
we decide to code the instance with one of the cen-
troids, we denote the centroid’s identity by S, and
denote the probability of encoding using centroid S
given the point identity x and the decision to code
it 0 by r(s|0, x) = Pr [S = s|0, x] We also define the
marginals, q(s, 0) =

∑

x p(x)q(0|x)r(s|0, x) .

As in (2), we write a rate-distortion objective. The
rate equals to the mutual information between possi-
ble codings and input variables. The distortion-rate
optimization is

min
{q(·|x)},r(s|0,x),{ws}

β
∑

x,s

p(x)q(0|x)r(s|0, x)D (vx‖ws)

+
∑

x

p(x)
∑

s

q(0|x)r(s|0, x) log

(

q(0|x)r(s|0, x)

q(s, 0)

)

+
∑

x

p(x)q(x|x) log

(

q(x|x)

q(x)

)

, (11)

subject to normalization q(0|x) + q(x|x) = 1 and
∑

s r(s|0, x) = 1. The marginals are defined naturally,
q(x) = p(x)q(x|x) and q(0) =

∑

x p(x)q(0|x). Before
solving the optimization problem we further assume
that every point x is associated with exactly one cen-
troid (if any), that is r(s|0, x) = 1 or r(s|0, x) = 0.
From normalization there is only a single cluster s for
which r(s|0, x) = 1, denoted by s(x). We also denote
by E(s) = {x : s(x) = s}. We do so for two reasons,
first, without doing so we could not separate q(0|x)
and q(s, 0) from each other (for different values of s)
and could not get a solution similar to (5). Second,
we show below that we can solve this problem by al-
ternating between two algorithms, one of them is the
sequential-IB (sIB) (Slonim, 2003) designed for hard
clustering. We call this algorithm MCRD (multiclass
rate-distortion-based algorithm).

We now solve the optimization analogously to the
derivation starting at (3). After writing the La-
grangian we use its derivations to compute self con-
sistent equations. (details omitted for lack of space).
First, we have

q(0|x) = min

{

q(s(x), 0)

p(x)
e−ds(x),x , 1

}

, (12)

which is the equivalent of (5). Note that the values of
q(0|x) are tied for x ∈ E(s). Thus, there are k sets
of equations, each set tying all points in E(s) and the
exact value of q(0|x) for x ∈ E(s) and q(s, 0) can be
solved separately using the algorithm of Fig. 1.

Next, we can compute the derivative of the Lagrangian
with respect to the other variables and obtain self con-
sistent equations

ws=

∑

xp(x)q(0|x)r(s|0, x)vx
∑

x p(x)q(0|x)r(s|0, x)
=

∑

x∈E(s)p(x)q(0|x)vx
∑

x∈E(s) p(x)q(0|x)
,

and r(s|0, x) ∝ q(s, 0)e−βD(vx‖ws). The last equation
can not be used to solve the problem since we assume
that r(s|0, x) is an integer. In practice, we use the
following lemma which relates the optimization prob-
lem of (11) and the optimization problem of the IB
method (Tishby et al., 1999).

Lemma 2 The following two optimization problems
are equivalent up to a linear transformation:

1. The optimization problem of (11) over ws and
r(s|0, x), where we fix q(0|x) and q(s, 0), and
r(s|0, x) ∈ {0, 1}.

2. The rate-distortion formulation of the IB
method (Slonim, 2003), where the assignment
probabilities are either 0 or 1, and a reweighted
prior proportional to p(x)q(0|x).

(Proof omitted due to lack of space.) Using the lemma
and the discussion preceding it, we have an algorithm
for MCRD that alternates between two steps: (1) Use
the sIB algorithm to set the values of ws and r(s|0, x),
given q(0|x) and q(s, 0), with prior proportional to
p(x)q(0|x). (2) Use k calls to the algorithm on Fig. 1
to find q(0|x) and q(s, 0) from ds(x),x = D (vx‖ws).

5. Experiments

We compare our algorithm (OCRD-BA) with two pre-
viously proposed methods: the IB-related one-class
algorithm of Crammer and Chechik (2004) (OC-IB),
and a well-known convex optimization method (Tax
& Duin, 1999; Schölkopf et al., 2001; Crammer &
Singer, 2003) (OC-Convex). We obtained Crammer
and Chechik’s data and followed their evaluation pro-
tocol to achieve comparable results. For lack of space,
we just discuss document retrieval experiments, al-
though we obtained qualitatively comparable results
on gene expression data as well.
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Figure 3. Precision-Recall plots for four (out of five) categories of Reuters-21678 dataset using OC-IB, OC-Convex, and
OCRD-BA (this paper).

5.1. Document Retrieval

This is a document retrieval task that was previ-
ously described in detail (Crammer & Chechik, 2004,
Sec. 6.2). The task uses a subset of the five most
frequent categories of Reuters-21578. For each cate-
gory, half of its documents were used for training, and
the remaining half, together with the remaining docu-
ments from other categories, were used for evaluation.
During training, each of the algorithms searched for a
meaningful subset of the training data and generated
a centroid. The centroid was used then to label the
test data, and to compute recall and precision.

All algorithms used the KL divergence to compare em-
pirical word distributions for different documents. For
OC-IB and OC-Convex, we used the parameter values
in the previous study (Crammer & Chechik, 2004).
For our algorithm, OCRD-BA, we set the prior p(x)
to be uniform over the training set, and used a range of
values of β that yielded a range of class sizes. We used
a single random document to initialize the centroid
maintained by OCRD-BA, as was done for OC-IB. We
trained five models for each value of β, each using a
different random example for initialization, and picked
the one which attained the best value of the objective.

After picking a model, we fixed the induced centroid
w and computed the distortion D (vx‖w) for all the
test examples vx. We then ran the first half of our
algorithm ( Fig. 1) to compute the cluster assignments
q(0|x). Finally, a test point vx was assigned to the
class if q(0|x) = 1. We used the actual Reuters labels
to plot precision and recall values for different β values.

The results are summarized in Fig. 3, where there is
one plot per category (except the earn category where
all algorithms perform the same). As in the previous
study (Crammer & Chechik, 2004), we observe that
OC-IB achieves better precision than OC-Convex on
low recall values. The previous study argues that OC-
Convex converges to the center-of-mass of the data for

low values of recall while OC-IB exploits local struc-
ture and thus performs better. As recall increases,
OC-Convex improves and OC-IB degrades, until OC-
Convex performs better than OC-IB for high values of
recall.

Our method, OCRD-BA, strikes a balance between the
two previous methods: at low values of recall, OCRD-
BA is comparable in performance to OC-IB and at
higher values of recall OCRD-BA is comparable to
OC-Convex. Furthermore, in the crude category, our
method outperformed both algorithms. This suggests
that OCRD-BA is similar to OC-IB for small classes
and to OC-Convex for large classes. We discuss this
issue later.

5.2. Clustering

We evaluated the MCRD algorithm using a synthetic
dataset and a real dataset. The synthetic dataset
(Synth4G) has 900 points in the plane. Of those,
400 were generated from 4 Gaussian distributions with
σ = 0.1, 100 points from each Gaussian. The remain-
ing 500 point were generated from a uniform distribu-
tion. We ran the algorithm allowing up to five clusters
with various values of β. The output of the algorithm
for four values of β is plotted in Fig. 4. The title of
each plots summarize the value of β used, number of
points associated with a cluster, and (in parenthesis)
the size of each cluster. For low values of β the algo-
rithm prefers to reduce the rate (over distortion) and
effectively group all points into a single cluster. As
β increases the algorithm uses more clusters until all
5 possible clusters are used (left panel). As β is in-
creased the algorithm prefers to remove points from
the clusters, but still use 5 centroids (second panel),
until at some point the algorithm only four clusters are
used (third panel). Then, for higher values of β five
clusters are used again (right panel). This may be due
to the fact, that for large β, the actual length scale is
small, and thus, practically, there are more than five
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Figure 4. Clusterings produced by MCRD with (k = 5) on the synthetic data set for four values of β. Self-coded points
are marked by black dots, coded points by colored dots and cluster centroids by bold circles.

clusters (more than five small, dense regions).

We also evaluated on Multi5 1, a real-world high di-
mensional multiclass dataset which has been used
by Slonim et al. (2002) to evaluate the sIB clustering
algorithm. The dataset has 500 documents from 5 cat-
egories, each represented as a distribution over 2, 000
words. We compare the MCRD algorithm (β = 1.6)
with sIB, which by default, uses all the points in
clustering thereby achieving 100% recall. We follow
Slonim et al., (2002, Sec. 7.4) to get precision at
various recall values for sIB, and for other experimen-
tal details. The precision at various recall values is
summarized in Fig. 5. We observe that MCRD con-
sistently outperforms sIB at all recall levels. Specif-
ically, MCRD achieves very high precision at low re-
call values, which is one of the objectives of current
work. These experimental results further support our
hypothesis that better clustering of the data can be ob-
tained if the algorithm is allowed to selectively leave
out data points which are unlikely to help the cluster-
ing task.

6. Related Work

Crammer and Chechik (2004) proposed to use the in-
formation bottleneck for one-class problems. They
compressed the points using two possible events: a
point can be either belong to the single class or not.
In the former case, the distortion is proportional to
the distance between the point and the centroid. In
the later case, the distortion equals fixed predefined
value R, which intuitively sets the diameter of the
class. This formulation suffers from some drawbacks.
First, it uses two interacting parameters, the R pa-
rameter just discussed, and an inverse temperature β
to set the hardness of the solution. In practice, they
set β to yield only hard solutions. Second, their dis-
tortion does not make sense in term of compression,
as the compressor effectively can either approximate a
point (using the single class) or ignore it.
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Figure 5. Precision vs. Recall for sIB and MCRD algo-
rithms (β = 1.6) on the Multi5 1 dataset. Results are
obtained by averaging over 5 random permutations of the
data. For each permutation, 5 restarts were used and the
model with the best objective was selected.

Instead, we use m + 1 values for the compression vari-
able T , but regularization forces the compressor to
generate sparse solutions. In contrast to a fixed non-
zero distortion used for out-of-class points, we use a
zero distortion because the out-of-class points are not
encoded. As a result, our method uses a single inverse
temperature parameter to set the size of the class. A
point can either be in the class alone (hard assignment)
or both in the class and outside (soft assignment).

The centroid is defined as a weighted average of all
of the data. Points which belong to the cluster have
the same weight, while other points are weighted pro-
portionally to the exponent of their distance from the
centroid. This behavior combines properties of two
previous approaches. As in Crammer and Chechik’s
work, the points belonging to the class give an equal
contribution in the location of the centroid. But
like in discriminative one-class methods (Crammer &
Singer, 2003) points outside the class still affect its
centroid. Thus our method uses information from all
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the data, unlike discriminative methods that only see
outliers (Tax & Duin, 1999).

The fact that the centroid in our model is contributed
to by both typical points and outliers may explain the
results of the experiments. The OC-IB method (Cram-
mer & Chechik, 2004) works in a low-recall condition,
that is, with a small class. In this condition, points
outside the cluster will have a negligible effect on the
centroid, yielding the OC-IB solution. For large val-
ues of β, points outside the class have a stronger ef-
fect on the centroid’s location, similarly to discrimi-
native methods (Crammer & Singer, 2003). Further-
more, when using the KL divergence, points that are
not contributing to the centroids at all (removed from
data), would typically have a divergence of infinity to
the centroids. Our methods allows to reduce the effect
of outliers (by giving them exponential small weight),
but still allow them to contribute to the centroids (pos-
itive weight).

Gupta and Ghosh (2006) present an extension of the
Crammer and Chechik algorith that clusters points
while allowing some of them to be ignored. Recently,
Lashkari and Golland (2008) proposed an exemplar-
based algorithm , in which any point can serve as a
centroid (similarly to k-medians). They show that un-
der some choices, some points can be coded by them-
selves. Our method is different in that it allows cen-
troids that do not coincide with any data point (similar
to k-means).

7. Conclusions

Building on the rate-distortion formulation of the in-
formation bottleneck method, we cast the problem of
identifying a small coherent subset of data as an opti-
mization problem that trades off class size (compres-
sion) for accuracy (distortion). We analyzed a rate-
distortion view of the model and demonstrated that
it goes through a sequence of phase transitions that
correspond to different class sizes. We demonstrated
that our method combines the best of two previous
methods, each of which is good in a narrower range
of class sizes. We also showed that our method al-
lows us to move from one-class to standard clustering,
but with background noise left out. The proposed ap-
proach for one-class learning can be extended to the
idea of regularizing by using constraints over a large set
of decisions which can be used for other more complex
associations among random variables, and in particu-
lar for bi-clustering.
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