
Semi-supervised Learning of Compact Document Representations

with Deep Networks

Marc’Aurelio Ranzato ranzato@courant.nyu.edu

Courant Institute, New York University, 719 Broadway 12th fl., New York NY 10003, USA

Martin Szummer szummer@microsoft.com

Microsoft Research Cambridge, 7 J J Thomson Avenue, Cambridge CB3 0FB, UK

Abstract

Finding good representations of text docu-
ments is crucial in information retrieval and
classification systems. Today the most pop-
ular document representation is based on a
vector of word counts in the document. This
representation neither captures dependencies
between related words, nor handles synonyms
or polysemous words. In this paper, we pro-
pose an algorithm to learn text document
representations based on semi-supervised au-
toencoders that are stacked to form a deep
network. The model can be trained efficiently
on partially labeled corpora, producing very
compact representations of documents, while
retaining as much class information and joint
word statistics as possible. We show that it
is advantageous to exploit even a few labeled
samples during training.

1. Introduction

Document representations are a key ingredient in all
information retrieval and processing systems. The goal
of the representation is to make certain aspects of the
document readily accessible, e.g. the document topic.
To identify a document topic, we cannot rely on specific
words in the document, as it may use other synonymous
words or misspellings. Likewise, the presence of a word
does not warrant that the document is related to it,
as it may be taken out of context, or polysemous, or
unimportant to the document topic.

The most widespread representations for document
classification and retrieval today are based on a vec-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tor of counts. These include various term-weighting
retrieval schemes, such as tf-idf and BM25 (Robertson
and Walker, 1994), and bag-of-words generative mod-
els such as naive Bayes text classifiers. The pertinent
feature of these representations is that they represent
individual words. A serious drawback of the basic tf-
idf and BM25 representations is that all dimensions
are treated as independent, whereas in reality word
occurrences are highly correlated.

There have been many attempts at modeling word
correlations by rotating the vector space and project-
ing documents onto principal axes that expose related
words. Methods include LSI (Deerwester et al., 1990)
and pLSI (Hofmann, 1999). These methods constitute
a linear re-mapping of the original vector space, and
while an improvement, still can only capture very lim-
ited relations between words. As a result they need a
large number of projections in order to give an appro-
priate representation.

Other models, such as LDA (Blei et al., 2003), have
shown superior performance over pLSI and LSI. How-
ever, inferring the representation is computationally
expensive because of the “explaining away” effect that
plagues all directed graphical models.

More recently, a number of authors have proposed
undirected graphical models that can make inference
efficient at the cost of more complex learning due to
a global (rather than local) partition function whose
exact gradient is intractable. These models build on
Restricted Boltzmann Machines (RBMs) by adapting
the conditional distribution of the input visible units to
model discrete counts of words (Hinton and Salakhut-
dinov, 2006; Gehler et al., 2006; Salakhutdinov and
Hinton, 2007a,b). These models have shown state-of-
the-art performance in retrieval and clustering, and can
be easily used as a building block for deep multi-layer
networks (Hinton et al., 2006). This might allow the

Semi-supervised learning of compact document representations with deep networks

top-level representation to capture high-order corre-
lations that would be difficult to efficiently represent
with similar but shallow models (Bengio and LeCun,
2007). Many authors have pointed out that RBMs are
robust to uncorrelated noise in the input since they
model the distribution of the input data, and they im-
plicitly perform automatic model selection by not using
unnecessary hidden units. But they are also somewhat
cumbersome to train, relying on two disparate steps:
unsupervised pre-training using an approximate sam-
pling technique such as contrastive divergence (Hinton,
2000), followed by supervised back-propagation. It is
rather difficult to predict when training can be stopped
and how long the Markov Chain has to run. An alter-
native is to replace RBMs with autoencoders (Bengio
et al., 2006), or special autoencoders that produce
sparse representations (Ranzato et al., 2007b). Ac-
cording to these authors, the performance of RBMs
and standard autoencoders is quite similar as long as
the dimensionality of the latent space is smaller than
the input. Seeking an algorithm that can be trained
efficiently, and that can produce a representation with
just a few matrix multiplications, we propose a deep
network whose building blocks are autoencoders, with
a specially designed first layer for modeling discrete
counts of words.

Previously, deep networks have been trained either
from fully labeled data, or purely unlabeled data. Nei-
ther method is ideal, as it is expensive to label large
collections, whereas purely unsupervised learning may
not capture the relevant class information in the data.
Inspired by the experiments by Bengio, Lamblin et
al. (2006), we learn the parameters of the model by us-
ing both a supervised and an unsupervised objective. In
other words, we require the representation to produce
good reconstructions of the input documents and, at
the same time, to give good predictions of the document
class labels. Besides demonstrating better accuracy in
retrieval, we also extend the deep network framework to
a semi-supervised setting where we deal with partially
labeled collections of documents. This allows us to use
relatively few labeled documents yet leverage language
structure learned from large corpora, see Sec. 3.1.

Finally, we study the relative advantages of different
deep models. For instance, we investigate when deep
models are better than shallow ones. Our experiments
in Sec. 3.2 show that for learning compact representa-
tions of documents, deep architectures greatly outper-
form shallow models. Compact representations are ben-
eficial because they require less storage (an important
consideration for large search engines), and they are
more computationally efficient when used in indexing.
We also explored the possibility to use deep networks to

Encoder 1
Input count

Decoder 1

Classifier 1

Encoder 2

Decoder 2

Classifier 2

Encoder 3

Decoder 3

Classifier 3

Code 1

Code 2
Code 3

Figure 1. Architecture of a model with three stages. The
system is trained layer by layer. During the training of
the n-th layer, the n-th encoder is coupled with the n-th
decoder and classifier (shown in dashed line). The n-th
encoder will provide the codes to train the layer above. After
training, the feedback decoding modules are discarded and
the system is used to produce very compact codes by a
feed-forward pass through the chain of encoders.

learn binary high-dimensional representations instead
of compact representations. These high-dimensional
representations were trained using the Symmetric En-
coding Sparse Machine (SESM) (Ranzato et al., 2007b).
However, the compact representations proved to be far
more efficient in terms of memory usage and CPU time,
as described in Sec. 3.3. Also, training is more com-
putationally efficient than for related models such as
RBMs.

2. The model

The input to the system is a bag of words representation
of each text document in the form of a count vector.
The length of the vector equals the number of unique
words in the collection, and its i-th entry stores the
number of times the corresponding word occurs in
the document. The goal of the system is to extract a
compact representation from this very high-dimensional
but sparse input vector. A compact representation is
good because it requires less storage, and allows fast
index lookup. Since the representation is produced by a
deep multi-layer model, it can efficiently discover latent
topics by grouping similar words and by activating
features whenever some “interesting” combination of
words is detected (see visualization in Sec. 3.4).

We propose a system that is composed of multiple
layers. Each layer computes a weighted sum of its
input followed by a logistic nonlinearity. Each layer
can be seen as an encoder producing a representation,
or code, from its input. This code will be propagated
and used as the input to the next layer of the model.
This architecture is quite similar to a neural network
model, but is trained differently and has a special first
layer able to encode discrete count data. The goal of
training is to find the parameters in each layer.

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x

be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder

that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c
a

WE WD

WC

log exp

softmax

logistic NLL+
Input

count x

1
z rate

CE

+
loss

Label y

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

Semi-supervised learning of compact document representations with deep networks

if a word is rare its rate will be one forcing the corre-
sponding weights in WD to be close to zero (and not
to minus infinity). Fig. 2 shows the final architecture
of the first stage.

2.2. Training the Upper Stages

The outputs of earlier layers are fed as inputs of subse-
quent layers. The architecture of the subsequent layers
differs from the first one in that the decoder uses a
Gaussian regressor instead of a Poisson regressor. Ac-
cordingly, the encoder computes a weighted sum of its
input and applies a logistic nonlinearity. This architec-
ture is similar to an autoencoder neural network, but
here the feedback layer also includes a supervised clas-
sifier. If z(n−1) is the input to the n-th layer, the code
z(n) produced at this stage is z(n) = σ(WEz(n−1)+bE).
The reconstruction error ER in the loss of eq. 1 can be
written as ER = ‖z(n−1) −WDz(n) − bD‖

2
2.

2.3. Training the Whole Model

Learning consists of determining the parameters at
each layer of the deep model. The algorithm proceeds
as follows:
(1) attach a Poisson regressor and a linear classifier
to the first layer, and minimize the loss in eq. 1 with
respect to the parameters (WE , bE , WD, bD, WC , bC) by
stochastic gradient descent;
(2) transform the training samples x into codes z(1)

using the trained encoder of the first layer;
(3) train the second layer by attaching a Gaussian
regressor and a linear classifier to the encoder, using
the codes z(1) as input;
(4) use the trained encoder of the second layer to
transform the codes z(1) into the higher-level codes
z(2);
(5) repeat the previous two steps for as many layers as
desired.

When the input sample is not accompanied by a label,
the classifier is not updated and the loss function simply
reduces to L = ER. In order to minimize the loss with
respect to the parameters we use stochastic gradient
descent and we back-propagate the derivatives through
the decoder, classifier and encoder (LeCun et al., 1998).

The learning algorithm is particularly efficient. The
computational cost of learning is linear in the number
of training samples (sublinear for redundant datasets,
which are frequent). For each training document at any
given layer, the cost is given by a forward and backward
pass through encoder, decoder and classifier. Each
pass is dominated by a matrix-vector multiplication
whose complexity depends on the size of the matrix.
Since at each layer we reduce the dimensionality of the

input, the first layer dominates the computational cost.
However, the sparsity of the input count vector can be
exploited to speed-up the computation by taking into
account only those rows in WE that are involved in
the computation. In general, the computational cost at
a given layer scales as 4MN + 2NK, where M is the
dimensionality of the input, N is the dimensionality of
the code, and K is the number of classes.

If we are interested in classification we can also use
the trained classifier to predict the labels from the
features (at any layer), without training a separate
supervised system (see Sec. 3.1 for an example). Also,
our experiments show that there is not much advan-
tage in “fine-tuning” the parameters by doing global
non-greedy supervised training of the machine as per-
formed by Hinton et al. (2006). The label injection
during the greedy training of each layer renders this
final supervised training stage unnecessary. This saves
a lot of time because it is expensive to do forward
and backward propagation through a large and deep
network.

Inference is also very efficient. Once the model is
trained the encoders are stacked and the decoder and
classifier modules are removed. A feature vector is
computed by a forward propagation of the input sparse
count vector through the sequence of encoders. This
computation requires a few matrix vector multiplica-
tions, where the most expensive one is at the first layer,
which can benefit further from a sparse computation.

3. Experiments

In our experiments we considered three standard
datasets: 20 Newsgroups, Reuters-21578, and
Ohsumed1. The 20 Newsgroups dataset contains 18845
postings taken from the Usenet newsgroup collection.
Documents are partitioned into 20 topics. The dataset
is split into 11314 training documents and 7531 test
documents. Training and test articles are separated in
time. Reuters has a predefined ModApte split of the
data into 11413 training documents and 4024 test doc-
uments. Documents belong to one of 91 topics. The
Ohsumed dataset has 34389 documents with 30689
words and each document might be assigned to more
than one topic, for a total of 23 topics. The dataset is
split into training and test by randomly selecting the
67% and the 33% of the data. Rainbow2 was used to
pre-process these datasets by stemming the documents,

1These corpora were downloaded from http://people.
csail.mit.edu/jrennie/20Newsgroups, and http://www.
kyb.mpg.de/bs/people/pgehler/rap

2Rainbow is available at http://www.cs.cmu.edu/

~mccallum/bow/rainbow

Semi-supervised learning of compact document representations with deep networks

2 5 10 20 50
0

10

20

30

40

50

60

70

Number of labelled training samples

A
c
c
u
r
a
c
y

(
%
)

Semisup.: 1st layer(200)+SVM

Semisup.: 4th layer(20) +SVM

Unsup.: 1st layer(200)+SVM

tf−idf: (2000)+SVM

Figure 3. SVM classification of documents from the 20
Newsgroups dataset (2000 word vocabulary) trained with
between 2 and 50 labeled samples per class. The SVM was
applied to representations from the deep model trained in
a semi-supervised or unsupervised way, and to the tf-idf
representation. The numbers in parentheses denote the
number of code units. Error bars indicate one standard
deviation. The fourth layer representation has only 20 units,
and is much more compact and computationally efficient
than all the other representations.

removing stop words and words appearing less than
three times or in only a single document, and retain-
ing between 1000 and 30,000 words with the highest
mutual information.

Unless stated otherwise, we trained each layer of the net-
work for only 4 epochs over the whole training dataset.
Convergence took only a couple of epochs, and was
robust to the choice of the learning rate. This was
set to about 10−4 when training the first layer, and
to 10−3 when training the layers above. The learning
rate was exponentially decreased by multiplying it by
0.97 every 1000 samples. A small L1 regularizer on
the parameters was added to the loss. Each weight
was randomly initialized, and was updated by taking a
gradient step with a regularizer given by the value of
the learning rate times 5 · 10−4 the sign of the weight.
The value of αc in eq. 1 was set to the ratio between
the number of input units in the layer and the number
of classes in order to make the two error terms ER

and EC comparable. Its exact value did not affect
the performance as long as it had the right order of
magnitude.

3.1. The Value of Labels

In order to assess whether semi-supervised training was
better than purely unsupervised training, we trained
the deep model on the 20 Newsgroup dataset using only

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RECALL

P
R
E
C
I
S
I
O
N

LSI (2)

LSI (3)

LSI (10)

LSI (40)

deep(2)

deep(3)

deep(10)

deep(40)

tf−idf

Figure 4. Precision-recall curves for the Reuters dataset
comparing a linear model (LSI) to the nonlinear deep model
with the same number of code units (in parentheses). Re-
trieval is done using the k most similar documents according
to cosine similarity, with k ∈ [1 . . . 4095].

2, 5, 10, 20 and 50 samples per class. During train-
ing we showed the system 10 labeled samples every
100 examples by sweeping more often over the labeled
data. This procedure was repeated at each layer dur-
ing training. We trained 4 layers for 10 epochs with
an architecture of 2000-200-100-50-20, denoting 2000
inputs, 200 hidden units at the first layer, 100 at the
second, 50 at the third, and 20 at the fourth. Then,
we trained a Support Vector Machine3 (SVM) with a
Gaussian kernel on (1) the codes that corresponded to
the labeled documents, and we compared the accuracy
of the semi-supervised model to the one achieved by
a Gaussian SVM trained on the features produced by
(2) the same model but trained in an unsupervised
way, and by (3) the tf-idf representation of the same
labeled documents. The SVM was generally tuned
by five-fold cross validation on the available labeled
samples (but two-fold cross validation when using only
two samples per class). Fig. 3 demonstrates that the
learned features gave much better accuracy than the tf-
idf representation overall when labeled data was scarce.
The model was able to exploit the very few labeled
samples producing features that were easier to discrim-
inate. The performance actually improved when the
dimensionality of the code was reduced and only 2 or
5 labeled samples per class were available, probably
because a more compact code implicitly enforces a
stronger regularization. Semi-supervised training out-
performed unsupervised training, and the gap widened
as we increased the number of labeled samples, indicat-

3We used libsvm package available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm

Semi-supervised learning of compact document representations with deep networks

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

RECALL

P
R
E
C
I
S
I
O
N

shallow(2)

shallow(3)

shallow(10)

shallow(40)

deep(2)

deep(3)

deep(10)

deep(40)

tf−idf

Figure 5. Precision-recall curves for the Reuters dataset
comparing one-layer models (shallow) to deep models with
the same numbers of code units. The deep models are more
accurate overall when the codes are extremely compact.
This also suggests that the number of hidden units has to
be gradually decreased from layer to layer.

ing that the unsupervised method had failed to model
information relevant for classification when compress-
ing to a low-dimensional space.

Interestingly, if we classify the data using the classi-
fier of the feedback module we obtain a performance
similar to the one achieved by the Gaussian SVM. For
example, when all training samples are labeled the
classifier at the first stage achieves accuracy of 76.3%
(as opposed to 75.5% of the SVM trained either on the
learned representation or on tf-idf), while the one on
the fourth layer achieves accuracy of 74.8%. Hence,
the training algorithm provides an accurate classifier
as a side product of the training, reducing the overall
learning time.

3.2. Deep or Shallow?

In all the experiments discussed in this section the
model was trained using fully labeled data (still, train-
ing also includes an unsupervised objective as discussed
earlier). In order to retrieve documents after training
the model, all documents are mapped into the latent
low-dimensional space, the cosine similarity between
each document in the test dataset and each document
in the training dataset is measured, and the k most
similar documents are retrieved. k is chosen to be equal
to 1, 3, 7, ..., 4095. Based on the topic label of the
documents, we assess the performance by computing
the recall and the precision averaged over the whole
test dataset.

In the first experiment, we compared the linear map-

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RECALL

P
R
E
C
I
S
I
O
N

shallow 1,000 words

shallow 2,000 words

shallow 5,000 words

shallow 10,000 words

tf−idf 1,000 words

tf−idf 2,000 words

tf−idf 5,000 words

tf−idf 10,000 words

Figure 6. Precision-recall curves for the 20 Newsgroups
dataset comparing the performance of tf-idf versus a one-
layer shallow model for varying sizes of the word dictionary
(from 1000 to 10000 words).

ping produced by LSI to the nonlinear mapping pro-
duced by our model. We considered the Reuters dataset
with a 12317 word vocabulary and trained a network
with 3 layers. The first layer had 100 code units, the
second layer had 40 units in one experiment and 10
in another, the third layer was trained with either 3
or 2 code units. As shown in Fig. 4, the nonlinear
representation is more powerful than the linear one,
when the representation is very compact.

Another interesting question is whether adding layers
is useful. Fig. 5 shows that for a given dimensionality
of the output latent space the deep architecture outper-
forms the shallow one. The deep architecture is capable
of capturing more complex dependencies among the
input variables than the shallow one, while the repre-
sentation remains compact. The compactness allows us
to efficiently handle very large vocabularies (more than
30,000 words for the Ohsumed, see Sec. 3.4). Fig. 6
shows that increasing the number of words (i.e. the
dimensionality of the input) does give better retrieval
performance.

3.3. Compact or Binary High-Dimensional?

The most popular representation of documents is tf-
idf, a very high-dimensional and sparse representa-
tion. One might wonder whether we should learn a
high-dimensional representation instead of a compact
representation. Unfortunately, the autoencoder based
learning algorithm forces us to map data into a lower-
dimensional space at each layer, as without additional
constraints (Ranzato et al., 2007a) the trivial identity
function would be learned. We used the sparse encod-

Semi-supervised learning of compact document representations with deep networks

10
−3

10
−2

10
−1

10
0

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

RECALL

P
R
E
C
I
S
I
O
N

tf−idf(2000)

binary(1000)

deep(7)

deep(20)

DBN pre−trained(20)

DBN fine−tuned(20)

Figure 7. Precision-recall curves comparing compact rep-
resentations vs. high-dimensional binary representations.
Compact representations can achieve better performance
using less memory and CPU time.

ing symmetric machine (SESM) (Ranzato et al., 2007b)
as a building block for training a deep network produc-
ing sparse features. SESM is a symmetric autoencoder
with a sparsity constraint on the representation, and it
is trained unsupervised. In order to make the sparse
representation at the final layer computationally appeal-
ing we thresholded it to make it binary. We trained a
2000-1000-1000 SESM network on the Reuters dataset.
In order to make a fair comparison with our compact
representation, we fixed the information content of the
code in terms of precision4 at k = 1. We measured
the precision and recall of the binary representation of
a test document by computing its Hamming distance
from the representation of the training documents. We
then trained our model with the following number of
units 2000-200-100-7. The last number of units was set
to match the precision of the binary representation at
k = 1. Fig. 7 shows that our compact representation
outperforms the high-dimensional and binary represen-
tation at higher values of k. Just 7 continuous units
are able to achieve better retrieval than 1000 binary
units! Storing the Reuters dataset with the compact
representation takes less than half the memory space
than using the binary representation, and comparing
a test document against the whole training dataset is
five times faster with the compact representation. The
best accuracy for our model is given with a 20-unit
representation. Fig. 7 shows the performance of a rep-
resentation with the same number of units learned by
a deep belief network (DBN) following Salakhutdinov
and Hinton’s constrained Poisson model (2007). Their

4The entropy of the representation would be more natu-
ral, but its value depends on the quantization level.

model was greedily pre-trained for one epoch in an
unsupervised way (200 pre-training epochs gave similar
fine-tuned accuracy), and then fine-tuned with super-
vision for 100 epochs. While fine-tuning does not help
our model, it significantly improves the DBN which
eventually achieves the same accuracy as our model.
Despite the similar accuracy, the computational cost of
training a DBN (with our implementation using conju-
gate gradient on mini-batches) is several times higher
due to this supervised training through a large and
deep network. By looking at how words are mapped

Table 1. Neighboring word stems for the model trained on
Reuters. The number of units is 2000-200-100-7.

Word stem Neighboring word stems

livestock beef, meat, pork, cattle
lend rate, debt, bond, downgrad
acquisit merger, stake, takeov
port ship, port, vessel, freight
branch stake, merger, takeov, acquisit
plantat coffe, cocoa, rubber, palm
barrel oil, crude, opec, refineri
subcommitte bill, trade, bond, committe
coconut soybean, wheat, corn, grain
meat beef, pork, cattl, hog
ghana cocoa, buffer, coffe, icco
varieti wheat, grain, agricultur, crop
warship ship, freight, vessel, tanker
edibl beef, pork, meat, poultri

to the top-level feature space, we can get an intuition
about the learned mapping. For instance, the code
closest to the representation of the word “jakarta” cor-
responds to the word “indonesia”, similarly,“meat” is
closest to “beef” (table 1). As expected, the model
implicitly clusters synonymous and related words.

3.4. Visualization

The deep model can also be used to visualize documents.
When the top layer is two-dimensional we can visualize
high-dimensional nonlinear manifolds in the space of
bags of words. Fig. 8 shows how documents in the
Ohsumed test set are mapped to the plane. The model
exposes clusters documents according to the topic class,
and places similar topics next to each other. The
dimensionality reduction is extreme in this case, from
more than 30000 to 2.

4. Conclusions

We have proposed and demonstrated a simple and effi-
cient algorithm to learn document representations from

Semi-supervised learning of compact document representations with deep networks

Bacterial Infections
 and Mycoses

Virus

Parasitic

Neoplasms

Musculoskeletal

Digestive System

Figure 8. Two-dimensional codes produced by the deep
model 30689-100-10-5-2 trained on the Ohsumed dataset
(only the 6 most numerous classes are shown). The codes
results from propagating documents in the test set through
the four-layer network.

partially labeled datasets. The representation is rich
in that it can model complex dependencies between
words, which allows us to capture higher-level seman-
tic aspects of documents than is possible with linear
models. Capturing such complex structure would not
be possible based on labeled data alone; by leveraging
unlabeled documents we get access to a much larger
amount data.

This algorithm trains faster than a similar model based
on RBMs, and it finds more efficient representations
than a network trained with SESMs that produce high-
dimensional binary features. We have shown that these
deep models greatly outperform similar but shallow
models when the learning task is very hard, such as
learning very compact representations. Compact rep-
resentations are very important for search engines be-
cause they are cheap to store, and fast to compute
and to compare. Also, we have shown that even a
few labels can be exploited to make the features more
discriminative.

For future work, we are interested in applying the
representation for clustering and ranking. It would also
be interesting to go beyond the bag of words model to
capture word proximity.

Acknowledgments

The authors would like to thank Y. LeCun for his
insights and suggestions.

References

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle,
H. (2006). Greedy layer-wise training of deep net-
works. In NIPS.

Bengio, Y. and LeCun, Y. (2007). Scaling learning

algorithms towards AI. MIT press.

Blei, D., Ng, A. Y., and Jordan, M. I. (2003). Latent
Dirichlet allocation. JMLR.

Deerwester, S., Dumais, S., Landauer, T., Furnas, G.,
and Harshman, R. (1990). Indexing by latent seman-
tic analysis. Journ. of American Society of Informa-

tion Science, 41:391–407.

Gehler, P. V., Holub, A. D., and Welling, M. (2006).
The rate adapting Poisson model for information
retrieval and object recognition. In ICML.

Hinton, G. (2000). Training products of experts by
minimizing contrastive divergence. Technical report,
U. Toronto.

Hinton, G., Osindero, S., and Teh, Y.-W. (2006). A
fast learning algorithm for deep belief nets. Neural

Computation, 18:1527–1554.

Hinton, G. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks.
Science, 313(5786):504–507.

Hofmann, T. (1999). Probabilisitc latent semantic anal-
ysis. In Proc. of Uncertainty in Artificial Intelligence.

LeCun, Y., Bottou, L., Orr, G., and Muller, K. (1998).
Efficient backprop. In Orr, G. and K., M., editors,
Neural Networks: Tricks of the trade. Springer.

Ranzato, M., Boureau, Y., Chopra, S., and LeCun,
Y. (2007a). A unified energy-based framework for
unsupervised learning. In AI-STATS.

Ranzato, M., Boureau, Y., and LeCun, Y. (2007b).
Sparse feature learning for deep belief networks. In
NIPS. MIT Press.

Robertson, S. and Walker, S. (1994). Some simple
effective approximations to the 2-Poisson model for
probabilistic weighted retrieval. In Proc. ACM SI-

GIR, pages 232–241.

Salakhutdinov, R. and Hinton, G. (2007a). Semantic
hashing. In ACM SIGIR workshop on Information

Retrieval and Applications of Graphical Models.

Salakhutdinov, R. and Hinton, G. (2007b). Using deep
belief nets to learn covariance kernels for gaussian
processes. In NIPS 20. MIT Press.

