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Abstract

We propose a novel Bayesian multiple in-
stance learning (MIL) algorithm. This al-
gorithm automatically identifies the relevant
feature subset, and utilizes inductive trans-
fer when learning multiple (conceptually re-
lated) classifiers. Experimental results indi-
cate that the proposed MIL method is more
accurate than previous MIL algorithms and
selects a much smaller set of useful features.
Inductive transfer further improves the accu-
racy of the classifier as compared to learning
each task individually.

1. Multiple Instance Learning

In a single instance learning scenario we are given a
training set D = {(x;,y;)}Y, containing N instances,
where x; € X is an instance (the feature vector) and
y; € ¥ = {0, 1} is the corresponding known label. The
task is to learn a classification function f: X — ).

In the multiple instance learning framework the train-
ing set consists of bags. A bag contains many instances.
All the instances in a bag share the same bag-level la-
bel. A bag is labeled positive if it contains at least
one positive instance. A negative bag means that all
instances in the bag are negative. The goal is to learn
a classification function that can predict the labels of
unseen instances and/or bags.

MIL is a natural framework to model many real-life
tasks like drug activity prediction (Dietterich et al.,
1997), image retrieval (Andrews et al., 2002), face

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

detection (Viola et al., 2006), scene classification,
text categorization, etc and is often found to be su-
perior than a conventional supervised learning ap-
proaches (Ray & Craven, 2005). The concept of MIL
was first introduced by (Dietterich et al., 1997) in the
context of drug activity prediction. (Maron & Lozano-
Perez, 1998) proposed a framework called Diverse Den-
sity algorithm. Since then various variants of stan-
dard single instance learning algorithms like Boost-
ing (Xin & Frank, 2004; Viola et al., 2006), SVMs (An-
drews et al., 2002; Fung et al., 2007), Logistic Regres-
sion (Ray & Craven, 2005; Settles et al., 2008), nearest
neighbor (Wang & Zucker, 2000) etc. have been mod-
ified to adapt to the MIL scenario.

Our motivation for this work comes from the area of
computer aided diagnosis (CAD) (see section § 10)-
where the task is to build a classifier to predict whether
a suspicious region (instance) on a computed tomogra-
phy (CT) scan is a pulmonary embolism/nodule/lesion
or not. This was proposed as a MIL problem by (Fung
et al., 2007) by recognizing the fact that all instances
which are within a certain distance to a radiologist
mark (ground truth) can be considered as a positive
bag. A requirement is that run time of the classifier
during testing be as small as possible. Hence we would
like the final classifier to use as few features as possible.

In this paper we propose a novel multiple instance
algorithm which performs automatic feature selection
and classifier design jointly. In particular we start out
with the well-known logistic regression as our classi-
fier and demonstrate how it can be modified for the
MIL framework (§ 3-6). We use the feature selection
method originally proposed for the relevance vector
machine (RVM) (Tipping, 2001) single-instance clas-
sifier, in a manner that is optimal for multiple-instance
classification(§ 7). We extend the algorithm to handle
multi-task learning in § 8.
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2. Novel Contributions

Our method differs from the substantial body of previ-
ous literature on MIL in the following crucial aspects.

a. Baseline-model: We use Logistic Regression as
our baseline (single instance) classifier, similar to two
previous papers. However, our model for combin-
ing the positive instances is quite different from the
soft-max (Ray & Craven, 2005) or the averaging ap-
proach (Xin & Frank, 2004) used by others. We di-
rectly enforce the definition that at least one of the
instances in a positive bag is positive.

b. Feature selection: Relying on the Bayesian auto-
matic relevance determination paradigm, our learning
algorithm selects the relevant subset of features that
is most useful for accurate multiple instance classifica-
tion. Experimental results demonstrate that the num-
ber of features chosen for optimizing the accuracy of
multiple-instance classification is much smaller than
that selected in a corresponding single instance learn-
ing algorithm. While MI Boost (Xin & Frank, 2004)
also does feature selection, results indicate that our
our approach is more accurate than MI Boost.

¢. Inductive transfer: The proposed method is eas-
ily extended to statistically exploit information from
other data sets while learning multiple related classi-
fiers. This inductive-transfer approach results in sub-
stantial improvements in accuracy in real-life problems
with limited training data. We are not aware of previ-
ous work which accomplishes inductive transfer in the
context of multiple-instance classification.

3. Notation

We represent an instance as a feature vector z € R?. A
bag which contains K instances is denoted by boldface
x = {z; € R?}C,. The label of a bag is denoted by

y €4{0,1}.

Training Data The training data D consists of N
bags D = {x;, i}, where x; = {z;; € Rd}f:il is a
bag containing K; instances that share the same label
Y; € {07 1}.

Classifier We consider the family of linear discrimi-
nating functions: F = {f,}, where for any z,w € RY
, fw(r) = wTx. The final classifier can be written in
the following form

(1
Y=Y o0

Ties are resolved by flipping a fair coin. The thresh-
old parameter 6 determines the operating point of the
classifier. The ROC curve is obtained as 6 is swept

if wle >0
if wle <0

(1)

from —oco to oco. A bag is labeled positive if at least
one instance is positive and negative if all instances
are negative. Learning a classifier implies choosing the
weight vector w given the training data D.

4. Logistic Generalized Linear Model

The posterior probability for the positive class is mod-
eled as a logistic sigmoid acting on the linear classifier
fw, i-e, p(y = 1|z) = o(w'z). The logistic sigmoid
function is defined as o(z) = 1/(1 4+ e #). This clas-
sification model is known as logistic regression in the
statistics community. Also p(y = Olz) = 1 —p(y =
lz)=1-o(w'x).

4.1. Logistic Model for MIL

In the MIL framework we have the concept of bags—
where all the examples in a bag share the same label.
A positive bag means at least one example in the bag
is positive. The probability that a bag contains at
least one positive instance is one minus the probability
that all of them are negative. Hence the posterior
probability for the positive bag can be written as

ply=1x)=1-]] 1 -o(w )], (2)

—

Jj=1

where the bag x = {xj} ", contains K examples.This
model is sometimes referred to as the noisy — OR and
has been previously used by (Viola et al., 2006) in
a boosting framework and (Maron & Lozano-Perez,
1998) in the Diverse Density algorithm. We use this
model for Logistic Regression. A negative bag means
that all examples in the bag are negative. Hence

K
y—O\sz [1—o(w xj)] (3)

5. Maximum Likelihood Estimator

Given the training data D the maximum likelihood
(ML) estimate for w is given by

W, = argmax p(D/w) = arg max [log p(D/w)] . (4)

Define p; = p(yz = 1|Xz) =1- H [1 - U(wT‘T”)],
the probability that the i* bag x; is positive. Assum-
ing that the training bags are independent the log-
likelihood can be written as

log p D/w Z yi log p; + 1 - yz) IOg(l - pz) (5)
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A similar likelihood was also maximized by (Viola
et al., 2006) using the AnyBoost framework, which
views boosting as gradient descent in function space.

6. The MAP Estimator

The ML solution in practice can exhibit severe over-
fitting especially for high-dimensional data. This can
be addressed by using a prior on w.

Prior We will assume zero mean Gaussian prior
(N (w|0, A=1)) on the weights w with inverse covari-
ance matrix A = diag(ay ...aq) (also referred to as

the hyper-parameters).
w! Aw
) ©

2

p(w) = (2m) 42| A1 Y2 p(—

This encapsulates our prior belief that the individual
weights in w are independent and close to zero with a
variance parameter 1/a;.

Posterior Once we observe the training data D we
will update the prior to compute the posterior p(w/D),
which can be Written as follows (using Bayes’s rule)—
p(w/D) = p(D/w)p(w)/ [ p(D/w)p(w)dw. This pos-
terior can then be used to compute predictive distri-
butions, which will typically involve high dimensional
integrals. For computational efficiency we could use
point estimates of w. In particular the mazimum a-
posteriori (MAP) estimate is given by
Wyap = arg max [log p(D/w) + log p(w)] . (7)
Substituting for the log likelihood and the prior we
have Wyap = arg max,, L(w), where
ol w' Aw
ji:zu10gzn-+ 5
i=1

(1 —yi)log(1 — p;)
(8)

Optimization Due to the non-linearity of the sigmoid
we do not have a closed form solution and we have to
use gradient based optimization methods. We use the
Newton-Raphson update given by w't! = w!*—nH™!g,
where g is the gradient vector, H is the Hessian matrix,
and 7 is the step length. The gradient is given by

I
] =

K;
i — (1= y)] Y wigo(w xi;) — Aw, (9)
i=1 j=1
where (3; = . Note that 8; = 1 corresponds to the

derivatives of the standard logistic regression updates.
These term §; can be thought of as the bag weight by
which each instance weight gets modified. The Hessian

matrix is given by

K;

yzﬂz ]- - yz)] Z ngxTU(meij)
=1

i=1 Jj=

[\'j =

K;
w ng Zyzﬂz Bi + szjo' w xz]
j=1
K;
Z{EijU(U)TZL'ij) —A. (10)
j=1

Note that the Hessian matrix depends on the class
labels also—unlike in regular logistic regression.

7. Bayesian MIL: Feature Selection

We imposed a prior of the form p(w) =
N(w|0, A=Y, parameterized by d hyper-parameters
A = diag(ay . ..aq). Clearly, as the precision ay —

00, i.e, the variance for wy tends to zero (thus concen-
trating the prior sharply at zero). Hence, regardless
of the evidence of the training data, the posterior for
wy, will also be sharply concentrated on zero, thus that
feature will not affect the classification result-hence, it
is effectively removed out via feature selection. There-
fore, the discrete optimization problem corresponding
to feature selection (should each feature be included or
not?), can be more easily solved via an easier continu-
ous optimization over hyper-parameters . If one could
maximize the marginal likelihood p(D|A) this would
perform optimal feature selection. This approach is
also known as the type-II maximum likelihood method
in the Bayesian literature.

We choose the hyper-parameters to maximize the
marginal likelihood.

A =arg mﬁxp(D|A) = arg mﬁx/p(D|w)p(w|A)dw
(11)

Since this integral is not easy to compute for our MIL
model we use an approximation to the marginal likeli-
hood via the Taylor series expansion. The marginal
likelihood p(D|A) can be written as p(DJA) =
[ e?@dw, where ¥(w) = logp(Djw) + logp(w|A).
Approximating ¥ using a second order Taylor series
around Wyap,

\I’(w) ~ VU ('@MAP)JF 5 (w*@MAP)H(ﬁ}MAP 5 A) (’LU*@MAP)T
(12)

Hence we have the following approximation to the
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Input: {x;,y:}iv,, where x; = {x;; € Rd}f-iil is a
bag containing K; instances that share the same

label y; € {0,1}.

Output: A list of selected features and weight
vector w for the linear classifier.

Initialize @; =1 and w; =0 fori=1,...,d.
repeat
If a; > 7 remove feature w;.

MAP estimate using the selected features.

repeat
Compute the gradient vector g. (Eq. 9)
Compute the Hessian matrix H. (Eq. 10)
Determine 7 using a line search.
Update w — w — nH 'g.

until ||g||/d < e1

Update the hyper-parameters using

a; — 1/(w? + ). (BEq. 17)

until max; |log af"" — log a?™’| < €2

In the experiments reported in this paper we use 7 = 1012,
€1 = 10_5, and ez = 1073,

Algorithm 1: The proposed algorithm

marginal likelihood
p(DIA)

~ e‘l’(ﬁMAP)/e%(w—@MAP)H(@MAP»A)(w—@MAP)Tdw

Q

Task 1 ° i Task 2

Figure 1. In multi-task learning tasks share the same prior.

on A a simple update rule for the hyper-parameters
can be written by equating the first derivative to zero.

v = 1 (17)

! w? + 5

The final algorithm has two levels of iterations (see
Algorithm 1): in an outer loop we update the hyper-
parameters «; and in an inner loop we find the MAP
estimator Wyap given the hyper-parameters. After a
few iterations we find that the hyper-parameters—the
inverse variances of the priors—for several features tend
to infinity causing numerical problems in implementa-
tion. This means that those w; — 0 we can simply
remove those irrelevant features from further consid-
eration in future iterations. The proposed algorithm
with feature selection can be considered as the exten-

P(D|Briap)p(Wyap|A)(27)Y2| — H™ (Wyap, A)|Y/? sion of the Relevance Vector Machine (RVM) (Tipping,

(13) 2001) to multiple-instance learning framework.

Using the prior p(w|A) = N(w|0,A™1), the log
marginal likelihood can be written as

logp(D\A) ~ 10gp(D|11]\MAp) — iwl—d;APA@MAP
1 1 ~

(14)

The hyper-parameters A are found by maximizing this
approximation to the log marginal likelihood. There is
no closed-form solution for this. Hence we use a iter-
ative re-estimation method by setting the first deriva-
tive to zero. The derivative can be written as

0logp(D|A) 1. T,
oA T TatwrDia AT

1 .
— §H_1('LUMAP7A.). (15)

Since A = diag(ag ...aq), we can further simplify

Ologp(D|A) 1 5, 1 1
80&1' Zwi * QOéi 52“’

where Y,; is the "

H_l(fU\MAm A).

(16)

diagonal element of
Assuming ¥;; does not depend

8. Multi-task Learning

We are often faced with a shortage of training data for
learning classifiers for a task. However we may have
additional data for closely related, albeit non-identical
tasks. For example in our CAD applications where we
have to identify early stage cancers from CT scans, our
data set includes images from CT scanners with two
different reconstruction kernels—-B50 and B60.

While training the classifier we could ignore this infor-
mation and pool all the data together. However, there
are some systematic differences that make the feature
distributions slightly different. Alternatively, we could
train a separate classifier for each kernel, but a large
part of our data set is from one particular kernel (B60)
and we have a smaller data set for the other (B50).

Here, we discuss another approach—multi-task learn-
ing (Caruana, 1997)— that tries to estimate models
w? for several classification tasks j in a joint man-
ner. Multi-task learning can compensate for small
sample size by using additional samples from related
tasks, and exchanging statistical information between
tasks. In a hierarchical Bayesian approach, the clas-
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Table 1. Datasets used in our MIL experiments. d is the
number of features.

’ Dataset H d ] positive [ negative |

| examples [ bags | examples | bags |
[Muski || 166 | 207 [ 47 [ 269 | 45 |
[ Musk2 ][ 166 | 1017 | 39 [ 5581 | 63 |
[ Elephant [ 230 | 762 [ 100 ] 629 [ 100 ]
[ Tger || 230 | 544 | 100 | 676 | 100 |

sifiers share a common prior p(w/|A) (See Figure 1).
A separate classifier is trained for each task. However
the optimal hyper-parameters of the shared prior are
estimated from all the data sets simultaneously during
the training. The update equation becomes (in place
of Eq. 17): af® = 1/37 .4 (W0])? + 7.

9. Experimental Results
9.1. Datasets

Experiments were performed on four common bench-
mark data sets from the MIL literature (see Table 1).

Muskl and Musk2 (Asuncion & Newman, 2007) The
task is to predict whether a new drug molecule will
bind to a target protein. However each molecule (bag)
can have many different low energy shapes (instances)
of which only one can actually bind with the target.

Elephant and Tiger The task is to search a repository
to find images that contain objects of interest. An
image is represented as a bag. An instance in a bag
corresponds to a segment in the image; the object of
interest is contained in at least one segment.

9.2. Competing Algorithms

Various learning algorithms have been adapted to the
multiple learning scenario. We compare our proposed
algorithm with a variant of Boosting, SVM, and Lo-
gistic Regression. Specifically we perform our experi-
mental comparison for the following algorithms.

MI RVM The proposed multiple-instance algorithm
with feature selection. This is completely automatic
and does not require tuning any parameters.

RVM The proposed algorithm without multiple in-
stance learning. This is same as MI RVM but every
example is assigned to a unique bag.

MI The proposed multiple-instance algorithm with-
out feature selection. We set A = AI, where I is
the identity matrix and A is chosen by five-fold cross-
validation.

MI Boost (Xin & Frank, 2004) This is a variant of the
AdaBoost algorithm adapted for the multiple instance

Table 2. The AUC for different algorithms and datasets.

[Set [ MIRVM | RVM | MIBoost | MILR | MISVM | MI
Muskl 0.942 0.951 0.899 0.846 0.899 | 0.922
Musk2 0.987 0.985 0.964 0.795 5 0.982
Elephant 0.962 0.979 0.828 0.814 0.959 | 0.953
Tiger 0.980 | 0.970 0.890 0.890 0.945 | 0.956

Table 3. The average number of features selected per fold
by different algorithms.

Dataset Number selected by selected by selected by
of features RVM MI RVM MI Boost
[ Muskl ] 166 I 39 I 14 I 33 |
[[Musk2___|] 166 | 90 | i7 | 32 |
[ Elephant H 230 [ 42 [ 16 [ 33 ]
| Tiger [ 230 | 56 | 19 | 37 |

learning scenario. We boosted for 50-100 rounds.

MI SVM (Andrews et al., 2002) This is a bag-level
SVM variant for MIL. We used the implementation
publicly available at (Yang, 2006). We used a linear
kernel and the regularization parameters was chosen
by 5-fold cross-validation.

MI LR (Settles et al., 2008; Ray & Craven, 2005) This
is a variant of Logistic Regression which uses the soft-
max function to combine posterior probabilities over
the instances of a bag. We used o = 3 in the soft-max
function. Non-linear conjugate gradient with tolerance
set at 1073 was used as the optimization routine.

Of all the above algorithms only our proposed method
and the boosting one does automatic feature selection.
We are not aware of any other multiple-instance algo-
rithms which does automatic feature selection.

9.3. Evaluation Procedure

The results are shown for a 10-fold stratified cross-
validation. The folds are split at the positive bag level,
so that examples in the same positive bag will not be
split. We plot the Receiver Operating Characteris-
tics (ROC) curve for various algorithms (see Figure 2).
The ROC curve is a plot of False Positive Rate (FPR)
vs True Positive Rate (TPR) as the decision threshold
of the classifier € is varied from oo to —oco. The TPR
is computed on a bag level—i.e., a bag is predicted as
positive if at least one on the instances in classified
as positive. The ROC curve is plotted by pooling the
prediction of the algorithm across all folds as in (Ray
& Craven, 2005). We also report the area under the
ROC curve (AUC) in Table 2.

9.4. Results

Comparison with other methods. From Figure 2
and Table 2 we see that among other MIL algorithms
the ROC for the proposed method clearly dominates
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Figure 2. The ROC Curves for the different data sets and the different algorithms.

the other methods. However it is interesting to note
that plain RVM is better than MI RVM for Musk 1
and Elephant data sets. This confirms the surprising
observation in (Ray & Craven, 2005) that for some
MIL benchmarks standard supervised learning algo-
rithm may be more accurate than MIL algorithms.

Number of features selected. Table 3 compares
the number of features selected by MI RVM, RVM,
and the MI Boost algorithm. It can be seen that the
proposed MI RVM algorithm selects the least number
of features. Selecting features in a multiple instance
setting reduces the number of features selected by half.

Does feature selection help? From Table 2 we see
that the AUC with feature selection is higher than that
without feature selection. Thus we are able to achieve
better performance and at the same time use a smaller
set, of features.

Runtime The proposed algorithm and the MI Boost
are orders of magnitude faster than other MIL meth-
ods. As a result MI SVM and MI LR could not be run
on our CAD experiments described in the next section.
Also the proposed method has no free parameters to
tune. The runtime of our algorithm scales as O(d?)
with the number of features. This is because we need
to compute the inverse of the d x d Hessian matrix.

10. Computer Aided Diagnosis

In computer aided diagnosis (CAD) the goal is to de-
tect potentially malignant nodules, tumors, emboli, or
lesions in medical images like computed tomography
(CT), X-ray, MRI etc. A CAD system aids the radi-
ologist by marking the location of likely anomaly on
a medical image. Figure 3 shows two pulmonary em-
boli (PE) in a CT scan. PE (blood clots in the lung),
is a potentially life-threatening condition. An early
and accurate diagnosis is the key to survival. Com-
puted tomography angiography (CTA) has emerged
as an accurate diagnostic tool.

Figure 3. Sample pulmonary emboli in a Lung CT scan
along with the candidates which point to it.

Most CAD systems consist of the following three
steps—(1) Candidate generation—this step identifies po-
tentially unhealthy regions of interest. While this step
can detect most of the anomalies, the number of false
positives will be extremely high (60-100 false positives/
patient). (2) Feature computation—computation of a
set of descriptive morphological features for each of the
candidates. (3) Classification—labeling of each candi-
date as a nodule or not by a classifier. The goal of
the classifier is to reduce the number of false positives
without appreciable decrease in the sensitivity.

In order to train a classifier, a set of CT scans is col-
lected from hospitals. These scans are then read by
expert radiologists who mark the pulmonary emboli
locations—this constitutes our ground truth for learn-
ing. The candidate generation step generates a lot
of potential candidates. Any candidate which is close
to the radiologist mark (for example within a certain
distance) is considered a positive example for training
and the rest of the candidates are considered as neg-
ative examples. Based on a set of features computed
for these candidates we intend to train a classifier.
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Table 4. Datasets used in our PE CAD MIL experiments.

Dataset Features positive [ negative
examples | bags | examples

Training 134 514 312 4619

Validation 134 305 214 3246

10.1. Multiple Instance Learning for CAD

The candidate generation step very often produces a
lot of candidates which are spatially close to each other
(See Figure 3 for two PE appearing in a CT scan). All
these candidates point to the same ground truth and
can considered to share the same label for training.
A single instance classifier can be trained using the
labeled candidates. In this work we use the multi-
ple instance learning algorithm by recognizing the fact
that all candidates which point to the same radiolo-
gist mark can be considered as a positive bag (Fung
et al., 2007). There is another important reason why
MIL is a natural framework for CAD. The candidate
generation algorithm produces a lot of spatially close
candidates. Even if one of these is highlighted to the
radiologist and other adjacent or overlapping candi-
dates are missed, the underlying embolism would still
have been detected. Hence while evaluating the perfor-
mance of CAD systems we use the bag level sensitivity,
i.e., a classifier is successful in detecting an embolism
if at least one of the candidates pointing to it is pre-
dicted as a PE. MIL naturally lends itself to model our
desired accuracy measure during training itself.

Another important requirement is that run time of the
classifier during testing should be as small as possi-
ble. The candidate generation step generally produces
thousands of candidates for a CT scan. Computing
all the features can be very time-consuming. Hence it
is imperative that the final classifier uses as few fea-
tures as possible without any decrease in the sensi-
tivity. The proposed classifier automatically selects
features for multiple-instance classification.

10.2. Experiments

Table 4 summarizes the PE CAD data sets we use in
our experiments. Note that unlike the previous four
data sets we do not have negative bags. Every negative
example is considered a negative bag. The classifier is
trained on the training set and tested on a separate
validation set. Since we are interested in the number
of False Positives per volume (patient) we plot Free re-
sponse ROC (FROC) curves for the validation set (see
Figure 4). MI RVM gives a substantial improvement
over the single instance RVM approach and also the
MI Boost method. The MI SVM and MI LR could

PECAD bag level FROC Curve

0.8

Sensitivity
o
[=2)

I
~

0.2

- = -MI Boost

0 5 10 15 20
False Positives/ Volume

Figure 4. The bag level FROC curve for the PECAD vali-
dation set.

not be run for the large CAD data set. MI RVM algo-
rithm selected 21 features in contrast to the 34 features
selected by the single instance RVM algorithm

10.3. Multi-task Learning Experiments

Lung cancer is a leading cause of cancer related death
in western countries. However early detection can sub-
stantially improve survival. Automatic CAD systems
can be developed to identify suspicious regions such
as solid nodules or ground-glass opacities (GGO) in
CT scans of the lung. A solid nodule is defined as an
area of increased opacity more than 5mm in diameter
which completely obscures underlying vascular mark-
ing. Ground-glass opacity(GGO) is defined as an area
of a slight, homogenous increase in density, which did
not obscure underlying bronchial and vascular mark-
ings. Figure 5 shows an example nodule and GGO.

Detecting nodules and GGOs are two closely related
tasks although each has its own respective character-
istics. Hence multi-task learning is likely to be ben-
eficial, even when building a specific model for each
task. To train such a system we used 15 CT scans
which included GGOs and 23 CT scans that included
nodules. The model accuracy was validated on a held
out set of 86 CT scans that included nodules. Fig-
ure 6 compares the FROC curves for nodule detection
system designed in two different ways. (1) Single task
learning: the classifier was learnt only using nodule
data. (2) Multi-task learning: the classifier was learnt
using nodule data and GGO data. As Figure 6 shows,
inductive transfer using the proposed scheme the im-
proves accuracy of the multiple instance learning sys-
tem, when we have a limited amount of training data.

11. Conclusion

In this paper we proposed a novel MIL algorithm that
automatically selects the features relevant for multi-
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Figure 5. Lung CT image showing a sample (a)nodule and
(b) GGO. Figure reprinted from (Suzuki et al., 2006).

ple instance classification. The proposed algorithm is
more accurate than other competing MIL methods,
both on benchmark data sets and on real life CAD
problems. Our experiments also validate the previ-
ous observation of (Ray & Craven, 2005) that on some
multiple instance benchmarks the single instance clas-
sifier is slightly more accurate. For all domains, the
number of features selected by our algorithm is much
smaller than that for the corresponding single instance
classifier. Inductive transfer improves accuracy in data
poor CAD applications.
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Figure 6. Multi-task learning experiments The bag level
FROC curve for the validation set.
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