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Abstract
In this paper, we consider a smoothing kernel
based classification rule and propose an algo-
rithm for optimizing the performance of the rule
by learning the bandwidth of the smoothing ker-
nel along with a data-dependent distance metric.
The data-dependent distance metric is obtained
by learning a function that embeds an arbitrary
metric space into a Euclidean space while mini-
mizing an upper bound on the resubstitution esti-
mate of the error probability of the kernel classi-
fication rule. By restricting this embedding func-
tion to a reproducing kernel Hilbert space, we re-
duce the problem to solving a semidefinite pro-
gram and show the resulting kernel classification
rule to be a variation of the k-nearest neighbor
rule. We compare the performance of the kernel
rule (using the learned data-dependent distance
metric) to state-of-the-art distance metric learn-
ing algorithms (designed for k-nearest neighbor
classification) on some benchmark datasets. The
results show that the proposed rule has either bet-
ter or as good classification accuracy as the other
metric learning algorithms.

1. Introduction
Parzen window methods, also called smoothing kernel
rules are widely used in nonparametric density estimation
and function estimation, and are popularly known as ker-
nel density and kernel regression estimates, respectively.
In this paper, we consider these rules for classification. To
this end, let us consider the binary classification problem
of classifying x ∈ RD, given an i.i.d. training sample
{(Xi, Yi)}n

i=1 drawn from some unknown distribution D,
where Xi ∈ RD and Yi ∈ {0, 1},∀ i ∈ [n] := {1, . . . , n}.
The kernel classification rule (Devroye et al., 1996, Chap-
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ter 10) is given by

gn(x) =





0 if
∑n

i=1 1{Yi=0}K
(

x−Xi

h

)
≥ ∑n

i=1 1{Yi=1}K
(

x−Xi

h

)
1 otherwise,

(1)

where K : RD → R is a kernel function, which is usually
nonnegative and monotone decreasing along rays starting
from the origin. The number h > 0 is called the smooth-
ing factor, or bandwidth, of the kernel function, which pro-
vides some form of distance weighting. We warn the reader
not to confuse the kernel function, K, with the reproduc-
ing kernel (Schölkopf & Smola, 2002) of a reproducing
kernel Hilbert space (RKHS), which we will denote with
K.1 When K(x) = 1{‖x‖2≤1}(x) (sometimes called the
naı̈ve kernel), the rule is similar to the k-nearest neighbor
(k-NN) rule except that k is different for each Xi in the
training set. The k-NN rule classifies each unlabeled ex-
ample by the majority label among its k-nearest neighbors
in the training set, whereas the kernel rule with the naı̈ve
kernel classifies each unlabeled example by the majority
label among its neighbors that lie within a radius of h. De-
vroye and Krzyżak (1989) proved that for regular kernels
(see Devroye et al., (1996, Definition 10.1)), if the smooth-
ing parameter h → 0 such that nhD →∞ as n →∞, then
the kernel classification rule is universally consistent. But,
for a particular n, asymptotic results provide little guid-
ance in the selection of h. On the other hand, selecting the
wrong value of h may lead to very poor error rates. In fact,
the crux of every nonparametric estimation problem is the
choice of an appropriate smoothing factor. This is one of
the questions that we address in this paper by proposing an
algorithm to learn an optimal h.

The second question that we address is learning an opti-
mal distance metric. For x ∈ RD, K is usually a func-
tion of ‖x‖2. Some popular kernels include the Gaus-
sian kernel, K(x) = e−‖x‖

2
2 ; the Cauchy kernel, K(x) =

1Unlike K, K is not required to be a positive definite func-
tion. If K is a positive definite function, then it corresponds to
a translation-invariant kernel of some RKHS defined on RD . In
such a case, the classification rule in Eq. (1) is similar to the ones
that appear in kernel machines literature.
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1/(1 + ‖x‖D+1
2 ); and the Epanechnikov kernel K(x) =

(1 − ‖x‖22)1{‖x‖2≤1}.2 Snapp and Venkatesh (1998) have
shown that the finite-sample risk of the k-NN rule may be
reduced, for large values of n, by using a weighted Eu-
clidean metric, even though the infinite sample risk is inde-
pendent of the metric used. This has been experimentally
confirmed by Xing et al. (2003); Shalev-Shwartz et al.
(2004); Goldberger et al. (2005); Globerson and Roweis
(2006); Weinberger et al. (2006). They all assume the met-
ric to be ρ(x, y) =

√
(x− y)T Σ(x− y) = ‖L(x − y)‖2

for x, y ∈ RD, where Σ = LT L is the weighting matrix,
and optimize over Σ to improve the performance of the k-
NN rule. Since the kernel rule is similar to the k-NN rule,
one would expect that its performance can be improved by
making K a function of ‖Lx‖2. Another way to interpret
this is to find a linear transformation L ∈ Rd×D so that the
transformed data lie in a Euclidean metric space.

Some applications call for natural distance measures that
reflect the underlying structure of the data at hand. For ex-
ample, when computing the distance between two images,
tangent distance would be more appropriate than the Eu-
clidean distance. Similarly, while computing the distance
between points that lie on a low-dimensional manifold in
RD, geodesic distance is a more natural distance measure
than the Euclidean distance. Most of the time, since the
true distance metric is either unknown or difficult to com-
pute, Euclidean or weighted Euclidean distance is used as a
surrogate. In the absence of prior knowledge, the data may
be used to select a suitable metric, which can lead to better
classification performance. In addition, instead of x ∈ RD,
suppose x ∈ (X , ρ), where X is a metric space with ρ as its
metric. One would like to extend the kernel classification
rule to such X . In this paper, we address these issues by
learning a transformation that embeds the data from X into
a Euclidean metric space while improving the performance
of the kernel classification rule.

The rest of the paper is organized as follows. In §2, we
formulate the multi-class kernel classification rule and pro-
pose learning a transformation, ϕ, (that embeds the training
data into a Euclidean space) and the bandwidth parame-
ter, h, by minimizing an upper bound on the resubstitution
estimate of the error probability. To achieve this, in §3,
we restrict ϕ to an RKHS and derive a representation for
it by invoking the generalized representer theorem. Since
the resulting optimization problem is non-convex, in §4,
we approximate it with a semidefinite program when K
is a naı̈ve kernel. We present experimental results in §5,
wherein we show on benchmark datasets that the proposed
algorithm performs better than k-NN and state-of-the-art
metric learning algorithms developed for the k-NN rule.

2The Gaussian kernel is a positive definite function on RD

while the Epanechnikov and naı̈ve kernels are not.

2. Problem Formulation
Let {(Xi, Yi)}n

i=1 denote an i.i.d. training set drawn from
some unknown distributionD where Xi ∈ (X , ρ) and Yi ∈
[L], with L being the number of classes. The multi-class
kernel classification rule is given by

gn(x) = arg max
l∈[L]

n∑

i=1

1{Yi=l}KXi,h(x), (2)

where K : X → R+ and Kx0,h(x) = χ
(

ρ(x,x0)
h

)
for

some nonnegative function, χ, with χ(0) = 1. The prob-
ability of error associated with the above rule is L(gn) :=
Pr(X,Y )∼D(gn(X) 6= Y ) where Y is the true label associ-
ated with X . Since D is unknown, L(gn) cannot be com-
puted directly but can only be estimated from the training
set. The resubstitution estimate,3 L̂(gn), which counts the
number of errors committed on the training set by the clas-
sification rule, is given by L̂(gn) := 1

n

∑n
i=1 1{gn(Xi)6=Yi}.

As aforementioned, when X = RD, ρ is usually cho-
sen to be ‖.‖2. Previous works in distance metric learn-
ing learn a linear transformation L : RD → Rd lead-
ing to the distance metric, ρL(Xi, Xj) := ‖LXi −
LXj‖2 =

√
(Xi −Xj)T Σ(Xi −Xj), where Σ captures

the variance-covariance structure of the data. In this work,
our goal is to jointly learn h and a measurable function,
ϕ ∈ C := {ϕ : X → Rd}, so that the resubstitu-
tion estimate of the error probability is minimized with
ρϕ(Xi, Xj) := ‖ϕ(Xi) − ϕ(Xj)‖2. Once h and ϕ are
known, the kernel classification rule is completely speci-
fied by Eq. (2).

Devroye et al., (1996, Section 25.6) show that kernel rules
of the form in Eq. (1) picked by minimizing L̂(gn) with
smoothing factor h > 0 are generally inconsistent if X
is nonatomic. The same argument can be extended to the
multi-class rule given by Eq. (2). To learn ϕ, simply mini-
mizing L̂(gn) without any smoothness conditions on ϕ can
lead to kernel rules that overfit the training set. Such a
ϕ can be constructed as follows. Let nl be the number
of points that belong to lth class. Suppose n1 = n2 =
· · · = nL. Then for any h ≥ 1, choosing ϕ(X) = Yi

when X = Xi and ϕ(X) = 0 when X /∈ {Xi}n
i=1 clearly

yields zero resubstitution error. However, such a choice of
ϕ leads to a kernel rule that always assigns the unseen data
to class 1, leading to very poor performance. Therefore,
to avoid overfitting to the training set, the function class C
should satisfy some smoothness properties so that highly
non-smooth functions like the one we defined above are
not chosen while minimizing L̂(gn). To this end, we intro-
duce a penalty functional, Ω : C → R+, which penalizes

3Apart from the resubstitution estimate, holdout and deleted
estimates can also be used to estimate the error probability. These
estimates are usually more reliable but more involved than the
resubstitution estimate.
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non-smooth functions in C so that they are not selected.4

Therefore, our goal is to learn ϕ and h by minimizing the
regularized error functional given as

Lreg(ϕ, h) =
1
n

n∑

i=1

1{gn(Xi)6=Yi} + λ′ Ω[ϕ], (3)

where ϕ ∈ C, h > 0 and the regularization parameter,
λ′ > 0. gn in Eq. (3) is given by Eq. (2), with ρ replaced by
ρϕ. Minimizing Lreg(ϕ, h) is equivalent to minimizing the
number of training instances for which gn(X) 6= Y , over
the function class, {ϕ : Ω[ϕ] ≤ s}, for some appropriately
chosen s.

Consider gn(x) defined in Eq. (2). Suppose Yi = k for
some Xi. Then gn(Xi) = k if and only if

∑

{j:Yj=k}
Kϕ

Xj ,h(Xi) ≥ max
l∈[L]
l6=k

∑

{j:Yj=l}
Kϕ

Xj ,h(Xi), (4)

where the superscript ϕ is used to indicate the dependence
of K on ϕ.5 Since the right hand side of Eq. (4) involves
the max function which is not differentiable, we use
the inequality max{a1, . . . , am} ≤ ∑m

i=1 ai to upper
bound6 it with

∑
l∈[L]
l6=k

∑n
j=1 1{Yj=l}KXj (Xi). Thus, to

maximize
∑n

i=1 1{gn(Xi)=Yi}, we maximize its lower
bound given by∑n

i=1 1
{∑n

j=1
j 6=i

1{Yj=Yi}KXj
(Xi)≥

∑n
j=1 1{Yj 6=Yi}KXj

(Xi)

},

resulting in a conservative rule.7 In the above bound, we
use j 6= i just to make sure that ϕ(Xi) is not the
only point within its neighborhood of radius h. Define
τij := 2δYi,Yj − 1 where δ represents the Kronecker delta.
Then, the problem of learning ϕ and h by minimizing
Lreg(ϕ, h) in Eq. (3) reduces to solving the following
optimization problem,

min
ϕ, h

{ n∑

i=1

ψi(ϕ, h) + λ Ω[ϕ] : ϕ ∈ C, h > 0
}

, (5)

where λ = nλ′ and ψi(ϕ, h) given by

1{∑n
j=1
j 6=i

1{τij=1}KXj
(Xi) <

∑n
j=1 1{τij=−1}KXj

(Xi)

}

is an upper bound on 1{gn(Xi) 6=Yi} for i ∈ [n]. Solving the
above non-convex optimization problem is NP-hard. The

4This is equivalent to restricting the size of the function class
C from which ϕ has to be selected.

5To simplify the notation, from now onwards, we write
Kϕ

Xj ,h(Xi) as KXj (Xi) where the dependence of K on ϕ and h

is implicit.
6Another upper bound that can be used for the max function

is max{a1, . . . , am} ≤ log
(∑m

i=1 eai
)
.

7Using the upper bound of max function in Eq. (4) makes the
resulting kernel rule conservative as there can be samples from
the training set that do not satisfy this inequality but get correctly
classified according to Eq. (2).

gradient optimization is difficult because the gradients are
zero almost everywhere. In addition to the computational
hardness, the problem in Eq. (5) is not theoretically solv-
able unless some assumptions about C are made. In the
following section, we assume C to be an RKHS with the
reproducing kernel K and provide a representation for the
optimum ϕ that minimizes Eq. (5). We remind the reader
that K is a smoothing kernel which is not required to be a
positive definite function but takes on positive values, while
K is a reproducing kernel which is positive definite and can
take negative values.

3. Regularization in Reproducing Kernel
Hilbert Space

Many machine learning algorithms like SVMs, regulariza-
tion networks, and logistic regression can be derived within
the framework of regularization in RKHS by choosing an
appropriate empirical risk functional with the penalizer be-
ing the squared RKHS norm (see Evgeniou et al. (2000)).
In Eq. (5), we have extended this framework to kernel
classification rules, wherein we compute the ϕ ∈ C and
h > 0 that minimize an upper bound on the resubstitution
estimate of the error probability. To this end, we choose
C to be an RKHS with the penalty functional being the
squared RKHS norm,8 i.e., Ω[ϕ] = ‖ϕ‖2C . By fixing h,
the objective function

∑n
i=1 ψi(ϕ, h) in Eq. (5) depends

on ϕ only through {‖ϕ(Xi) − ϕ(Xj)‖2}n
i,j=1. By letting∑n

i=1 ψi(ϕ, h) = θh

({‖ϕ(Xi)− ϕ(Xj)‖2}n
i,j=1

)
where

θh : Rn2 → R+, Eq. (5) can be written as

min
h>0

min
ϕ∈C

θh

({‖ϕ(Xi)− ϕ(Xj)‖2}n
i,j=1

)
+λ ‖ϕ‖2C . (6)

The following result provides a representation for the min-
imizer of Eq. (6), and is proved in Appendix A. We remind
the reader that ϕ is a vector-valued mapping from X to Rd.
Theorem 1 (Multi-output regularization). Suppose C =
{ϕ : X → Rd} = H1×. . .×Hd whereHi is an RKHS with
reproducing kernel Ki : X×X → R and ϕ = (ϕ1, . . . , ϕd)
with Hi 3 ϕi : X → R. Then each minimizer ϕ ∈ C of
Eq. (6) admits a representation of the form

ϕj =
n∑

i=1

cijKj(., Xi), ∀ j ∈ [d] (7)

where cij ∈ R and
∑n

i=1 cij = 0, ∀ i ∈ [n], ∀ j ∈ [d].

8Another choice for C could be the space of bounded Lipschitz
functions with the penalty functional, Ω[ϕ] = ‖ϕ‖L, where ‖ϕ‖L

is the Lipschitz semi-norm of ϕ. With this choice of C and Ω, von
Luxburg and Bousquet (2004) studied large margin classification
in metric spaces. One more interesting choice for C could be the
space of Mercer kernel maps. It can be shown that solving for
ϕ in Eq. (5) with such a choice for C is equivalent to learning
the kernel matrix associated with ϕ and {Xi}n

i=1. However, this
approach is not useful as it does not allow for an out-of-sample
extension.
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Remark 2. (a) By Eq. (7), ϕ is completely determined by
{cij : i ∈ [n], j ∈ [d]}. Therefore, the problem of learning
ϕ reduces to learning n · d scalars, {cij :

∑n
i=1 cij = 0}.

(b) θh in Eq. (6) depends on ϕ through ‖ϕ(.) −
ϕ(.)‖2. Therefore, for any z, w ∈ X , we have
‖ϕ(z) − ϕ(w)‖22 =

∑d
m=1

[
cT

m (kz
m − kw

m)
]2 =∑d

m=1 tr(Σm(kz
m − kw

m)(kz
m − kw

m)T ) where cm :=
(c1m, . . . , cnm)T , kz

m := (Km(z,X1), . . . , Km(z, Xn))T ,
Σm := cmcT

m, ∀m ∈ [d] and tr(.) represents the trace.

(c) The regularizer, ‖ϕ‖2C in Eq. (6) is given by ‖ϕ‖2C =∑d
m=1 ‖ϕm‖2Hm

=
∑d

m=1

∑n
i,j=1 cimcjmKm(Xi, Xj) =∑d

m=1 cT
mKmcm =

∑d
m=1 tr(KmΣm) where Km :=

(kX1
m , . . . ,kXn

m ).

(d) Since ϕ appears in the form of ρϕ and ‖ϕ‖2C in
Eq. (6), learning ϕ is equivalent to learning {Σm º 0 :
rank(Σm) = 1, 1T Σm1 = 0}d

m=1.

In the above remark, we have shown that θh and ‖ϕ‖C in
Eq. (6) depend only on the entries in d kernel matrices (as-
sociated with d kernel functions) and n · d scalars, {cij}.
In addition, we also reduced the representation of ϕ from
{cm}d

m=1 to {Σm}d
m=1. It can be seen that ρ2

ϕ and ‖ϕ‖2C
are convex quadratic functions of {cm}d

m=1, while they are
linear functions of {Σm}d

m=1. Depending on the nature of
K, one representation would be more useful than the other.

Corollary 3. Suppose K1 = . . . = Kd = K. Then, for any
z, w ∈ X , ρ2

ϕ(z, w) is the Mahalanobis distance between
kz and kw, with

∑d
m=1 Σm as its metric.

Proof. By Remark 2, we have ρ2
ϕ(z, w) = ‖ϕ(z) −

ϕ(w)‖22 =
∑d

m=1 (kz
m − kw

m)T Σm (kz
m − kw

m). Since
K1 = . . . = Kd = K, we have kz

1 = . . . = kz
d = kz .

Therefore, ρ2
ϕ(z, w) = (kz − kw)T Σ(kz − kw) where

Σ :=
∑d

m=1 Σm.

The above result reduces the problem of learning ϕ to
learning a matrix, Σ º 0, such that rank(Σ) ≤ d and
1T Σ1 = 0. We now study the above result for linear ker-
nels. The following corollary shows that applying a lin-
ear kernel is equivalent to assuming the underlying distance
metric in X to be the Mahalanobis distance.

Corollary 4 (Linear kernel). Let X = RD and z, w ∈ X .
If K(z, w) = 〈z, w〉2 = zT w, then ϕ(z) = Lz ∈ Rd and
‖ϕ(z)− ϕ(w)‖22 = (z − w)T A(z − w) with A := LT L.

Proof. By Remark 2 and Corollary 3, we have ϕm(z) =∑n
i=1 cimK(z,Xi) = (

∑n
i=1 cimXi)

T
z =: `T

mz. There-
fore, ϕ(z) = Lz, where L := (`1, . . . , `d)T . In addition,
‖ϕ(z)−ϕ(w)‖22 = (z−w)T A(z−w) with A := LT L.

In the following section, we use these results to derive an
algorithm that jointly learns ϕ and h by solving Eq. (5).

4. Convex Relaxations & Semidefinite
Program

Having addressed the theoretical issue of making assump-
tions about C to solve Eq. (5), we return to address the com-
putational issue pointed out in §2. The program in Eq. (5)
is NP-hard because of the nature of {ψi}n

i=1. This issue
can be alleviated by minimizing a convex upper bound of
ψi, instead of ψi. Some of the convex upper bounds for the
function ψ(x) = 1{x>0} are Ψ(x) = max(0, 1 + x) :=
[1 + x]+, Ψ(x) = log (1 + ex) etc. Replacing ψi by Ψi in
Eq. (5) results in the following program,

min
ϕ∈C
h>0

n∑

i=1

Ψi

(
γ−i (ϕ, h)− γ+

i (ϕ, h)
)

+ λ ‖ϕ‖2C , (8)

where γ+
i (ϕ, h) :=

∑
j 6=i

τij=1
KXj

(Xi) and γ−i (ϕ, h) :=
∑
{j:τij=−1}KXj (Xi). Eq. (8) can still be computation-

ally hard to solve depending on the choice of the smooth-
ing kernel, K. Even if we choose K such that γ+ and γ−

are jointly convex in ϕ and h for some representation of ϕ
(see Remark 2), Eq. (8) is still non-convex as the argument
of Ψi is a difference of two convex functions.9 In addition,
if Ψ(x) = [1 + x]+, then Eq. (8) is a d.c. (difference of
convex functions) program (Horst & Thoai, 1999), which
is NP-hard to solve. So, even for the nicest of cases, one
has to resort to local optimization methods or computation-
ally intensive global optimization methods. Nevertheless,
if one does not worry about this disadvantage, then solv-
ing Eq. (8) yields ϕ (in terms of {cm}d

m=1 or {Σm}d
m=1,

depending on the chosen representation) and h that can be
used in Eq. (2) to classify unseen data. However, in the
following, we show that Eq. (8) can be turned into a con-
vex program for the naı̈ve kernel. As mentioned in §1, this
choice of kernel leads to a classification rule that is similar
in principle to the k-NN rule.

4.1. Naı̈ve kernel: Semidefinite relaxation

The naı̈ve kernel, Kx0(x) = 1{ρϕ(x,x0)≤h}, indicates that
the points, ϕ(x), that lie within a ball of radius h centered
at ϕ(x0) have a weighting factor of 1, while the remain-
ing points have zero weight. Using this in Eq. (8), we have
γ−i (ϕ, h) − γ+

i (ϕ, h) =
∑
{j:τij=−1} 1{ρϕ(Xi,Xj)≤h} −∑

{j:τij=1} 1{ρϕ(Xi,Xj)≤h} + 1, which represents the dif-
ference between number of points with label different from
Yi that lie within the ball of radius of h centered at ϕ(Xi)
and the number of points with the same label as Xi (exclud-
ing Xi) that lie within the same ball. If this difference is

9For example, let K be a Gaussian kernel, Ky(x) =
exp(−ρ2

ϕ(x, y)/h). Using the {Σm}d
m=1 representation for ϕ,

we have ρ2
ϕ(x, y) is linear in {Σm}d

m=1 and therefore, Ky(x) is
convex in {Σm}d

m=1. Here, we assume h to be fixed. This means
γ+

i and γ−i are convex in ϕ.
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positive, then the classification rule in Eq. (2) makes an er-
ror in classifying Xi. Therefore, ϕ and h should be chosen
such that this misclassification rate is minimized. Suppose
that {ϕ(Xi)}n

i=1 is given. Then, h determines the misclas-
sification rate like k in k-NN. It can be seen that the kernel
classification rule and k-NN rule are similar when K is a
naı̈ve kernel. In the case of k-NN, the number of nearest
neighbors are fixed for any point, whereas with the kernel
rule, it varies for every point. On the other hand, the ra-
dius of the ball containing the nearest neighbors of a point
varies with every point in the k-NN setting while it is the
same for every point in the kernel rule.

γ−i (ϕ, h) − γ+
i (ϕ, h) can be further reduced to a

more amenable form by the following algebra. Us-
ing

∑
{j:τij=1} 1{ρϕ(Xi,Xj)≤h} =

∑n
j=1 1{τij=1} −∑

{j:τij=1} 1{ρϕ(Xi,Xj)>h}, we get γ−i (ϕ, h) −
γ+

i (ϕ, h) = 1 − n+
i +

∑n
j=1 1{τijρ2

ϕ(Xi,Xj)>τij h̃} where

n+
i :=

∑n
j=1 1{τij=1} and h̃ := h2. Note that we have

neglected the set {j : τij = −1; ρϕ(Xi, Xj) = h}
in the above calculation for simplicity. Using
Ψ(x) = [1 + x]+, the first half of the objective
function in Eq. (8) reduces to

∑n
i=1

[
2 − n+

i +
∑n

j=1 1{τijρ2
ϕ(Xi,Xj)>τij h̃}

]
+

. Applying the convex

relaxation one more time to the step function, we get∑n
i=1

[
2 − n+

i +
∑n

j=1

[
1 + τijρ

2
ϕ(Xi, Xj)− τij h̃

]
+

]
+

as an upper bound on the first half of the objective
function in Eq. (8). Since ρ2

ϕ is a quadratic function of
{cm}d

m=1, it can be shown that representing ϕ in terms
of {cm}d

m=1 results in a d.c. program, whereas its repre-
sentation in terms of {Σm}d

m=1 results in a semidefinite
program (SDP) (except for the rank constraints), since
ρ2

ϕ is linear in {Σm}d
m=1. Assuming for simplicity that

K1 = . . . = Kd = K and neglecting the constraint
rank(Σ) ≤ d, we obtain the following SDP,

min
Σ,h̃

n∑

i=1

[
2− n+

i +
n∑

j=1

[
1 + τij tr(MijΣ)− τij h̃

]
+

]
+

+λ tr(KΣ)
s.t. Σ º 0, 1T Σ1 = 0, h̃ > 0, (9)

where Mij := (kXi − kXj )(kXi − kXj )T . For notational
details, refer to Remark 2 and Corollary 3. Since one does
not usually know the optimal embedding dimension, d, the
Σ representation is advantageous as it is independent of d
(as we neglected the rank constraint) and depends only on
n. On the other hand, it is a disadvantage as the algorithm
does not scale well to large datasets.

Although the program in Eq. (9) is convex, solving it by
general purpose solvers that use interior point methods
scales as O(n6), which is prohibitive. Instead, following
the ideas of Weinberger et al. (2006), we used a first order

Algorithm 1 Gradient Projection Algorithm

Require: {Mij}n
i,j=1, K, {τij}n

i,j=1, {n+
i }n

i=1, λ > 0,
ε > 0 and {αi, βi} > 0 (see Eq. (9))

1: Set t = 0. Choose Σ0 ∈ A and h̃0 > 0.
2: repeat
3: At = {i :

∑n
j=1

[
1 + τij tr(MijΣt)− τij h̃t

]
+

+

2 ≤ n+
i } × {j : j ∈ [n]}

4: Bt = {(i, j) : 1 + τij tr(MijΣt) > τij h̃t}
5: Nt = Bt\At

6: Σt+1 = PN (Σt − αt

∑
(i,j)∈Nt

τijMij − αtλK)
7: h̃t+1 = max(ε, h̃t + βt

∑
(i,j)∈Nt

τij)
8: t = t + 1
9: until convergence

10: return Σt, h̃t

gradient method (which scales as O(n2) per iteration) and
an alternating projections method (which scales as O(n3)
per iteration). At each iteration, we take a small step in the
direction of the negative gradient of the objective function,
followed by a projection onto the set N = {Σ : Σ º
0, 1T Σ1 = 0} and {h̃ > 0}. The projection onto N is
performed by an alternating projections method which in-
volves projecting a symmetric matrix alternately between
the convex sets, A = {Σ : Σ º 0} and B = {Σ :
1T Σ1 = 0}. Since A ∩ B 6= ∅, this alternating projec-
tions method is guaranteed to find a point in A ∩ B. Given
any A0 ∈ A, the alternating projections algorithm com-
putes Bm = PB(Am) ∈ B, Am+1 = PA(Bm) ∈ A, m =
0, 1, 2, . . . , where PA and PB are the projection on A and
B, respectively. In summary, the update rule can be given as
Bm = Am − 1T Am1

n2 11T and Am+1 =
∑n

i=1[λi]+uiuT
i

where {ui}n
i=1 and {λi}n

i=1 are the eigenvectors and eigen-
values of Bm.10 A pseudocode of the gradient projection
algorithm to solve Eq. (9) is shown in Algorithm 1.

Having computed Σ and h̃ that minimize Eq. (9), a test
point, x ∈ X , can be classified by using the kernel rule in
Eq. (2), where KXi(x) = 1{ρϕ(x,Xi)≤h} with ρ2

ϕ(x,Xi) =
(kx−kXi)T Σ(kx−kXi). Therefore, Σ and h completely
specify the classification rule.

5. Experiments & Results
In this section, we compare the performance of our method
(referred to as kernel classification rule (KCR)) to several
metric learning algorithms on a supervised classification
task in terms of the training and test errors. The training
phase of KCR involves solving the SDP in Eq. (9) to learn
optimal Σ and h from the data, which are then used in
Eq. (2) to classify the test data. Note that the SDP in Eq. (9)

10Given Am ∈ A, Bm is obtained by solving min{‖Bm −
Am‖2F : 1T Bm1 = 0}. Similarly, for a given Bm ∈ B, Am+1

is obtained by solving min{‖Am+1 −Bm‖2F : Am+1 º 0}.
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Table 1. k-NN classification accuracy on UCI datasets. The algorithms compared are k-NN (with Euclidean distance metric), LMNN
(large margin NN by Weinberger et al. (2006)), Kernel-NN (see footnote 11), KMLCC (kernel version of metric learning by collapsing
classes by Globerson and Roweis (2006)), KLMCA (kernel version of LMNN by Torresani and Lee (2007)), and KCR (proposed
method). Mean (µ) and standard deviation (σ) of the train and test (generalization) errors (in %) are reported.

Dataset Algorithm/ k-NN LMNN Kernel-NN KMLCC KLMCA KCR
(n, D, l) Error µ± σ µ± σ µ± σ µ± σ µ± σ µ± σ
Balance Train 17.81± 1.86 11.40± 2.89 10.73± 1.32 10.27± 2.01 9.93± 1.86 10.47± 2.11

(625, 4, 3) Test 18.18± 1.88 11.49± 2.57 17.46± 2.13 9.75± 1.92 10.54± 1.46 8.94 ± 3.12
Ionosphere Train 15.89± 1.43 3.50± 1.18 2.84± 0.80 7.05± 1.31 3.98± 1.94 2.73± 1.03
(351, 34, 2) Test 15.95± 3.03 12.14± 2.92 5.81± 2.25 6.54± 2.18 5.19 ± 2.09 5.71± 2.60

Iris Train 4.30± 1.55 3.25± 1.15 3.60± 1.33 3.61± 1.59 3.27± 1.63 2.29± 1.62
(150, 4, 3) Test 4.02± 2.22 4.11± 2.26 4.83± 2.47 3.89± 1.55 3.74± 2.21 3.27 ± 1.87

Wine Train 5.89± 1.35 0.90± 2.80 4.95± 1.35 4.48± 1.21 2.18± 2.58 1.01± 0.73
(178, 13, 3) Test 6.22± 2.70 3.41± 2.10 7.37± 2.82 4.84± 2.47 5.17± 1.91 2.13 ± 1.24

is obtained by using the naı̈ve kernel for K in Eq. (2). For
other smoothing kernels, one has to solve the program in
Eq. (8) to learn optimal Σ and h. Therefore, the results re-
ported in this section under KCR refer to those obtained by
using the naı̈ve kernel.

The algorithms used in the comparative evaluation are:

• The k-NN rule with the Euclidean distance metric.

• The LMNN (large margin nearest neighbor) method
proposed by Weinberger et al. (2006), which learns
a Mahalanobis distance metric by minimizing the dis-
tance between predefined target neighbors and sepa-
rating them by a large margin from the examples with
non-matching labels.

• The Kernel-NN rule, which uses the empirical kernel
maps11 as training data and performs k-NN classifica-
tion on this data using the Euclidean distance metric.

• The KMLCC (kernel version of metric learning by
collapsing classes) method proposed by Globerson
and Roweis (2006), which learns a Mahalanobis dis-
tance metric in the kernel space by trying to collapse
all examples in the same class to a single point while
pushing examples in other classes infinitely far away.

• The KLMCA (kernel version of large margin compo-
nent analysis) method proposed by Torresani and Lee
(2007), which is a non-convex, kernelized version of
LMNN.

Four benchmark datasets from the UCI machine learning
repository were considered for experimentation. Since the
proposed method and KMLCC solve an SDP that scales
poorly with n, we did not consider large problem sizes
for experimentation.12 The results shown in Table 1 are

11Kernel-NN is computed as follows. For each training point,
Xi, the empirical map w.r.t. {Xj}n

j=1 defined as kXi :=

(K(X1, Xi), . . . , K(Xn, Xi))
T is computed. Then, {kXi}n

i=1 is
considered to be the training set for the NN classification of em-
pirical maps of the test data using the Euclidean distance metric.

12To extend KCR to large datasets, one can represent ϕ in terms
of {cm}, which leads to a non-convex program as in KLMCA.

the average performance over 20 random splits of the data
with 50% for training, 20% for validation and 30% for test-
ing. The Gaussian kernel, K(x, y) = e−υ‖x−y‖22 was used
for the kernel based methods, i.e., Kernel-NN, KMLCC,
KLMCA and KCR. The parameters υ and λ (only υ for
Kernel-NN) were set with cross-validation by searching
over υ ∈ {2i}4−4 and λ ∈ {10i}3−3. While testing, KCR
uses the rule in Eq. (2), whereas the k-NN rule was used
for all the other methods.13 It is clear from Table 1 that
KCR almost always performs as well as or significantly
better than all other methods. However, on the timing front
(which we do not report here), KLMCA, which solves a
non-convex program for n · d variables, is much faster than
KMLCC and KCR, which solve SDPs involving n2 vari-
ables. The role of empirical kernel maps is not clear as
there is no consistent behavior between the performance
accuracy achieved with k-NN and Kernel-NN.

KMLCC, KLMCA, and KCR learn the Mahalanobis dis-
tance metric in Rn which makes it difficult to visualize
the class separability achieved by these methods. To vi-
sually appreciate their behavior, we generated a synthetic
two dimensional dataset of 3 classes with each class being
sampled from a Gaussian distribution with different mean
and covariance. Figure 1(a) shows this dataset where the
three classes are shown in different colors. Using this as
training data, distance metrics were learned using KMLCC,
KLMCA and KCR. If Σ is the learned metric, then the two
dimensional projection of x ∈ Rn is obtained as x̂ = Lx
where L = (

√
λ1u1,

√
λ2u2)T , with Σ =

∑n
i=1 λiuiuT

i ,
and λ1 ≥ λ2 > · · ·λn. Figure 1(b-d) show the two di-

13Although KCR, LMNN, and KMLCC solve SDPs to com-
pute the optimal distance metric, KCR has fewer number of pa-
rameters to be tuned compared to these other methods. LMNN
requires cross-validation over k (in k-NN) and the regulariza-
tion parameter along with the knowledge about target neighbors.
KMLCC requires cross-validation over k, the kernel parameter,
υ and the regularization parameter. In KCR, we only need to
cross-validate over υ and λ. In addition, if X = RD and K is
a linear kernel, then KCR only requires cross-validation over λ
while computing the optimal Mahalanobis distance metric.
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Figure 1. Dataset visualization results of k-NN, KMLCC, KLMCA and KCR applied to a two-dimensional synthetic dataset of three
classes with each class being modeled as a Gaussian. (a,a′) denote two independent random draws from this distribution whereas (b-d,
b′-d′) represent the two-dimensional projections of these data using the metric learned from KMLCC, KLMCA and KCR. The points
in bold represent the misclassified points. It is interesting to note that KLMCA and KCR generate completely different embeddings but
have similar error rates. See §5 for more details.

mensional projections of the training set using KMLCC,
KLMCA and KCR. The projected points were classified
using k-NN if Σ was obtained from KMLCC/KLMCA and
using Eq. (2) if Σ was obtained from KCR. The misclas-
sified points are shown in bold. Since the classification is
done on the training points, one would expect better error
rate and separability between the classes. To understand
the generalization performance, a new data sample shown
in Figure 1(a′) was generated from the same distribution
as the training set. The learned Σ was used to obtain the
two dimensional projections of the new data sample which
are shown in Figure 1(b′-d′). It is interesting to note that
KLMCA and KCR generate completely different projec-
tions but have similar error rates.

6. Related Work
We briefly review some relevant work and point out simi-
larities and differences with our method. In our work, we
have addressed the problem of extending kernel classifica-
tion rules to arbitrary metric spaces by learning an embed-
ding function that embeds data into Euclidean space while
minimizing an upper bound on the resubstitution estimate
of the error probability. The method that is closest in spirit
(kernel rules) to ours is the recent work by Weinberger and
Tesauro (2007) who learn a Mahalanobis distance metric
for kernel regression estimates by minimizing the leave-
one-out quadratic regression error of the training set. With
the problem being non-convex, they resort to gradient de-

scent techniques. Except for this work, we are not aware of
any method related to kernel rules in the context of distance
metric learning or learning the bandwidth of the kernel.

There has been lot of work in the area of distance metric
learning for k-NN classification, some of which are briefly
discussed in §5. The central idea in all these methods
is that similarly labeled examples should cluster together
and be far away from differently labeled examples. Shalev-
Shwartz et al. (2004) proposed an online algorithm for
learning a Mahalanobis distance metric with the constraint
that any training example is closer to all the examples that
share its label than to any other example of different label.
In addition, examples from different classes are constrained
to be separated by a large margin. Though Shalev-Shwartz
et al. (2004) do not solve this as a batch optimization prob-
lem, it can be shown that it reduces to an SDP (after rank
relaxation) and is in fact the same as Eq. (9) except for the
outer [.]+ function and the constraint 1T Σ1 = 0.

7. Concluding Remarks
In this paper, two questions related to the smoothing ker-
nel based classification rule have been addressed. One is
related to learning the bandwidth of the smoothing kernel,
while the other is to extending the classification rule to ar-
bitrary domains. We jointly addressed them by learning a
function in a reproducing kernel Hilbert space while mini-
mizing an upper bound on the resubstitution estimate of the
error probability of the kernel rule. For a particular choice



Metric Embedding for Kernel Classification Rules

of the smoothing kernel, called the naı̈ve kernel, we showed
that the resulting rule is related to the k-NN rule. Because
of this relation, the kernel rule was compared to k-NN and
its state-of-the-art distance metric learning algorithms on a
supervised classification task and was shown to have com-
parable performance to these methods. In the future, we
would like to develop some theoretical guarantees for the
proposed method along with extending it to large-scale ap-
plications.

Appendix A. Proof of Theorem 1
We need the following result to prove Theorem 1.
Lemma 5. Let H = {f : X → R} be an RKHS with K :
X × X → R as its reproducing kernel. Let θ : Rn2 → R
be an arbitrary function. Then each minimizer f ∈ H of

θ
({f(xi)− f(xj)}n

i,j=1

)
+ λ‖f‖2H (10)

admits a representation of the form f =
∑n

i=1 ciK(., xi),
where {ci}n

i=1 ∈ R and
∑n

i=1 ci = 0.

Proof. The proof follows the generalized representer the-
orem (Schölkopf et al., 2001, Theorem 4). Since
f ∈ H, f(x) = 〈f, K(., x)〉H. Therefore, the argu-
ments of θ in Eq. (10) are of the form {〈f, K(., xi) −
K(., xj)〉H}n

i,j=1. We decompose f = f‖ + f⊥
so that f‖ ∈ span

({K(., xi)− K(., xj)}n
i,j=1

)
and

〈f⊥,K(., xi) − K(., xj)〉H = 0, ∀ i, j ∈ [n]. So, f =∑n
i,j=1 αij(K(., xi) − K(., xj)) + f⊥ where {αij}n

i,j=1 ∈
R. Therefore, f(xi)−f(xj) = 〈f, K(., xi)−K(., xj)〉H =
〈f‖, K(., xi) − K(., xj)〉H =

∑n
p,m=1 αpm(K(xi, xp) −

K(xj , xp) − K(xi, xm) + K(xj , xm)). Now, consider
the penalty functional, 〈f, f〉H. For all f⊥, 〈f, f〉H =
||f‖||2H + ||f⊥||2H ≥ ‖∑n

i,j=1 αij(K(., xi) − K(., xj))‖2H.
Thus for any fixed αij ∈ R, Eq. (10) is minimized for
f⊥ = 0. Therefore, the minimizer of Eq. (10) has the
form f =

∑n
i,j=1 αij(K(., xi) − K(., xj)), which is pa-

rameterized by n2 parameters of {αij}n
i,j=1. By simple

algebra, f reduces to f =
∑n

i=1 ciK(., xi), where ci =∑n
j=1(αij − αji) satisfies

∑n
i=1 ci = 0.

We are now ready to prove Theorem 1.
Proof of Theorem 1. The arguments of θh in
Eq. (6) are of the form ‖ϕ(Xi) − ϕ(Xj)‖2. Consider
‖ϕ(Xi) − ϕ(Xj)‖22 =

∑d
m=1 (ϕm(Xi)− ϕm(Xj))

2 =∑d
m=1 (〈ϕm,Km(., Xi)− Km(., Xj)〉Hm)2. The penal-

izer in Eq. (6) reduces to ‖ϕ‖2C =
∑d

m=1 ‖ϕm‖2Hm
. There-

fore, applying Lemma 5 to each ϕm, m ∈ [d] proves the
result.
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