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Abstract

In this paper we investigate two aspects of
ranking problems on large graphs. First,
we augment the deterministic pruning algo-
rithm in Sarkar and Moore (2007) with sam-
pling techniques to compute approximately
correct rankings with high probability un-
der random walk based proximity measures
at query time. Second, we prove some sur-
prising locality properties of these proximity
measures by examining the short term behav-
ior of random walks. The proposed algorithm
can answer queries on the fly without caching
any information about the entire graph. We
present empirical results on a 600, 000 node
author-word-citation graph from the Citeseer
domain on a single CPU machine where the
average query processing time is around 4
seconds. We present quantifiable link pre-
diction tasks. On most of them our tech-
niques outperform Personalized Pagerank, a
well-known diffusion based proximity mea-
sure.

1. Introduction
Link prediction in social networks, personalized graph
search techniques, fraud detection and collaborative
filtering in recommender networks are important prac-
tical problems that greatly rely on graph theoretic
measures of similarity. Given a node in a graph we
would like to ask which other nodes are most simi-
lar to this node. Ideally we would like this similarity
measure to capture the graph structure such as hav-
ing many common neighbors or having several short
paths between two nodes. This kind of structural in-
formation can be easily quantified using random walks

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

on graphs: diffusion of information from one node to
another. Most random-walk based ranking algorithms
can be categorized into two broad categories.

Probability of reaching a node: This is the ba-
sis of measures like personalized page rank. Person-
alized page-rank vectors (PPV) have been used for
keyword search in databases (Balmin et al., 2004)
and entity-relation graphs (Chakrabarti, 2007). These
approaches focus on computing approximate PPV at
query time (details in section 6), and quantify the per-
formance in terms of the deviation of the approxima-
tion from the exact. However, it is not clear if PPV
itself has good predictive power.

Expected number of hops to reach a node:
This is also called the hitting time (Aldous & Fill,
2001). The symmetric version of this is the com-
mute time between two nodes. These metrics have
been shown to be empirically effective for ranking in
recommender networks (Brand, 2005) and link pre-
diction problems (Liben-Nowell & Kleinberg, 2003).
These measures usually require O(n3) computation.
Recently Spielman and Srivastava (2008) have come
up with a novel approximation algorithm for efficiently
computing commute times by random projections.
However it is only applicable to undirected graphs.

Sarkar and Moore (2007) introduced the notion of
truncated commute times and demonstrated that it
had good predictive power for link prediction tasks.
However their algorithm (GRANCH) required storing
potential nearest neighbors of all nodes in the graph
in order to answer nearest neighbor queries. The key
contribution in this paper are: 1) we combine sampling
with deterministic pruning to design an algorithm
which retrieves top k neighbors of a query in truncated
commute time incrementally without caching informa-
tion about all nodes in the graph. 2) We investigate
locality properties of truncated hitting and commute
times. 3) We show that on several link prediction tasks
these measures outperform PPV in terms of predictive
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power, while on others they do comparably. 4) Our
algorithm can process queries at around 4 seconds on
average on graphs of the order of 600, 000 nodes on a
single CPU machine.

The rest of the paper is organized as follows: in sec-
tion 2 we provide relevant background. In section 3 we
introduce our hybrid algorithm, and provide sample
complexity results for random sampling. The local-
ity properties of truncated hitting and commute times
are investigated in section 4. We present empirical re-
sults in section 5, and conclude with related work in
section 6.

2. Background

A graph G = (V,E) is defined as a set of vertices V
edges E. The ijth entry of the adjacency matrix W
denotes the weight on edge (i, j), and is zero if the edge
does not exist. P = pij , i, j ∈ V denotes the transition
probability matrix of this Markov chain, so that pij =
wij/

∑
j Wij if (i, j) ∈ E and zero otherwise.

Hitting time hij: The hitting time from node i to
node j is defined as the expected number of steps in
a random walk starting from i before node j is visited
for the first time. Recursively hij can be written as
hij = 1 +

∑
k pikhkj , if i 6= j and zero otherwise.

Commute time cij: Commute time between a pair
of nodes is defined as cij = hij + hji.

2.1. Truncated Hitting Time

The hitting and commute times are sensitive to long
range paths (Liben-Nowell & Kleinberg, 2003) which
result in non-local nature. They are also prone to be
small if one of the nodes is of large degree (Brand,
2005). This renders them ineffective for personaliza-
tion purposes. In order to overcome these shortcom-
ings, Sarkar and Moore (2007) define a T-truncated
hitting time, where only paths of length less than T
are considered. We shall use h, hT interchangeably
to denote truncated hitting time. hT

ij can be defined
recursively as

hT
ij = 1 +

�

k

pikhT−1
kj (1)

where hT is defined to be zero if i = j or if T = 0.
The above equation expresses hT in a one step look-
ahead fashion. The expected time to reach a destina-
tion within T timesteps is equivalent to one step plus
the average over the hitting times of it’s neighbors to
the destination in T − 1 hops. If there is no path of
length smaller than T from i to j, this automatically
sets hT (i, j) to T .

2.2. GRANCH (Sarkar & Moore, 2007)

The truncated hitting time from all nodes to a desti-
nation node can be computed in O(ET ) time using dy-

namic programming. However in order to compute the
hitting time from a query node to a destination, one
has to compute the hitting time of all nodes to the des-
tination, thus computing the entire matrix which takes
O(NET ) time (N and E are the number of nodes and
edges respectively).

In order to get around the above problem the graph
is decomposed into N overlapping neighborhoods for
each node. Each neighborhood is computed in a way
to include potential nearest neighbors and prune away
the rest. The authors provide bounds on the hitting
time from all nodes within the neighborhood of i to i.
The hitting time from any node outside the boundary
to the destination is quantified by only two numbers: a
lower and an upper bound. As the neighborhoods are
expanded more the bounds become tighter. This way
each column of the truncated hitting time (HT ) matrix
is filled up partially. After iterating over all nodes it
is possible to look at one row and obtain ranking from
the bounds on hitting time from a node.

GRANCH computes all pairs of nearest neighbors by
caching information for all nodes in the graph. This
does not work when the graph is changing continu-
ously. We introduce a hybrid algorithm which essen-
tially combines the above branch and bound trick with
sampling techniques to obtain nearest neighbors of a
query node in commute time with high probability.

3. Hybrid Algorithm
We present an algorithm to compute approximate
nearest neighbors in commute times, without iterating
over the entire graph. We combine random sampling
with the branch and bound pruning scheme mentioned
before, in order to obtain upper and lower bounds on
commute times from a node. This lets us compute the
k nearest neighbors from a query node on the fly.

For any query node we compute hitting time from it
using sampling. We maintain a bounded neighborhood
for the query node at a given time-step. We compute
estimated bounds on the commute time from the nodes
within the neighborhood to the query. Commute time
of nodes outside the neighborhood to the query are
characterized by a single upper and lower bound. We
expand this neighborhood until this lower bound ex-
ceeds 2T ′, which guarantees that with high probability
we are excluding nodes which are more than 2T ′ com-
mute distance away. These bounds are then used for
ranking the nodes inside the neighborhood.

We will first describe a simple sampling scheme to
obtain ε-approximate truncated hitting times from a
query node with high probability.
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3.1. Sampling Scheme

We propose a sampling scheme to estimate the trun-
cated hitting time from a given query node i in a graph.
We run M independent T -length random walks from
i. Lets say out of these M runs m random walks hit
j for the first time at {tk1

, ...tkm
} time-steps. From

these we can estimate the following

1. The probability of hitting any node j for the first
time from the given source node within T steps
can be estimated by m

M
.

2. The first hitting time can be estimated by

ĥT (i, j) = � r tkr

M
+ (1 −

m

M
)T

We provide bounds (details in Appendix) similar to
Fogaras et al. (2004)

1. The number of samples M required in order to
give an ε- correct answer with probability 1 − δ.

2. The number of samples M required in order to
get the top k neighbors correct.

Theorem 3.1 For a given node i, in order to obtain
P (∃u ∈ {1, . . . , n}, |ĥT (i, u) − hT (i, u)| ≥ εT ) ≤ δ,
number of samples M should be at least 1

2ε2
log( 2n

δ
).

Theorem 3.2 Let vj , j = 1 : k be the top k neigh-
bors of i in exact T -truncated hitting time. Let α =
hT (i, vk+1) − hT (i, vk) . Then number of samples

M should be at least 2T 2

α2 log(nk/δ) in order to have

Pr(∃j ≤ k, q > k, ĥT (i, vj) > ĥT (i, vq)) ≤ δ.

The details are provided in the appendix. The above
theorem says nothing about the order of the top k
neighbors, only that if the gap between the hitting
times from i to the kth and k + 1th nearest neighbors
is large, then it is easy to retrieve the top k nearest
neighbors. We could change the statement slightly to
obtain a sample complexity bound to guarantee the
exact order of the top k neighbors with high probabil-
ity. The main difference will be that it will depend on
minj≤k hT (i, vj+1) − hT (i, vj).

3.2. Lower and Upper Bounds on cT
ij

Let us denote the neighborhood of node j by NBS(j).
The boundary of this is denoted by δ(j).In Eqn (1)
ht(i, j) is computed using the hitting time from its
direct neighbors to j, which are computed in the t −
1th iteration. Since only the hitting times of nodes
within NBS(j) are stored, a boundary node would
not have access to the hitting time of at least one of
its neighbors. Those values can be upper and lower
bounded as follows. The fastest possible way to reach
node j from any node outside NBS(j) would be by

jumping to the node on the boundary δ(j) which has
the closest optimistic hitting time to j. This gives us
a lower bound on the hitting time of all nodes outside
NBS(j) to j.

lb(j) = 1 + min
p∈δ(j)

hoT−1
pj (2)

The pessimistic bound is T . Plugging in these bounds
in equation (1) whenever the neighbors are outside the
neighborhood of the destination gives the expressions
for optimistic (hoT

ij) and pessimistic (hpT
ij) bounds on

hitting times (details in Sarkar and Moore (2007)).

Now we have the expressions for the lower and upper
bounds for the hitting times of the nodes in NBS(j) to
j (ho and hp values). The hitting time from j to nodes
within NBS(j) can be estimated using the sampling
scheme described in section 3.1. Combining the two
leads to the following.

Theorem 3.3 The truncated commute time between
nodes i ∈ NBS(j) and j will be lower and upper
bounded by coT

ij and cpT
ij with probability 1 − δ if the

number of samples for estimating ĥT
ij exceeds the lower

bound in theorem 3.1, where

coT
ij = ĥT

ji + hoT
ij − εT (3)

cpT
ij = ĥT

ji + hpT
ij + εT (4)

We would use ĉoij = ĥT
ji + hoT

ij and similarly ĉpij to
denote estimates of these bounds. In order to prune
away nodes which are not potential nearest neighbors
we also need to obtain a lower bound on the commute
time between j and any node outside NBS(j). The
incoming lower bound is given by equation 2. Now
note that for the outgoing lower bound we need the
minimum of hT

jk,∀k 6∈ NBS(j).

Lemma 3.4 The number of samples M should
be at least 1

2ε2
log( 2n

δ
) in order to obtain

Pr(|mink 6∈NBS(j) ĥT
jk − mink 6∈NBS(j) hT

jk| ≥ εT ) ≤ 2δ.

Thus an estimate of the outgoing lower bound can be
computed from the hitting times obtained from sam-
pling. Combining the two we obtain an estimate on the

lower bound on 2T -truncated commute time l̂b-ct(j)
from j to any node outside NBS(j).

�
lb-ct(j) = 1 + min

p∈δ(j)
hoT−1

pj + min
k 6∈NBS(j)

ĥT
jk (5)

For our implementation, we always used estimated,
not the exact bounds. This introduces an additive
error in our results (proof excluded for lack of space).

3.3. Expanding Neighborhood
Now we need to find a heuristic to expand the neigh-
borhood such that both the outgoing and incoming
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components of the lower bound increase quickly so that
the threshold of 2T ′ is reached soon.

For the incoming lower bound we just find the x clos-
est nodes on the boundary which have small optimistic
hitting time to the query. We add the neighbors of
these nodes to the neighborhood of j. For the outgo-
ing lower bound, we compute the nodes outside the
boundary which a random walk is most probable to
hit. We do this by maintaining a set of paths from
j which stop at the boundary. These paths are aug-
mented one step at a time. This enables one step look-
ahead in order to figure out which nodes outside the
boundary are the most probable nodes to be hit. We
add y of these nodes to the current boundary.

3.3.1. Ranking

The ranking scheme is similar to GRANCH and is
rather intuitive. So far we only have lower and upper
bounds for commute times from node j to the nodes
in NBS(j). Lets denote this set as S. The commute
time from j to any node outside S is guaranteed to be
bigger than 2T ′. The true kth nearest neighbor will
have commute time larger than the kth smallest lower
bound i.e. co value. Lets denote the kth smallest co
value by X. Now consider the nodes which have upper
bounds (cp values) smaller than X. These are guaran-
teed to have commute time smaller than the true kth

nearest neighbor. Adding a multiplicative slack of α
to X allows one to return the α-approximate k nearest
neighbors which have commute time within 2T ′. Note
that the fact that no node outside set S has hitting
time smaller than 2T ′ is crucial for ranking, since that
guarantees the true kth nearest neighbor within 2T ′

commute distance to be within S. Since all our bounds
are probabilistic, i.e. are true with high probability
(because of the sampling), we return α-approximate k
nearest neighbors with high probability. Also the use
of estimated bounds (ĉo,ĉp) will introduce an additive
error of 2εT (ignoring a small factor of εαT ).

3.4. The Algorithm at a Glance

In this section we describe how to use the results in
the last subsections to compute nearest neighbors in
truncated commute time from a node. Given T, α, k
our goal is to return the top k α-approximate nearest
neighbors (within 2εT additive error) w.h.p.

First we compute the outgoing hitting times from a
node using sampling. We initialize the neighborhood
with the direct neighbors of the query node (We have
set up our graph so that there are links in both di-
rections of an edge, only the weights are different).
At any stage of the algorithm we maintain a bounded
neighborhood for the query node. For each node inside

the neighborhood the hitting times to the query can
be bounded using dynamic programming. Combining
these with the sampled hitting times gives us the es-
timated ĉo, and ĉp values. We also keep track of the

lower bound l̂b-ct of the commute time from any node
outside the neighborhood to the query node. At each
step we expand the neighborhood using the heuristic
in section 3.3. Similar to GRANCH we recompute the

bounds again, and keep expanding until l̂b-ct exceeds
2T ′. W.h.p this guarantees that all nodes outside the
neighborhood have commute time larger than 2T ′−εT .

Then we use the ranking as in section 3.3.1 to obtain
k α-approximate nearest neighbors (with an additive
slack of 2εT ) in commute time. We start with a small
value of T ′ and increase it until all k neighbors can be
returned. As in Sarkar and Moore (2007) it is easy to
observe that the lower bound can only increase, and
hence at some point it will exceed 2T ′ and the algo-
rithm will stop. The question is how many nodes can
be within 2T ′ commute distance from the query node.
In section 4 we prove that this quantity is not too large
for most query nodes.

4. Locality Properties of h
T

In this section we analyze the locality properties of
truncated hitting times. We show that most nodes in
a graph will have only a small number of neighbors
within 2T ′ T -truncated commute time. We would do
this in three steps. First we show that number of nodes
within hitting time T ′ from a node i is small. Then
we would make a similar argument that the number of
nodes within T ′- hitting distance to i is also small. Fi-
nally we would make an argument about the neighbors
of i in commute time.

Theorem 4.1 For any graph G and constants T and
T ′, the number of nodes within a truncated hitting dis-
tance of T ′ from any node is at most T 2/(T − T ′).

Let P<T
ij denote the probability of hitting node j start-

ing at i within T steps and P̃ t
ij the probability of hit-

ting j in exactly t steps for the first time from i.

T ′ ≥ hij ≥ T (1 − P <T
ij ) =⇒ P <T

ij ≥
T − T ′

T
(6)

Define Si as the neighborhood of i which consists of
only the nodes within hitting time T ′ from i.

�

j∈Si

P <T
ij =

�

j∈Si

T−1�

t=1

P̃ t
ij ≤

T−1�

t=1

�

j∈Si

P t
ij ≤ T − 1

However the left hand side is lower bounded by
|Si|T−T ′

T
using (6). Which leads us to the upper bound
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|Si| ≤ T 2

T−T ′
. So all total there are only N T 2

T−T ′
pairs

within T ′ hitting distance. If T and T ′ are constant
w.r.t n, then using the above bound and counting ar-
guments we can also show that there can be at most
O(

√
n) nodes with more than

√
n nodes within T ′ hit-

ting time to them.

We have shown that not more than O(
√

n) nodes can
have more than O(

√
n) nodes with hitting time smaller

than T ′ to them. We already have a bound of T 2/(T−
T ′) on the number of nodes with hitting time smaller
than T ′ from a node. We want to bound the number
of nodes within commute time 2T ′.

In other words we have proven that {j|hT
ij ≤ T ′} and

{j|hT
ji ≤ T ′} are small. Now we need to prove that

{j|hT
ij + hT

ji ≤ 2T ′} is also small. Note that the above
set consists of

1. S1 = {j|hT
ij ≤ T ′

⋂
hT

ij + hT
ji ≤ 2T ′}

2. S2 = {j|hT
ij > T ′

⋂
hT

ij + hT
ji ≤ 2T ′}

S1 can have at most T 2/(T −T ′) nodes. Now consider
S2. S2 will have size smaller than |{j|hT

ji ≤ T ′}|. Using
our result from before we can say the following

Lemma 4.2 Let T be constant w.r.t n. If T ′ is
bounded away from T by a constant w.r.t n, i.e.
T 2/(T − T ′) is constant w.r.t n, then not more than
O(

√
n) nodes will have more than O(

√
n) neighbors

with truncated commute time smaller than 2T ′.

The impact of lemma 4.2 is that in a sequence of
O(

√
n) nearest neighbor queries (each selected at ran-

dom), for each node, there would be at most O(
√

n)
other nodes within 2T ′ commute distance on average.

5. Empirical Results
We have examined our algorithm on Entity Relation
(ER) datasets extracted from the Citeseer corpus, as
in Chakrabarti (2007). This is a graph of authors,
papers and title-words extracted from Citeseer.

5.1. Dataset and Link Structure
The link structure is obvious:

1. Between a paper and a word appearing in its title.

2. From a paper to the paper it cites, and one with
one-tenth the strength the other way.

3. Between a paper and each of its authors.

As observed by Chakrabarti (2007), the weights on
these links are of crucial importance. Unlike some
other approaches (Balmin et al., 2004; Chakrabarti,
2007) we also put links from the paper layer to the

word layer. This allows flow of information from one
paper to another via the common words they use. The
links between an author and a paper are undirected.
The links within the paper layer are directed. We use
the convention in Chakrabarti (2007) to put a directed
edge from the cited paper to the citing paper with one-
tenth the strength.

For any paper we assign a total weight of W to the
words in its title, a total weight of P to the papers it
cites and A to the authors on it. We use an inverse
frequency scheme for the paper-to-word link weight,
i.e. the weight on link from paper p to word w is
W × 1/fw/(

∑
p→u 1/fu), where fw is the number of

times word w has appeared in the dataset. We set
W = 1, A = 10, P = 10 so that the word layer to
paper layer connection is almost directed. We add a
self loop to the leaf nodes, with the same weight as its
single edge, so that the hitting times from these leaf
nodes are not very small.

We use two subgraphs of Citeseer. The small one
has around 75, 000 nodes and 260, 000 edges: 16, 445
words, 28, 719 papers and 29, 713 authors. The big
one has around 600, 000 nodes with 3 million edges :
81, 664 words, 372, 495 papers and 173, 971 authors.

5.2. Preprocessing
We remove the stopwords and all words which appear
in more than 1000 papers from both the datasets. The
number of such words was around 30 in the smaller
dataset and 360 in the larger one. We will make the
exact dataset used available on the web.

5.3. Experiments
The tasks we consider are as follows,

1. Paper prediction for words (Word task): We pick
a paper X at random, remove the links between it
and its title words. Given a query of exactly those
words we rank the papers in the training graph.
For different values of y the algorithm has a score
of 1 if X appears in the closest y papers. For any
search engine, it is most desirable that the paper
appears in the top k results, k ≤ 10.

2. Paper prediction for authors (Author task): Ex-
actly the above, only the link between the paper
and its authors are removed.

The hybrid algorithm is compared with: 1) Exact
truncated hitting time from the query, 2) Sampled
truncated hitting time from the query, 3) Exact trun-
cated commute time from the query, 4) Exact trun-
cated hitting time to the query, 5) Personalized Pager-
ank Vector and 6) Random predictor. Note that we
can compute a high accuracy estimate of the exact hit-
ting time from a query node by using a huge number of
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samples. We can also compute the exact hitting time
to a node by using dynamic programming by iterating
over all nodes. Both of these will be slower than the
sampling or the hybrid algorithm as in Table 1.

Distance from a set of nodes Hitting and com-
mute times are classic measures of proximity from a
single node. We extend these definitions in a very
simple fashion in order to find near-neighbors of a set
of nodes. The necessity of this is clear, since a query
often consists of more than one word. We define the
hitting time from a set of nodes as an weighted av-
erage of the hitting times from the single nodes. For
hitting time to a set, we can change the stopping con-
dition of a random walk to “stop when it hits any of
the nodes in the set”. We achieve this via a simple
scheme: for any query q, we merge the nodes in the
query in a new mega node Q as follows. For any node
v 6∈ Q P (Q, v) =

∑
q∈Q w(q)P (q, v), where P (q, v) is

the probability of transitioning to node v from node
q in the original graph.

∑
q∈Q w(q) = 1. We use a

uniform weighing function, i.e. w(q) = 1/|Q|. The
hitting/commute time is computed on this modified
graph from Q. These modifications to the graph are
local and can be done at query time, and then we undo
the changes for the next query.

Our average query size is the average number of
words (authors) per paper for the word (author) task.
These numbers are around 3 (2) for the big subgraph,
and 5 (2) for the small subgraph.

Figure 1 has the performance of all the algorithms for
the author task on the (A) smaller, (B) larger dataset
and the word task on the (C) smaller and (D) larger
dataset, and Table 1 has the average runtime. As men-
tioned before for any paper in the testset, we remove
all the edges between it and the words (authors) and
then use the different algorithms to rank all papers
within 3 hops of the words (5 for authors, since au-
thors have smaller degree and we want to have a large
enough candidate set) in the new graph and the re-
moved paper. For any algorithm the percentage of
papers in the testset which get ranked within the top
k neighbors of the query nodes is plotted on the y axis
vs. k on the x axis. We plot the performances for six
values of k: 1, 3, 5, 10, 20 and 40.

The results are extremely interesting. Before going
into much detail let us examine the performance of
the exact algorithms. Note that for the author task
the exact hitting time to a node and the exact com-
mute time from a node consistently beats the exact
hitting time from a node, and PPV. However for the
word task the outcome of our experiments are the op-
posite. This can be explained in terms of the inherent

directionality of a task. The distance from the word-
layer to the paper-layer gives more information than
the distance from the paper layer to the word layer,
whereas both directions are important for the author
task, which is why commute times, and hitting time
to a node outperform all other tasks.

We only compare the predictive power of PPV with our
measures, not the runtime. Hence we use the exact
version of it. We used c = 0.1, so that the average
path-length for PPV is around 10, since we use T = 10
for all our algorithms (however, much longer paths can
be used for the exact version of PPV). PPV and hitting
time from a node essentially relies on the probability of
reaching the destination from the source. Even though
hitting time uses information only from a truncated
path, in all of our experiments it performs better than
PPV, save one, where it behaves comparably.

Word task: The sampling based hitting time beats
PPV consistently by a small margin on the big-
ger dataset, whereas it performs comparably on the
smaller one. Hitting times and PPV beat the hitting
time to nodes for the word task. In fact for k = 1, 3, 5,
for the smaller dataset the hitting time to a query node
isn’t much of an improvement over the random predic-
tor (which is zero). This emphasizes our claim that the
hitting time to the word layer does not provide signif-
icant information for the word task. As a result the
performance of the exact and hybrid commute times
deteriorates.
Author task: The hitting time to the query and the
exact commute time from a query have the best per-
formance by a large margin. The hybrid algorithm
has almost similar performance. Hitting time from
the query is beaten by these. PPV does worse than all
the algorithms except of course the random predictor.

Number of samples: For the small graph, we use
100, 000 samples for computing the high accuracy ap-
proximation of hitting time from a node; 5000 samples
for the word task and 1000 samples for the author task.
We use 1.5 times each for the larger graph. We will
like to point out that our derived sample complexity
bounds are interesting for their asymptotic behavior.
In practice we expect much fewer samples to achieve
low probability of error. In Figure 1 sometimes the
exact hitting (commute) times does worse than the
sampled hitting time (hybrid algorithm). This might
happen by chance, with a small probability.

6. Related Work
In this section we briefly examine algorithms which
have been developed using random walks on graphs,
and their applications. Brand (2005) uses different
random walk based measures to compute the top k rec-
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Figure 1. Author task for (A) Small and (B) Large datasets. Word task for (C) Small and (D) Large datasets. x-axis
denotes the number of neighbors and y-axis denotes accuracy.

Table 1. Run-time in seconds for Exact hitting time from query, Sampled hitting time from query, Exact commute time,
Hybrid commute time, Exact hitting time to query, PPV

# nodes # edges Task Exact Ht-from Sampled Ht-from Exact Ct Hybrid Ct Exact Ht-to PPV

74,877 259,320 Author 1.8 .02 9.2 .28 6.7 18

Word 3.1 0.3 10.4 1.2 6.56 50

628, 130 2, 865, 660 Author 6.9 .07 79.07 1.8 67.2 337.5

Word 12.3 0.7 88.0 4.3 70 486

ommendations for a particular customer in a customer-
movie graph from the movielens dataset. The sub-
matrices of the hitting and commute times matrices
are computed by iterative sparse matrix multiplica-
tions (details in Sarkar and Moore (2007)). However it
is only tractable to compute these measures on graphs
with a few thousand nodes for most purposes.

Liben-Nowell and Kleinberg (2003) showed that the
hitting and commute times perform poorly for link
prediction tasks, because of their sensitivity to long
paths. The most effective measure was shown to be
the Katz measure (Katz, 1953) which directly sums
over the collection of paths between two nodes with
exponentially decaying weights. However, ranking un-
der the Katz score would require solving for a row of
the matrix (I−γA)−1−I, where I and A are the iden-
tity and adjacency matrices of the graph and γ is the
decay factor. Even if A is sparse the fast linear solvers
will take at least O(E) time.

Tong et al. (2007) uses escape probability from node
i to node j to compute direction aware proximity in
graphs. A fast matrix solver is used to compute this
between one pair of nodes, in O(E) time. Multiple
pairs of proximity require computation and storage of
the inverse of the matrix I − γP , which would be
intractable for large graphs (10K nodes). Jeh and

Widom (2002b) use the notion of expected f-hitting dis-
tance, which is the hitting time (in a random walk with
restart) between a set of nodes in a product graph with
N2 nodes. The quadratic time complexity is reduced
by limiting the computation between source and des-
tination pairs within distance of r.

The main idea of personalized pagerank is to bias the
probability distribution towards a set of webpages par-
ticular to a certain user, resulting in a user-specific
view of the web. It has been proven (Jeh & Widom,
2002a) that the PPV for a set of webpages can be
computed by linearly combining those for each indi-
vidual webpage. However it is hard to store all pos-
sible personalization vectors or compute the person-
alized pagerank vector at query time because of the
sheer size of the internet graph. There have been many
novel algorithms for efficiently computing PPV (Jeh &
Widom, 2002a; Haveliwala, 2002; Fogaras et al., 2004).
Most of these algorithms compute partial PPVs offline
and combine them at query time.

The ObjectRank algorithm (Balmin et al., 2004)
computes keyword-specific ranking in a publication
database of authors and papers, where papers are con-
nected via citations and co-authors. The personalized
pagerank for each word is computed and stored offline,
and at query time combined linearly. Chakrabarti
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(2007) et al. show how to compute approximate per-
sonalized pagerank vectors using clever neighborhood
expansion schemes which would drastically reduce the
amount of offline storage and computation.

7. Conclusion
Many graph-based learning algorithms rely on com-
puting proximity measures in graphs. These graphs
can be very large and undergoing continuous change,
hence fast incremental algorithms are needed. In this
paper we have combined sampling techniques with
branch and bound pruning to compute near neighbors
of a query node with high probability. Our proximity
measures have been empirically shown to often outper-
form a popular alternative, namely personalized pager-
ank on link-prediction tasks.

Acknowledgements
Thanks to Soumen Chakrabarti for sharing his code and
data, Tamás Sarlós and Martin Zinkevich for helpful dis-
cussions and Geoffrey Gordon and Anupam Gupta for valu-
able suggestions.

Appendix
Proof of Theorem 3.1: We provide a bound on the
number of samples M required in order to give an ε-correct
answer with probability 1 − δ. We denote the estimate of
a random variable x by x̂ from now on. Lets denote by
Xr(i, u) the first arrival time at node u from node i on
the rth trial. Define Xr(i, u) = T if the path does not hit

u on trial r. Note that ĥT (i, u) = � r Xr(i, u)/M , and

E[ĥT (i, u)] = hT (i, u). {Xr(i, u) ∈ [1, T ], r = 1 : M} are
i.i.d. random variables. The Hoeffding bound gives

P (|ĥT (i, u) − hT (i, u)| ≥ εT ) ≤ 2 exp(− 2M(εT )2

T2 )
= 2 exp(−2Mε2)

Now we want the probability of a bad estimate for any
u to be low. We upper bound this error probability us-
ing union and Hoeffding bounds and set the upper bound
to be less than a small value δ. Hence we have P (∃u ∈

{1, . . . , n}, |ĥT (i, u) − hT (i, u)| ≥ εT ) ≤ 2n exp(−2Mε2) ≤
δ. This gives the lower bound of 1

2ε2
log( 2n

δ
).

Proof of Theorem 3.2: Consider a sampled path of
length T starting from i. We define Xr(i, u) as before. For
two arbitrary nodes u and v, WLOG let hT (i, u) > hT (i, v).
The idea is to define a random variable whose expected
value will equal hT (i, u) − hT (i, v). We define a random
variable Zr = Xr(i, u) − Xr(i, v). {Zr ∈ [−(T − 1), T −
1], r = 1 : M} are i.i.d. random variables. Note that
E(Zr) = hT (i, u) − hT (i, v).

The probability that the ranking of u and v will be
exchanged in the estimated hT values from M samples

equals P (ĥT (i, u) < ĥT (i, v)). This probability equals

P ( � M

r=1 Zr/M < 0) which using the Hoeffding bound

is smaller than exp(−2M(hT (i, u) − hT (i, v))2/(2T )2) =
exp(−M(hT (i, u) − hT (i, v))2/2T 2). Let v1, v2, . . . , vk be

the top k neighbors of i in exact truncated hitting time.

Pr(∃j ≤ k, q > k, ĥT (i, vj) > ĥT (i, vq))

≤ � j≤k � q>k Pr(ĥT (i, vj) > ĥT (i, vq))

≤ � j≤k � q>k exp(−
M(hT (i,vq)−hT (i,vj))2

2T2 )

≤ nk exp(−
M(hT (i,vk+1)−hT (i,vk))2

2T2 )

Let α = hT (i, vk+1) − hT (i, vk). Setting the above proba-

bility to be less than δ gives us the desired lower bound of
2T2

α2 log(nk/δ) on M .

Proof of lemma 3.4: Let S be a set of nodes. Let
q = arg mink∈S h(j, k). Let m = arg mink∈S ĥ(j, k).
We know that h(j, q) ≤ h(j,m), since q is the true

minimum, and ĥ(j,m) ≤ ĥ(j, q), since m is the node
which has the minimum estimated h-value. Using the
sample complexity bounds from theorem 3.1, we have

ĥ(j,m) ≤ ĥ(j, q) ≤w.h.p h(j, q)+εT . For the other part

of the inequality we have ĥ(j,m) ≥w.h.p h(j,m)−εT ≥
h(j, q)−εT . Using both sides we get h(j, q)−εT ≤w.h.p

ĥ(j,m) ≤w.h.p h(j, q) + εT . Using S to be the set of
nodes outside the neighborhood of j yields lemma 3.4.
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