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Abstract

We propose a new algorithm for independent
component and independent subspace anal-
ysis problems. This algorithm uses a con-
trast based on the Schweizer-Wolff measure
of pairwise dependence (Schweizer & Wolff,
1981), a non-parametric measure computed
on pairwise ranks of the variables. Our al-
gorithm frequently outperforms state of the
art ICA methods in the normal setting, is
significantly more robust to outliers in the
mixed signals, and performs well even in the
presence of noise. Our method can also be
used to solve independent subspace analysis
(ISA) problems by grouping signals recovered
by ICA methods. We provide an extensive
empirical evaluation using simulated, sound,
and image data.

1. Introduction

Independent component analysis (ICA) (Comon,
1994) deals with a problem of a blind source sep-
aration under the assumptions that the sources are
independent and that they are linearly mixed. ICA
has been used in the context of blind source separa-
tion and deconvolution, feature extraction, denoising,
and successfully applied to many domains including
finances, neurobiology, and processing of fMRI, EEG,
and MEG data. For a review on ICA, see Hyvärinen
et al. (2001).

Independent subspace analysis (ISA) (also called
multi-dimensional ICA and group ICA) is a generaliza-
tion of ICA that assumes that certain sources depend
on each other, but the dependent groups of sources
are still independent of each other, i.e., the indepen-
dent groups are multidimensional. The ISA task has
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been the subject of extensive research (e.g., Cardoso,
1998; Theis, 2005; Bach & Jordan, 2003; Hyvärinen
& Köster, 2006; Póczos & Lőrincz, 2005) and applied,
for instance, to EEG-fMRI data.

Our contribution, SWICA, is a new ICA algorithm
based on Schweizer-Wolff (SW) non-parametric depen-
dence measure. SWICA has the following properties:

• SWICA performs comparably to other state of the
art ICA methods, outperforming them in a large
number of test cases.

• SWICA is extremely robust to outliers as it uses
rank values of the signals rather than their actual
values.

• SWICA suffers less from the presence of noise
than other algorithms.

• SW measure can be used as the cost function to
solve ISA problems by grouping sources recovered
by ICA methods.

• SWICA is simple to implement, and the Mat-
lab/C++ code is available for public use.

• On a negative side, SWICA is slower than other
methods, limiting its use to sources of moderate
dimensions, and it requires more samples to demix
sources with near-Gaussian distributions.

The paper is organized as follows. An overview
of the ICA and ISA problems and methods is pre-
sented in Section 2. Section 3 motivates and describes
Schweizer-Wolf dependence measure. Section 4 de-
scribes a 2-source version of SWICA, extends it to a
d-source problem, describes an application to ISA, and
mentions possible approaches for accelerating SWICA.
Section 5 provides a thorough empirical evaluation of
SWICA to other ICA algorithms under different set-
tings and data types. The paper is concluded with a
summary in Section 6.
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2. ICA and ISA

We consider the following problem. Assume we have
d independent 1-dimensional sources (random vari-
ables) denoted by S1, . . . , Sd. We assume each source
emits N i.i.d. samples denoted by

(
si
1, . . . , s

i
N

)
. Let

S =
{

sj
i

}
∈ Rd×N be a matrix of these samples. We

assume that these sources are hidden, and that only a
matrix X of mixed samples can be observed:

X = AS

where A ∈ Rd×d. (We further assume that A has full
rank d.) The task is to recover the sample matrix S of
the hidden sources by finding a demixing matrix W

Y = WX = (WA)S,

and the estimated sources Y 1, . . . , Y d are mutually in-
dependent. The solution can be recovered only up to
a scale and a permutation of the components; thus
we assume that the data has been pre-whitened, and
it is sufficient to search for an orthogonal matrix W
(e.g., Hyvärinen et al., 2001). Additionally, since
jointly Gaussian sources are not identifiable under lin-
ear transformations, we assume that no more than one
source is normally distributed.

There are many approaches to solving the ICA prob-
lem, differing both in the objective function designed
to measure the independence between the unmixed
sources (sometimes referred to as a contrast function)
and the optimization methods for that function. Most
commonly used objective function is the mutual infor-
mation (MI)

J (W) = I
(
Y 1, . . . , Y d

)
=

d∑
i=1

h
(
Y i
)
−h
(
Y 1, . . . , Y d

)
(1)

where h is the differential entropy. Alternatively, one
can minimize the sum

∑d
i=1 h

(
Y i
)

of the univari-
ate entropies as the joint entropy is constant (e.g.,
Hyvärinen et al., 2001). Neither of these quantities
can be evaluated directly, so approximations are used
instead. Among effective methods falling in the former
category is KernelICA (Bach & Jordan, 2002); RAD-
ICAL (Learned-Miller & Fisher, 2003) and FastICA
(Hyvärinen, 1999) approximate the sum of the univari-
ate entropies. There are other possible cost functions
including maximum likelihood, moment-based meth-
ods, and correlation-based methods.

While ICA problems has been well-studied in the
above formulation, there are a number of variations

of it that are subject of active research. One such
formulation is a noisy version of ICA

X = AS + ε (2)

where multivariate noise ε is often assumed normally
distributed. Another related problem occurs when the
mixed samples X are corrupted by a presence of out-
liers. There are many other possibilities that go be-
yond the scope of this paper.

Of a special note is a generalization of ICA where
some of the sources are dependent, independent sub-
space analysis (ISA). For this case, the mutual in-
formation and Shannon entropies from Equation 1
would involve multivariate random vectors instead of
scalars. Resulting multidimensional entropies are ex-
ponentially more difficult to estimate than their scalar
counterparts, making ISA problem more difficult than
ICA. However, Cardoso (1998) conjectured that the
ISA problem can be solved by first preprocessing the
mixtures X by an ICA algorithm and then grouping
the estimated components with highest dependence.
While the extent of this conjecture is still on open is-
sue, it has been rigorously proven for some distribution
types (Szabó et al., 2007). Even without a proof for the
general case, a number of algorithms apply this heuris-
tics with success (Cardoso, 1998; Theis, 2007; Bach &
Jordan, 2003). There are ISA methods not relying on
Cardoso’s conjecture (e.g., Hyvärinen & Köster, 2006)
although they are susceptible to getting trapped in lo-
cal minima.

3. Non-parametric Rank-Based
Approach

Most of the ICA algorithms use an approximation
to mutual information (MI) as their objective func-
tions, and the quality of the solution thus depends on
how accurate is the corresponding approximation. The
problem with using MI is that without a parametric
assumption on the functional form of the joint distri-
bution, MI cannot be evaluated exactly, and numerical
estimation can be both inaccurate and computation-
ally expensive. In this section, we explore other mea-
sures of pairwise association as possible ICA contrasts.
To note, most commonly used measure of correlation,
Pearson’s linear correlation coefficient, cannot be used
as it is invariant under rotations (once the data has
been centered and whitened)

Instead, we are focusing on measures of dependence
of the ranks. Ranks have a number of desirable proper-
ties – they are invariant under monotonic transforma-
tions of the individual variables, insensitive to outliers,
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Figure 1. Absolute values of sample versions for Pearson’s
ρp (solid thin, brown), Kendall’s τ (dashed, red), Spear-
man’s ρ (dash-dotted, blue), and Schweizer-Wolff σ (solid
thick, black) as a function of rotation angle

[
0, π

2

]
. Data

was obtained by rotating by π
4

1000 samples from a uni-
form distribution on I2 (left), with added outliers (center),
and with added noise (right).

and not very sensitive to small amounts of noise. We
found that a dependence measure defined on copulas
(e.g., Nelsen, 2006), probability distributions on con-
tinuous ranks, has the right properties to be used as a
contrast for ICA demixing.

3.1. Ranks and Copulas

Let a pair of random variables (X, Y ) ∈ R2 be dis-
tributed according to a bivariate probability distribu-
tion P . Assume we are given N samples of (X, Y ),
D = {(x1, y1) , . . . , (xN , yN )}. Let the rank rx (x) be
the number of xi, i = 1, . . . , N such that x > xi, and
let ry (y) be defined similarly.

Many non-linear dependence measures are based on
ranks. Among most commonly used are Kendall’s
τ and Spearman’s ρ rank correlation coefficients.
Kendall’s τ measures the difference between propor-
tions of concordant pairs ((xi, yi) and (xj , yj) such that
(xi − xj) (yi − yj) > 0) and discordant pairs. Spear-
man’s ρ measures a linear correlation between ranks of
rx (x) and ry (y). Both τ and ρ have a range of [−1, 1]
and are equal to 0 (in the limit) if the X and Y are
independent. However, the converse is not true, and
both τ and ρ can be 0 even if X and Y are not inde-
pendent. While they are robust to outliers, neither ρ
nor τ make for a good ICA contrast as they provide a
noisy estimate for dependence from moderately-sized
data sets when the dependence is weak (See Figure 1
for an illustration).

Rank correlations can be extended from samples to
distributions with the help of copulas, distributions
over continuous multivariate ranks. We will devise
an effective robust contrast for ICA using a measure
of dependence for copulas which is closely related to

Spearman’s ρ.

Let I denote a unit interval [0, 1]. A bivariate cop-
ula C is probability function (cdf) defined on a unit
square, C : I2 → I such that its univariate marginals
are uniform, i.e., C (u, 1) = u, C (1, v) = v, ∀u, v,∈ I.1

Let U = Px (X) and V = Py (Y ) denote the corre-
sponding cdfs for previously defined random variables
X and Y . Variables X = P−1

x (U) and Y = P−1
y (V )

can be defined in terms of the inverse of marginal cdfs.
Then, for (u, v) ∈ I2, define C as

C (u, v) = P
(
P−1

x (u) , P−1
y (v)

)
.

It is easy to verify that C is a copula. Sklar’s theorem
(Sklar, 1959) states that such copula exists for any
distribution P , and that it is unique on the range of
values of the marginal distributions. A copula can be
thought of as binding univariate marginals Px and Py

to make a distribution P .

Copulas can also be viewed as a canonical form of
multivariate distributions as they preserve multivari-
ate dependence properties of the corresponding fami-
lies of distributions. For example, the mutual informa-
tion of the joint distribution is equal to the negentropy
of its copula restricted to the region on which the cop-
ula density function (denoted in this paper by c (u, v))
is defined:

c (u, v) =
∂2C (u, v)

∂u∂v
=

p (x, y)
px (x) py (y)

;

I (X, Y ) =
∫
I2

c (u, v) ln c (u, v) dudv.

Such negentropy is minimized when C (u, v) =
Π (u, v) = uv. Copula Π is referred to as the product
copula and is equivalent to variables U and V (and the
original variables X and Y ) being mutually indepen-
dent. This copula will play a central part in definition
of contrasts in the next subsection.

Copulas can also be viewed as a joint distribution
over univariate ranks, and therefore, preserve all of the
rank statistics of the corresponding multivariate dis-
tributions; rank based statistics can be expressed in
terms of the copula alone. For example, Spearman’s ρ
has a convenient functional form in terms of the cor-
responding copulas (e.g., Nelsen, 2006):

ρ = 12
∫
I2

(C (u, v)−Π (u, v)) dudv. (3)

1While we restrict our attention to bivariate copulas,
many of the definitions and properties described in this
section can be extended to a d-variate case.
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As the true distribution P and its copula C are
not known, the rank statistics can be estimated from
the available samples using an empirical copula (De-
heuvels, 1979). For a data set {(x1, y1) , . . . , (xN , yN )},
an empirical copula CN is given by

CN

(
i

N
,

j

N

)
=

# of (xk, yk) s.t. xk ≤ xi and yk ≤ yj

N
.

(4)
Well-known sample versions of several non-linear de-
pendence measures can be obtained using an empirical
copula (e.g., Nelsen, 2006). For example, sample ver-
sion r of Spearman’s ρ appears to be a grid integration
evaluation of its expression in terms of a copula (Equa-
tion 3):

r =
12

N2 − 1

N∑
i=1

N∑
j=1

(
CN

(
i

N
,

j

N

)
− i

N
× j

N

)
. (5)

3.2. Schweizer-Wolff σ and κ

Part of the problem with Kendall’s τ and Spear-
man’s ρ as a contrast for ICA is a property that their
value may be 0 even though the corresponding vari-
ables X and Y are not independent. Instead, we sug-
gest using Schweizer-Wolff σ, a measure of dependence
between two continuous random variables (Schweizer
& Wolff, 1981):

σ = 12
∫
I2
|C (u, v)− uv|dudv. (6)

σ can be viewed as an L1 norm between a copula for
the distribution and a product copula. It has a range
of [0, 1], with an important property that σ = 0 if and
only if the corresponding variables are mutually inde-
pendent, i.e., C = Π. The latter property suggests an
ICA algorithm for a pair of variables: pick a rotation
angle such that the corresponding demixed data set
has its σ minimized. A sample version of σ is similar
to that of ρ (Equation 5):

s =
12

N2 − 1

N∑
i=1

N∑
j=1

∣∣∣∣CN

(
i

N
,

j

N

)
− i

N
× j

N

∣∣∣∣ . (7)

We note that other measures of dependence can
be potentially used as an ICA contrast. We
also experimented with an L∞ version of σ, κ =
4 supI2 |C (u, v)− uv| , a dependence measure similar
to Kolmorogov-Smirnov univariate statistic (Schweizer
& Wolff, 1981), with results similar to σ.

4. SWICA: A New Algorithm for ICA
and ISA

In this section, we present a new algorithm for ICA
and ISA demixing. The algorithm uses Schweizer-
Wolff σ estimates as a contrast in demixing pairs of
variables; we named this algorithm Schweizer-Wolff
contrast for ICA, or SWICA for short.

4.1. 2-dimensional Case

First, we tackle the case of a two-dimensional signal
S mixed with a 2 × 2 matrix A. We, further assume
A is orthogonal (otherwise achievable by whitening).
The problem is then reduced to finding a demixing

rotation matrix W =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.

For the objective function, we use s (Equation 7)
computed on 2×N matrix Y = WX of rotated sam-
ples. Given an angle θ, s (Y (θ)) can be computed by
first sorting each of the rows of Y (θ) and computing
row ranks for each entry of Y (θ), then computing an
empirical copula CN (Equation 4) for ranks of Y, and
finally computing s (Y (θ)) (Equation 7). The solution
is then found by finding angle θ minimizing s (Y (θ)).
Similar to RADICAL (Learned-Miller & Fisher, 2003),
we find such solution by searching over K values of θ
in the interval

[
0, π

2

)
. This algorithm is outlined in

Figure 2.

4.2. d-dimensional Case

A d-dimensional linear transformation described by
a d×d orthogonal matrix W is equivalent to a composi-
tion of 2-dimensional rotations (called Jacobi or Givens
rotations) (e.g., Comon, 1994). The transformation
matrix itself can be written as a product of correspond-
ing rotation matrices, W = WL × . . . × W1 where
each matrix Wl, l = 1, . . . , L is a rotation matrix (by
angle θl) for some pair of dimensions (i, j). Thus a
d-dimensional ICA problem can be solved by solving
2-dimensional ICA problems in succession. Given a
current demixing matrix Wc = Wl × . . .×W1 and a
current version of the signal Xc = WcX, we find an
angle θ corresponding to SWICA

(
X(i,j)

c ,K
)
. Taking

an approach similar to RADICAL, we perform a fixed
number of successive sweeps through all possible pairs
of dimensions (i, j).

We should note that while d-dimensional SWICA is
not guaranteed to converge, it converges in practice
a vast majority of the time. A likely explanation is
that each 2-dimensional optimization finds a transfor-
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Algorithm SWICA(X,K)
Inputs: X, a 2×N matrix where rows are mixed
signals (centered and whitened), K equispaced
evaluation angles in the [0, π/2) interval

For each of K angles θ in the interval [0, π/2)
(θ = πk

2K , k = 0, . . . ,K − 1.)

• Compute rotation matrix

W (θ) =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
• Compute rotated signals Y (θ) = W (θ)X.

• Compute s (Y (θ)), a sample estimate of σ
(Equation 7)

Find best angle θm = arg minθ s (Y (θ))

Output: Rotation matrix W = W (θm), demixed
signal Y = Y (θm), and estimated dependence
measure s = s (Y (θm))

Figure 2. Outline of SWICA algorithm (2-d case).

mation that reduces the sum of entropies for the corre-
sponding dimensions, reducing the overall sum of en-
tropies. In addition to this, Learned-Miller and Fisher
(2003) suggest that the minimization of the overall
sum of entropies in this fashion (by changing only two
terms in the sum) may make it easier to escape local
minima.

4.3. Complexity Analysis and Acceleration
Tricks

2-dimensional SWICA requires a search over K an-
gles. For each angle, we first sort the data to com-
pute the ranks of each data point (O (N log N)), and
then use these ranks to compute s by computing the
empirical copula and summing over the N × N grid
(Equation 7), requiring O

(
N2
)

additions. Therefore,
running time complexity of 2-d SWICA is O

(
KN2

)
.

Each sweep of a d-dimensional ICA problem solves a
2-dimensional ICA problem for each pair of variables,
O
(
d2
)

of them; S sweeps would have O
(
Sd2KN2

)
complexity. In our experiments, we employed K =
180, S = 1 for d = 2, and K = 90, S = d for d > 2.

The most expensive computation in SWICA is
O
(
N2
)

needed to compute s (Y (θ)). Reducing this
complexity, either by approximation, or perhaps, by
an efficient rearrangement of the sum, is left to fu-

ture research. We used several other tricks to speed
up the computation. One, for large N (N > 2500) we
estimated s using only N2

s (Ns = b N
d N

2500 e
c) terms in

the sum corresponding to equispaced gridpoints on I2.
Two, when searching for θ minimizing s (Y (θ)), it is
unnecessary to sum over all N2 terms when evaluat-
ing a candidate θ if a partial sum already results in a
value of s (Y (θ)) larger than the current best. This
optimization translates into a 2-fold speed increase in
practice. Three, it is unnecessary to complete all S
sweeps if the algorithm already converged. One possi-
ble measure of convergence is the Amari error (Equa-
tion 8) measured for the cumulative rotation matrix
for the most recent sweep.

4.4. Using Schweizer-Wolff σ for ISA

Following Cardoso’s conjecture, ISA problems can
be solved by first finding a solution to an ICA prob-
lem, and then by grouping resulting sources that are
not independent (Cardoso, 1998). We propose em-
ploying Schweizer-Wolff σ to measure dependence of
sources for an ICA solution as it provides a compu-
tationally effective alternative to mutual information,
commonly used measure of source dependence. Note
that ICA solution, the first step, can be obtained using
any approach, e.g., FastICA due to its computational
speed for large d. One commonly used trick for group-
ing the variables is to use a non-linear transformation
of the variables to “amplify” their dependence as in-
dependent variables remain independent under such
transformations.2

5. Experiments

For the experimental evaluation of SWICA, we con-
sidered several settings. For the evaluation of the
quality of demixing solution matrix W, we computed
the Amari error (Amari et al., 1996) for the resulting
transformation matrix B = WA. Amari error r (B)
measures how different matrix B is from a permuta-
tion matrix, and is defined as

α
d∑

i=1

(∑d
j=1 |bij |

maxj |bij |
− 1

)
+ α

d∑
j=1

(∑d
i=1 |bij |

maxi |bij |
− 1

)
.

(8)
where α = 1/(2d(d− 1)). r (B) ∈ [0, 1], and r (B) = 0
if and only if B is a permutation matrix. We compared
SWICA to FastICA (Hyvärinen, 1999), KernelICA-
KGV (Bach & Jordan, 2002), RADICAL (Learned-
Miller & Fisher, 2003), and JADE (Cardoso, 1999).

2Such transformations are at the core of the KernelICA
and JADE ICA algorithms.
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For the simulated data experiments, we used 18 dif-
ferent one-dimensional densities to simulate sources.
These test-bed densities (and some of the experiments
below) were proposed by Bach and Jordan (2002)
to test KernelICA and by Learned-Miller and Fisher
(2003) to evaluate RADICAL; we omit the description
of these densities due to lack of space as they can be
looked up in the above papers.

Table 1 summarizes the medians of the Amari er-
rors for 2-dimensional problems where both sources
had the same distribution. Samples from these sources
were then transformed by a random rotation, and then
demixed using competing ICA algorithms. SWICA
outperforms its competitors in 8 out of 18 cases, and
performs comparably in several other cases. However,
it performs poorly when the joint distribution for the
sources is close to a Gaussian (e.g., (d) t-distribution
with 5 degrees of freedom). One possible explana-
tion for why SWICA performs worse than its com-
petitors for these cases is that by using ranks instead
of the actual values, SWICA is discarding some of
the information that may be essential to separating
such sources. However, given larger number of sam-
ples, SWICA is able to separate near-Gaussian sources
(data not shown due to space constraints). SWICA
also outperformed other methods when sources were
not restricted to come from the same distribution (Ta-
ble 2) and proved effective for multi-dimensional prob-
lems (d = 4, 8, 16).

Figure 3 summarizes the performance of ICA algo-
rithms in the presence of outliers for the d-source case
(d = 2, 4, 8). Distributions for the sources were cho-
sen at random from the 18 distributions from the ex-
periment in Table 1. The sources were mixed using a
random rotation matrix. The mixed sources were then
corrupted by adding +5 or −5 to a single component
for a small number of samples. SWICA significantly
outperforms the rest of the algorithms as the contrast
used by SWICA is insensitive to minor changes in the
sample ranks introduced by a small number of outliers.
For d = 2, we tested SWICA further by significantly
increasing the number of outliers; the performance was
virtually unaffected when the proportion of the out-
liers was below 20%. SWICA is also less sensitive to
noise than other ICA methods (Figure 4).

We further tested SWICA on sound and image data.
We mixed N = 1000 samples from 8 sound pieces of
an ICA benchmark3 by a random orthogonal 8 × 8
matrix. Then we added 20 outliers to this mixture

3http://www.cis.hut.fi/projects/ica/cocktail/cocktail en.cgi

Table 1. The Amari errors (multiplied by 100) for two-
component ICA with 1000 samples. Each entry is the me-
dian of 100 replicates for each pdf, (a) to (r). The lowest
(best) entry in each row is boldfaced.

pdf SWICA FastICA RADICAL KernelICA JADE

a 3.74 3.01 2.18 2.09 2.67
b 2.39 4.87 2.31 2.50 3.47
c 0.79 1.91 1.60 1.54 1.63
d 10.10 5.63 4.10 5.05 3.94
e 0.47 4.75 1.43 1.21 3.27
f 0.78 2.85 1.39 1.34 2.77
g 0.74 1.49 1.19 1.11 1.19
h 3.66 5.32 4.01 3.54 3.36
i 10.21 7.38 6.95 7.70 6.41
j 0.86 4.64 1.29 1.21 3.38
k 2.10 5.58 2.65 2.38 3.53
l 4.09 7.68 3.61 3.65 5.21
m 1.11 3.41 1.43 1.23 2.58
n 2.08 4.05 2.10 1.56 4.07
o 5.07 3.81 2.86 2.92 2.78
p 1.24 2.92 1.81 1.53 2.70
q 3.01 12.84 2.30 1.67 10.78
r 3.32 4.30 3.06 2.65 3.32

Table 2. The Amari errors (multiplied by 100) for d-
component ICA with N samples. Each entry is the median
of 1000 replicates for d = 2 and 100 for d = 4, 8, 16. Source
densities were chosen uniformly at random from (a)-(r).
The lowest (best) entry in each row is boldfaced.

d N SWICA FastICA RADICAL KernelICA JADE

2 1000 1.53 4.31 2.13 1.97 3.47
4 2000 1.31 3.74 1.72 1.66 2.83
8 5000 1.20 2.58 1.31 1.25 2.25
16 10000 1.16 1.92 0.93 6.69 1.76

in the same way as in the previously described outlier
experiment and demixed them using ICA algorithms.
Figure 5 shows that SWICA outperforms other meth-
ods on this task. For the image experiment, we used
4 natural images4 of size 128× 256. The pixel intensi-
ties we normalized in the [0, 255] interval. Each image
was considered as a realization of a stochastic variable
with 32768 sample points. We mixed these 4 images
by a 4×4 random orthogonal mixing matrix, resulting
in a mixture matrix of size 4× 32768. Then we added
large +2000 or −2000 outliers to 3% randomly selected
points of these mixture, and then selected at random
2000 samples from the 32768 vectors. We estimated
the demixing matrix W using only these 2000 points,

4http://www.cis.hut.fi/projects/ica/data/images/
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Figure 3. Amari errors (multiplied by 100) for 2-d (left), 4-
d (center), and 8-dimensional (right) ICA problem in the
presence of outliers. The plot shows the median values over
R = 1000, 100, 100 replicas of N = 1000, 2000, 5000 sam-
ples for d = 2, 4, 8, respectively. Legend: Swica – red dots
(thick), RADICAL – blue x’s, KernelICA – green pluses,
FastICA – cyan circles, JADE – magenta triangles. The
x-axis shows the number of outliers.
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Figure 4. Amari errors (multiplied by 100) for 2-d (left),
4-d (center), and 8-dimensional (right) ICA problems in
the presence of independent Gaussian noise applied to
mixed sources. The plot shows the median values of R =
1000, 100, 100 replicas of N = 1000, 2000, 5000 samples for
d = 2, 4, 8, respectively. The abscissa shows the variance
of the Gaussian noise, σ2 = (0, 0.3, 0.6, 0.9, 1.2, 1.5). The
legend is the same as in Figure 3.

and then recovered the hidden sources for all 32768
samples using this matrix. SWICA significantly out-
performed other methods. Figure 7 shows an example
of the demixing achieved by different ICA algorithms.

Finally, we applied Schweizer-Wolff σ in an ISA set-
ting. We used 6 3-dimensional sources where each
variable was sampled from a geometric shape (Figure
6a), resulting in 18 univariate hidden sources. These
sources (N = 1000 samples) were then mixed with a
random 18×18 orthogonal matrix (Figure 6b). Apply-
ing Cardoso’s conjecture, we first processed the mixed
sources using FastICA, and then clustered the recov-
ered sources using σ computed on their absolute values
(a non-linear transformation) (Figure 6c). The hidden
subspaces were recovered with high precision as indi-

SWICA FastICA RADICAL KernelICA JADE
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Figure 5. Box plot of Amari errors (multiplied by 100) for
the mixed sounds with outliers. Plot was computed over
R = 100 replicas.

(a) Original (b) Mixed

(c) Estimated (d) Hinton diagram

Figure 6. ISA experiment for 6 3-dimensional sources.

cated by the Hinton diagram of WA (Figure 6d).

6. Conclusion

We proposed a new ICA and ISA method, SWICA,
based on a non-parametric rank-based estimate of the
dependence between pairs of variables. Our method
frequently outperforms other state of the art ICA al-
gorithms, is very robust to outliers, and only moder-
ately sensitive to noise. On the other hand, it is some-
what slower than other ICA methods, and requires
more samples to separate near-Gaussian sources. In
the future, we plan to investigate possible accelera-
tions to the algorithm, and statistical characteristics
of the source distributions that affect the contrast.
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(a) Original (b) Mixed (c) SWICA (d) FastICA (e) RADICAL

Figure 7. Separation of outlier-corrupted mixed images. (a) The original images. (b) the mixed images corrupted with
outliers. (c)-(e) The separated images using SWICA, FastICA, and RADICAL algorithms, respectively. The Amari error
of the SWICA, FastICA, Radical was 0.10, 0.30, 0.29 respectively. The quality of the KernelICA and JADE was similar
to that of FastICA and RADICAL.
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Hyvärinen, A., & Köster, U. (2006). FastISA: A
fast fixed-point algorithm for independent subspace
analysis. Proc. of ESANN.

Learned-Miller, E. G., & Fisher, J. W. (2003). ICA
using spacings estimates of entropy. JMLR, 4, 1271–
1295.

Nelsen, R. B. (2006). An introduction to copulas.
Springer Series in Statistics. Springer. 2nd edition.
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