
The Dynamic Hierarchical Dirichlet Process

Lu Ren lr@ee.duke.edu

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

David B. Dunson dunson@stat.duke.edu

Department of Statistical Science, Duke University, Durham, NC 27708, USA

Lawrence Carin lcarin@ee.duke.edu

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Abstract

The dynamic hierarchical Dirichlet process
(dHDP) is developed to model the time-
evolving statistical properties of sequential
data sets. The data collected at any time
point are represented via a mixture associ-
ated with an appropriate underlying model,
in the framework of HDP. The statistical
properties of data collected at consecutive
time points are linked via a random parame-
ter that controls their probabilistic similar-
ity. The sharing mechanisms of the time-
evolving data are derived, and a relatively
simple Markov Chain Monte Carlo sampler
is developed. Experimental results are pre-
sented to demonstrate the model.

1. Introduction

The Dirichlet process (DP) mixture model (Escobar &
West, 1995) has been widely used to perform density
estimation and clustering, by generalizing finite mix-
ture models to (in principle) infinite mixtures. In order
to “share statistical strength” across different groups
of data, the hierarchical Dirichlet process (HDP) (Teh
et al., 2005) has been proposed to model the depen-
dence among groups through sharing the same set
of discrete parameters (“atoms”), and the mixture
weights associated with different atoms are varied as a
function of the data group. In the HDP, it is assumed
that the data groups are exchangeable. However, in
many real applications, such as seasonal market anal-
ysis and gene investigation for disease, data are mea-
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sured in a sequential manner, and there is information
in this temporal character that should ideally be ex-
ploited; this violates the aforementioned assumption
of exchangeability.

Developing models for time-evolving data has recently
been the focus of significant interest, and researchers
have proposed various solutions directed toward spe-
cific applications. An early example is the order-based
dependent DP (Griffin & Steel, 2006), in which the
model is time-reversible but is not Markovian, and it
requires one to specify how the mixture weights change
through time. Another related work is the time-
varying Dirichlet process mixture model (Caron et al.,
2007) based on a modified Polya urn scheme (Black-
well & MacQueen, 1973), implemented by changing
the number and locations of clusters over time. This
method is easy to understand intuitively but has com-
putational challenges for large data sets. To exam-
ine the temporal dynamics of scientific topics, latent
Dirichlet allocation (Blei et al., 2003) (Griffiths &
Steyvers, 2004) has been used as a generative model for
analysis of documents. In order to explicitly model the
dynamics of the underlying topics, Blei (Blei & Laf-
ferty, 2006) proposed a dynamic topic model, in which
the parameter at the previous time t− 1 is the expec-
tation for the distribution of the parameter at the next
time t, and the correlation of the samples at adjacent
times is controlled through adjusting the variance of
the conditional distribution. Unfortunately, the non-
conjugate form of the conditional distribution requires
approximations in the model inference.

Recently Dunson (Dunson, 2006) proposed a Bayesian
dynamic model to learn the latent trait distribution
through a mixture of DPs, in which the latent variable
density changes dynamically in location and shape
across levels of predictors. This dynamic structure is
considered in this paper to extend HDP to incorpo-
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rate time dependence, and has the following features:
(i) two data samples drawn at proximate times have
a higher probability of sharing the same underlying
model parameters (atoms) than parameters drawn at
disparate times; and (ii) there is a possibility that tem-
porally distant data samples may also share model pa-
rameters, thereby accounting for possible distant rep-
etition in the data.

2. Dynamic HDP

2.1. Background

A Dirichlet process is a measure on a measure G and
is parameterized as G ∼ DP (α0, G0), in which G0 is a
base measure and α0 is a positive “precision” param-
eter. To provide an explicit form for a G drawn from
DP (α0, G0), Sethuraman (Sethuraman, 1994) devel-
oped a stick-breaking construction:

G =
∞∑

k=1

πkδθ∗k , πk = π̃k

k−1∏

i=1

(1− π̃i) (1)

where {θ∗k}∞k=1 represent a set of atoms drawn i.i.d.
from G0 and {πk}∞k=1 represent a set of weights, with
the constraint

∑∞
k=1 πk = 1; each π̃k is drawn i.i.d.

from Be(1, α0). According to the construction in (1), a
draw G from a DP (α0, G0) is discrete with probability
one. Based on this important property, Teh (Teh et al.,
2005) proposed a hierarchical Dirichlet process (HDP)
to link the group-specific Dirichlet processes, learning
the models jointly across multiple data sets.

Assume we have J groups of data and the jth data
set (group) is denoted as {xj,i}i=1,...,Nj . For each of

these data sets, xj,i is drawn from the model xj,i
ind∼

F (θj,i) with parameters θj,i
iid∼ Gj , and the parame-

ters {θj,i}i=1,...,Nj
are likely to assume the atoms θ∗k

for which the associated sticks πj,k are large, as a con-
sequence of the form of Gj given by (1); for the J
data sets, different group-specific Gj are drawn from
DP (αj0, G0), in which G0 is drawn from another DP.
The generative model for HDP is represented as:

xj,i
ind∼ F (θj,i)

θj,i
iid∼ Gj

Gj
ind∼ DP (αj0, G0)

G0 ∼ DP (γ, H)

(2)

where j = 1, . . . , J and i = 1, . . . , Nj .

Under this hierarchical structure, not only can differ-
ent observations xj,i and xj,i′ in the same group share
the same parameters θ∗ based on the stick weights rep-
resented by Gj , but also the observations across differ-
ent groups might share parameters as a consequence

of the discrete form of G0 (all Gj are composed of
the same set of atoms {θ∗k}∞k=1). The clusters in each
group j, assumed by the set {θj,i}i=1,...,Nj , are inferred
via the posterior density function on the parameters,
with the likelihood function selecting the set of discrete
parameters {θ∗k}∞k=1 most consistent with the data
{xj,i}i=1,...,Nj

. Meanwhile, clusters (and, hence, asso-
ciated cluster parameters {θ∗k}∞k=1) are shared across
multiple data sets, as appropriate.

Although the HDP introduces a dependency between
the J groups, the data sets are assumed exchangeable.
However, in many applications, the data may be col-
lected sequentially, and one may have a prior belief
that sharing of data is more probable when the data
sets are collected at similar points in time. The pur-
pose of this paper is to extend the HDP to account for
such temporal information.

Before proceeding, it will prove useful to consider an
alternative form of the HDP model, as derived in (Teh
et al., 2005). Specifically, each draw Gj may be ex-
pressed as:

Gj =
∞∑

k=1

πj,kδθ∗k

πj
ind∼ DP (α0j , β)
β ∼ Stick(γ)

θ∗k
iid∼ H

(3)

where Stick(γ) stochastically generates an infinite set
of sticks {β1, β2, . . .}, based on a stick-breaking process
of the form in (1), here with parameter γ, satisfying
the constraint

∑∞
i=1 βi = 1.

2.2. Bayesian Dynamic Structure

Similar to HDP, we again consider J data sets but
now using an explicit assumption that the data sets
are collected sequentially, with {x1,i}i=1,...,N1 col-
lected first, {x2,i}i=1,...,N2 collected second, and with
{xJ,i}i=1,...,NJ

collected last. Since our assump-
tion is that a time evolution exists between adja-
cent data groups, the distribution Gj−1, from which
{θj−1,i}i=1,...,Nj−1 are drawn, is likely related to Gj ,
from which {θj,i}i=1,...,Nj are drawn.

To specify explicitly the dependence between Gj−1 and
Gj , Dunson (Dunson, 2006) proposed a Bayesian dy-
namic mixture DP (DMDP), in which Gj shares fea-
tures with Gj−1 but some innovation may also occur.
The DMDP has the drawback that mixture compo-
nents can only be added over time, so that one ends
up with more components at later times as an artifact
of the model.
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In the dHDP, we have

Gj = (1− w̃j−1)Gj−1 + w̃j−1Hj−1 (4)

where G1 ∼ DP (α01, G0), Hj−1 is called an in-
novation distribution drawn from DP (α0j , G0), and
w̃j−1 ∼ Be(aw(j−1), bw(j−1)). In this way, Gj is modi-
fied from Gj−1 by introducing a new innovation distri-
bution Hj−1, and the random variable w̃j−1 controls
the probability of innovation (i.e., it defines the mix-
ture weights). As a result, the relevant atoms adjust
with time, and it is probable that proximate data will
share the same atoms, but with the potential for tran-
sient innovation.

Additionally, we assume that G0 ∼ DP (γ, H) as in
the HDP to enforce that G0 is discrete, which mani-
fests another important aspect of the dynamic HDP:
the same atoms are used for all Gj , but with different
time-evolving weights. Consequently, the model en-
courages sharing between temporally proximate data,
but it is also possible to share between data sets widely
separated in time.

Providing now more model details, the discrete base
distribution drawn from DP (γ, H) may be expressed
as:

G0 =
∞∑

k=1

βkδθ∗k (5)

where {θ∗k}k=1,2,...,∞ are the global parameter com-
ponents (atoms), drawn independently from the base
distribution H and {βk}k=1,2,...,∞ are drawn from a
stick-breaking process β ∼ Stick(γ), defined as:

βk = β̃k

∏

l<k

(1− β̃l) β̃k
iid∼ Be(1, γ) (6)

We also have J groups of data. Gj represents the prior
for the mixture distribution associated with the global
components in group j, Hj−1 represents the associated
prior for the innovation mixture distribution, and this
yields the explicit priors used in (4):

G1 =
∞∑

k=1

π1,kδθ∗k ,H1 =
∞∑

k=1

π2,kδθ∗k , . . . ,

HJ−1 =
∞∑

k=1

πJ,kδθ∗k

(7)

where, analogous to the discussion at the end of Sec-
tion 2.1, the different weights πj are independent given
β since G1,H1, . . . ,HJ−1 are independent given G0;
the relationship between πj and β is proven (Teh et al.,
2005) to be

πj |α0j , β ∼ DP (α0j , β) (8)

To further develop the dynamic relationship from G1

to GJ , we extend the mixture structure in (4) from
group to group:

Gj = (1− w̃j−1)Gj−1 + w̃j−1Hj−1

=
j−1∏

l=1

(1− w̃l)G1 +
j−1∑

l=1

{
j−1∏

m=l+1

(1− w̃m)}w̃lHl

= wj1G1 + wj2H1 + . . . + wjjHj−1

(9)

where wjl = w̃l−1

∏j−1
m=l(1 − w̃m), for l = 1, 2, . . . , j,

with w̃0 = 1. It can be easily verified that
∑j

l=1 wjl =
1 for each wj , which is the prior probability that the
data in group j will be drawn from the mixture dis-
tribution: G1,H1, . . . ,Hj−1. If all w̃j = 0, all of the
groups share the same mixture distribution G1 and
the model reduces to a Dirichlet mixture model, and if
all w̃j = 1 the model reduces to the HDP. Therefore,
the dynamic HDP is more general than both DP and
HDP, with each a special case. A visual representation
of the model is depicted in Figure 1.

H

0
G0

1
G

2
G J

G

1
H 1J

H

i
x

1 i
x

2 Ji
x

1

~
1 w

1

~
w

1

~
1

J
w 1

~
J

w

w
~

w
a

w
b

i1 i2
Ji

Figure 1. General graphical model for the dynamic HDP.

According to (9), the observation xj,i will choose a
mixture distribution from π1:j based on Mult(wj)
to be drawn from the global parameter components
{θ∗k}∞k=1. We let rj,i be a variable to indicate which
mixture distribution is taken from π1:j to draw the ob-
servation xj,i; zj,i is a parameter component indicator
variable. An alternative form of the dHDP model is
represented as:

θ∗k|H ∼ H, β|γ ∼ Stick(γ)
w̃j |awj , bwj ∼ Be(w̃j |awj , bwj), rj,i|w̃ ∼ wj

πj |α0j ,β ∼ DP (α0j , β), zj,i|π1:j , rj,i ∼ πrj,i

xj,i|zj,i, (θ∗k)∞k=1 ∼ F (θ∗zj,i
),

(10)
and a graphical representation is shown in Figure 2, in
which we add a gamma prior for γ and for the com-
ponents of the vector α0: Pr(γ) = Ga(γ; γ01, γ02) and
Pr(α0) =

∏J
j=1 Ga(α0j ; c0, d0). The form of the para-

metric model F (·) may be varied depending on the
application.
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Figure 2. Graphical representation of the dHDP from a stick-
breaking view.

2.3. Sharing Properties

To see the mixture structure in a discrete partition
space A = (A1, . . . , AK), we consider

Gj(A1, . . . , AK)|Gj−1, w̃j−1 ∼
(1−w̃j−1)Gj−1(A1, . . . , AK)+w̃j−1Hj−1(A1, . . . , AK)

, Gj−1(A1, . . . , AK) +4j(A1, . . . , AK) (11)

where 4j(A1, . . . , AK) = w̃j−1{Hj−1(A1, . . . , AK) −
Gj−1(A1, . . . , AK)} is the random deviation from Gj−1

to Gj .

Theorem 1. Given any discrete partition A, we have:

E{4j(A)|Gj−1, w̃j−1,H, γ, α0j}
=w̃j−1{H(A)−Gj−1(A)} (12)

V {4j(A)|Gj−1, w̃j−1,H, γ, α0j}

=w̃2
j−1

(1 + γ + α0j)H(A)(1−H(A))
(1 + α0j)(1 + γ)

(13)

According to Theorem 1, given the previous mixture
distribution Gj−1, the expectation of the deviation
from Gj−1 to Gj is controlled by w̃j−1. Meanwhile, the
variance of the deviation is both related with w̃j−1 and
the precision parameters γ, α0j . To consider limiting
cases, we observe the following:

• if w̃j−1 → 0, Gj = Gj−1;

• if Gj−1 → H, E(Gj(A)|Gj−1, w̃j−1,H, γ, α0j) =
Gj−1(A);

• if γ →∞ and α0j →∞,
V (4j(A)|Gj−1, w̃j−1,H, γ, α0j) → 0.

These limiting cases yield insights on the underlying
dependence between adjacent groups.

Theorem 2. The correlation coefficient of the distri-
butions between two adjacent groups Gj−1 and Gj for

j = 2, . . . , J is

Corr(Gj−1, Gj)

=
E{Gj(A)Gj−1(A)} − E{Gj(A)}E{Gj−1(A)}

[V {Gj(A)}V {Gj−1(A)}]1/2

=

∑j−1
l=1

wjlwj−1,l

1+α0l
· α0l+γ+1

γ+1

[
∑j

l=1

w2
jl

1+α0l
· α0l+γ+1

γ+1 ]1/2[
∑j−1

l=1

w2
j−1,l

1+α0l
· α0l+γ+1

γ+1 ]1/2

(14)

To compare the similarity of two data groups, the cor-
relation coefficient defined in Theorem 2 can be calcu-
lated from the posterior expectation of w, α0 and γ
as a local similarity measure.

2.4. Posterior Computation

A modification of the block Gibbs sampler (Ishwaran
& James, 2001) is proposed for dHDP inference. Since
in practice the {πk}∞k=1 in (1) diminish quickly with
increasing k, a truncated stick-breaking process (Ish-
waran & James, 2001) is employed here, with a large
truncation level K, to approximate the infinite stick
breaking process. In the dHDP, the second level of
DPs associated with the dynamic structure is the only
part different from HDP (see Figure 2). Due to the
limited space, we only give the conditional posterior
distributions for w̃, π̃, r and z.
The conditional distribution of w̃l, for l = 1, . . . , J − 1
has the simple form:

(w̃l| · · · ) ∼ Be(aw +
J∑

j=l+1

nj,l+1, bw +
J∑

j=l+1

l∑

h=1

njh)

(15)
where njh =

∑Nj

i=1 δ(rji = h). In (15) and in the
results that follow, for simplicity, the distributions
Be(awj , bwj) are set with fixed parameters awj = aw

and bwj = bw for all time samples.
The conditional distribution of π̃lk, for l = 1, . . . , J
and k = 1, . . . ,K, is updated under the conjugate
prior: π̃lk ∼ Be(α0,lβk, α0,l(1 −

∑k
m=1 βm)), which is

specified in (Teh et al., 2005). Then the conditional
posterior of π̃lk has the form

(π̃lk| · · · ) ∼ Be(α0lβk +
J∑

j=1

Nj∑

i=1

δ(rji = l, zji = k),

α0l(1−
k∑

l=1

βl) +
J∑

j=1

Nj∑

i=1

K∑

k′=k+1

δ(rji = l, zji = k′))

(16)

The update of the indicator variables rji and zji, for
j = 1, . . . , J and i = 1, . . . , Nj are completed by gen-
erating samples from multinomial distributions with
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entries as follows:

Pr(rji = l| · · · ) ∝

w̃l−1

j−1∏

m=l

(1− w̃m) · π̃lzji

zji−1∏
q=1

(1− π̃lq) · Pr(xji|θ∗zji
)

(17)

where l = 1, . . . , j. The posterior probability Pr(rji =
l) is normalized so that

∑j
l=1 Pr(rji = l) = 1.

Pr(zji = k| · · · ) ∝ π̃rjik

k−1∏

k′=1

(1− π̃rjik′) · Pr(xji|θ∗k)

(18)
where k = 1, . . . , K and the posterior is also normal-
ized by a constant

∑K
k=1 Pr(zji = k).

The remaining variables specified in (10) are sampled
in the same ways as in HDP (Teh et al., 2005). The
component parameters θ∗k for k = 1, . . . , K are consid-
ered for different model forms depending on the spe-
cific applications. For the results that follow, it is of
interest to consider a hidden Markov model (HMM)
mixture (Qi et al., 2007) and Gaussian mixture model
(GMM), in which θ∗k respectively represent the state-
transition matrix, the observation matrix, the initial-
state distribution for the HMM and the mean vec-
tor and covariance matrix for GMM. For more details
about sampling for such models, see (Qi et al., 2007)
and (Escobar & West, 1995). The Gibbs sampling al-
gorithm was tested carefully under different initializa-
tions and the diagnostic method in (Raftery & Lewis,
1992) is used to demonstrate rapid convergence and
good mixing (for the results considered, convergence
based on this method was observed for a burn-in of
200 samples, followed by a subsequent 4000 samples).

3. Experimental Results

3.1. Music Segmentation

It is of interest to segment music, to infer inter-
relationships between different parts of a given piece,
as well as between different pieces. Here we consider
segmentation of music, where a given piece is divided
into contiguous subsequences, with each subsequence
modeled via a hidden Markov model (HMM). The
dHDP model is useful in this application in enforc-
ing the idea that contiguous subsequences are likely
to be within the same music segment, and therefore
are likely to share HMM parameters. However, when
the segment changes, these changes are detected via
innovation within the dHDP.

The music under consideration is the first movement
“Largo - Allegro” from the Beethoven piano Sonata

No. 17 (Newman, 1972). As is widely employed for
analysis of such audio data, MFCC features are ex-
tracted and discretized with vector quatization (Qi
et al., 2007); each of the aforementioned subsequences
corresponds to a sequence of codewords (we here em-
ploy a discrete HMM). The basic form of the Bayesian
representation of a discrete HMM is as discussed in (Qi
et al., 2007). The piece is transformed into 4980 dis-
crete symbols, divided into 83 subsequences of equal
length (the codebook has 16 codes, and 8 states are
employed for each HMM); each subsequence corre-
sponds to 6 secs in the music. To model the time
dependence between adjacent subsequences, each sub-
sequence corresponds to one group in the dHDP HMM
mixture and will choose one set of HMM parameters
according to the corresponding mixture weights. In
the dHDP framework, one subsequence can share the
old DP mixture distributions with the previous ones
or it might be drawn from an innovation DP mixture,
which may be also shared by the following time se-
ries in a similar manner. To encourage that adjacent
subsequences be shared, the prior for w̃ is specified
as E(w̃) < 0.5. The product of most interest here is
the segmentation of the music, with the specific HMM
parameters of secondary importance.
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Figure 3. Similarity matrix E(z′z) from HMM mixture
modeling of the Sonata. (a) dHDP-HMM, (b) HDP-
HMMs.

To represent the time dependence of the piece, the
similarity measure E(z′z) (see z in Eq. (18)) is com-
puted across each pair of subsequences, as shown in
Figure 3, in which larger values represent higher prob-
ability of the two corresponding subsequences being
shared during parameter inference. Based upon a
discussion in (Newman, 1972), the movement alter-
nates seeming peacefulness with sudden turmoil (1st-
6th subsequences), after some time expanding into a
haunting “storm” in which the peacefulness is lost
(7th-21st subsequences). After the recurrence of the
same pattern (22nd-42nd subsequences) and a small
transition, the movement starts a long recitative sec-
tion in a slow tone (53rd-69th subsequences). Then
through the crescendo, previous disturbed tones come
back again until the music goes to the peaceful epilogue



The Dynamic Hierarchical Dirichlet Process

(after the 70th subsequence). See (Newman, 1972) for
more details on the Sonata. This is deemed to be an
interesting piece for study because it is well charac-
terized in the music literature, as briefly summarized
above, and because it is anticipated to have repeated
segments over the length of the piece. In Figures 3(a)
and (b) we compare the dHDP and HDP, respectively,
the latter computed by fixing all w̃ = 1 in the dHDP
model. The dHDP and HDP yield related results, but
the former yields a smoother segmentation, in good
agreement with the music theory discussed above.
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Figure 4. Segmentation of the Beethoven piano music from
the dHDP HMMs (red dash lines represent segment posi-
tions and blue curves represent the auditory waveform).

Based on the results from the dHDP HMM, which ef-
fectively yields a model with smoothly time-evolving
statistics, we segment the music and present the asso-
ciated auditory waveform in Figure 4. By examining
the waveform and the results in Figure 3, we note that
the dHDP segments the music into dominant auditory
phenomena, but it is less sensitive to noticeable but
temporally localized events in the music, yielding a
segmentation that is consistent with the music theory.
By contrast, the HDP results in Figure 3(b) are evi-
dently more sensitive to these local temporal bursts in
the waveform.

3.2. Gene Expression Data

As a second example, we consider the time-evolving
characteristics of gene-expression data, here for a
Dengue virus study (Hibberd et al., 2006). Concern-
ing a model for the gene-expression data at one time
snapshot, Dunson (Dunson, 2006) proposed a latent
response model based on a linear regression structure;
we extend this model for time-evolving gene-expression
data via dHDP (with comparison as well to HDP).

Assume yji is a feature vector with dimension p for
j = 1, . . . , J and i = 1, . . . , Nj (index j corresponds to
time, i represents a particular cell from which a sample
is collected, and p denotes the number of genes being
modeled). Each yji is represented as

yji = µ + ληji + εji (19)

where µ = (µ1, . . . , µp)′ is the intercept vector and
λ = (λ1, . . . , λp)′ represents factor loadings. We de-
fine a hidden variable ηji underlying the observation

yji to be associated with the ith sample at time tj .
The error term εji is also a vector of dimension p and
each coefficient εji,d is independently drawn from a
Student-t distribution. To eliminate the problem of
model identifiability, we incorporate the constraints
that µ1 = 0 and λ1 = 1, as (Dunson, 2006) discusses.
In the present model, one cannot explicitly associate
η exclusively with the virus; however, since these are
cell data, it is anticipated that the virus represents the
dominant phenomena.

We have access to expressions of thousands of genes
from each sample (cell) for multiple consecutive times
t1, t2, . . . , tJ . For each time tj , there are Nj samples
measured from different cells (Hibberd et al., 2006).
Although these samples may have different observa-
tions in gene expressions at the same time, due to
individual diversity, the hidden variable η (see (19))
underlying the observations may have similar charac-
teristics. Based on this consideration, the η under-
lying the observations in one group corresponding to
one time are assumed to be drawn from a Gaussian
mixture model. They may also share the same mix-
ture distribution for proximate time points, under the
assumption of the dHDP model.

The Dengue gene expression data (Hibberd et al.,
2006) are divided into six groups of samples measured
at different times and the number of samples in each
group are 10, 12, 12, 10, 12, 9 (the specific time
points associated with these data are respectively 3,
6, 12, 24, 48 and 72 hours); each sample has 19,143
genes. To deal with such high-dimensional data, the
Fisher score (Duda & Hart, 1973) is used to prelimi-
narily select p = 5000 genes as being the most relevant
(variable across time and cell), and then we use the
dHDP mixture model discussed above to analyze the
time evolution existing in these gene samples.
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Figure 5. Median values and associated uncertainty based on
posterior distributions of the hidden variables η.

Based on the samples collected from the Gibbs sam-
pling after burn-in, the posterior distributions (includ-
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Figure 6. The dHDP GMM modeling for the gene expres-
sion data. (a) The posterior distribution of r. (b) The
similarity matrix E[z′z].
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Figure 7. The first ten inferred important genes (color red
and blue) and the relatively unrelated genes (color green).

ing the minimum, median, maximum, 25th and 75th
percentiles of the values) for all components of η un-
derlying these samples at different times are shown
in Figure 5. Time points 3hr, 6hr and 12hr appear
to share a similar pattern, but the ηt=12 seem to have
smaller diversity among different samples. From 24hrs,
η drops slightly to a new pattern and they drop signif-
icantly again at 48hr. The posterior of indicator r is
plotted in Figure 6(a) to show the mixture-distribution
sharing relationship across different groups. Figure
6(b) shows the similarity measure E(z′z) across ev-
ery pair of samples; here zji is the indicator variable
for the ηji associated with time tj (see Eq. (18)).

Consider the factor loadings vector λ, which has com-
ponents linked to the p genes under consideration. The
larger the value of |λd|, the more influence the pattern
contained in η has on the corresponding gene at the
dth dimension. Therefore, according to the posterior
mean of |λd| for all d from the Gibbs sampling we rank
the genes based on their importance.

In Figure 7 we plot the expression levels over time for
the 10 most important and 10 least important genes.
The red and blue curves show two different time pat-
terns and their values have either an increasing or a
decreasing trend with time, depending on whether the
associated λ is positive or negative. The green curves
represent the genes with no apparent relation to the

virus (as determined by the analysis) due to the lack
of a systematic trend over time.

As discussed in Section 2.2, if all w̃j are set to one for
j = 1, . . . , J − 1, the dHDP reduces to HDP and all
the temporal groups are conditionally exchangeable.
It is of interest to compare the dHDP with HDP both
in the sharing mechanism and parameter estimation.
In practice, acquisition of the gene-expression data is
expensive, and it is desirable to reduce the number of
samples required. To consider this issue, we reduced
the samples size to four at each time point, and plot
the data similarity matrix E[z′z] for HDP and dHDP
respectively in Figures 8(a) and (b).
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Figure 8. Similarity matrix E[z′z] with four samples for
each temporal group. (a) HDP, (b) dHDP.
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Figure 9. Comparison of dHDP and HDP with box plots of
the hidden variables η as the sample size is reduced to four
for each temporal group (the standard deviation based on
dHDP is 12.1% reduced on average relative to HDP; the
means are very similar).

Compared with HDP, dHDP has more sharing between
the related groups (as expected from model construc-
tion), and despite the reduced data samples the dHDP
yields an inter-relationship between the different times
that is consistent with that in Figure 6(b) which em-
ploys all of the available data. In Figure 9 we compare
dHDP and HDP estimation of η based on four sam-
ples per time point. These results show that dHDP
has a smaller estimation uncertainty for most η rela-
tive to HDP, which is attributed to proper temporal
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sharing explicitly imposed by dHDP. As the sample
size is increased, the differences between dHDP and
HDP diminish.

Finally, correlation coefficients between two groups are
calculated from the samples drawn from the Gibbs
sampler, according to (14) and plotted as a matrix
in Figure 10; this representation is an additional bene-
fit of the dynamic structure explicitly imposed within
dHDP (of potential biological interest). The size of
each small block at the ith row and jth column is pro-
portional to the value of the correlation coefficient as-
sociated with group i and group j. We note based on
Figure 10 that such inference appears to be accurate
(or at least consistent) even with diminished sample
size.

1 2 3 4 5 6

1

2

3

4

5

6

Time Index

T
im

e 
In

de
x

(a)

1 2 3 4 5 6

1

2

3

4

5

6

Time Index

T
im

e 
In

de
x

(b)

Figure 10. Similarity matrix between data at different time
points based on the correlation coefficients (14), as com-
puted from the dHDP posterior. (a) using all available
data, (b) using four samples for each temporal group.

4. Conclusions

The proposed dynamic hierarchical Dirichlet process
(dHDP) extends the HDP (Teh et al., 2005), imposing
a dynamic time dependence so that the initial mix-
ture model and the subsequent time-dependent mix-
tures share the same set of components (atoms). The
experiments indicate that the dHDP is an effective
model for analysis of time-evolving data. Concern-
ing future research, more efficient inference methods
will be considered, such as collapsed sampling (Welling
et al., 2007) and variational Bayesian inference (Blei
& Jordan, 2004).
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