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Abstract

We derive a generalization bound for multi-
classification schemes based on grid cluster-
ing in categorical parameter product spaces.
Grid clustering partitions the parameter
space in the form of a Cartesian product of
partitions for each of the parameters. The
derived bound provides a means to evaluate
clustering solutions in terms of the general-
ization power of a built-on classifier. For clas-
sification based on a single feature the bound
serves to find a globally optimal classification
rule. Comparison of the generalization power
of individual features can then be used for
feature ranking. Our experiments show that
in this role the bound is much more precise
than mutual information or normalized cor-
relation indices.

1. Introduction

Clustering is one of the basic tools for dimension-
ality reduction in categorical spaces. In this paper
we study classifiers based on a soft grid clustering
of categorical parameter product spaces. The grid
clustering is defined by a set of stochastic mappings
{q; : X; — {1,..,m;}}, one for each parameter i, which
map the possible values X; of the parameter X; to a
reduced set C; of size m;. A classifier based on the grid
clustering then assigns a separate prediction strategy
to each partition cell. For example, in collaborative
filtering we can cluster a thousand by thousand space
of viewers by movies into a five by five space of viewer
clusters by movie clusters (here X; are the viewers
and X, are the movies). Then we can predict a miss-
ing entry within some partition cell with an average of
ratings in that cell.
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Grid clustering or some other form of dimensionality
reduction can be helpful and even essential when the
sample size is limited. However, an appropriate choice
of clustering resolution is crucial for good results. A
coarse clustering may be highly imprecise - think of the
extreme of putting all the data into one big cluster. On
the other hand, a fine clustering may be statistically
unreliable - at the opposite extreme, if we put every
parameter value into a separate cluster, some parame-
ter combinations may not occur in the training set at
all. Thus, unification of parameter values amplifies the
statistical reliability, but reduces the precision. In this
paper we relate this tradeoff to generalization proper-
ties of a classifier based on the clustering.

Applications of grid clustering to data with intrinsi-
cally categorical features are abundant. Seldin, Slonim
and Tishby (2007) consider grid clustering from an
MDL perspective and demonstrate its success in pre-
dicting missing values in the context of collaborative
filtering. The same work achieves state of the art per-
formance in terms of coherence of obtained clusters
with manual annotation in the context of gene expres-
sion and stock data analysis. Here we also suggest a
new application of grid clustering for feature ranking.

We are not aware of any previous work on generaliza-
tion properties of models based on grid clustering. A
somewhat related work is (Srebro, 2004), which derives
a generalization bound for matrix approximation with
bounded norm factorization. However, matrix factor-
ization is a different model and the proof is based on
a different technique (Rademacher complexities).

The key point of this paper is a derivation of a gener-
alization bound for classification based on grid cluster-
ing. The bound is derived by using the PAC-Bayesian
technique (McAllester, 1999). The power of the PAC-
Bayesian technique lies in its ability to handle hetero-
geneous hypothesis classes so that the generalization
bound for a specific hypothesis depends on the com-
plexity of that hypothesis rather than on the complex-
ity of the whole class. A classical example of an appli-
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cation of the PAC-Bayesian bound are SVMs (Lang-
ford, 2005). It is well known that the VC-dimension of
separating hyperplanes in R is n+1. As well, the VC-
dimension of separating hyperplanes with a margin -,
assuming all points are bounded in a unit sphere, is
min{%,n} + 1. The ability to slice the hypothesis
space into infinitely many subspaces characterized by
a finer notion of complexity (the size of the margin)
rather than the coarse VC-dimension of the whole class
makes it possible to derive a better bound that remains
meaningful even for infinite dimensional spaces.

In this paper we propose a fine measure of complex-
ity of a grid partition of a cardinal space. The pro-
posed measure of complexity is related to the entropy
of a partition along each dimension i. The bound en-
ables us to consider all possible partitions of the prod-
uct space and to choose one with better generalization
properties. In the case of a single parameter it is easy
to find a global optimum of the bound. The mapping
rule achieving the optimum is shown to be the optimal
classification rule from a generalization point of view.
Although the bound is not perfectly tight, its shape
follows an error on a validation set extremely well. In
the experimental section we apply the bound to fea-
ture ranking and it is shown to be much more precise
than standard mutual information or normalized cor-
relation rankings.

2. A Brief Review of the PAC-Bayesian
Generalization Bound

To set the stage, we start with a simplified version of
the PAC-Bayesian bound, called Occam’s razor. Let
‘H be a countable hypothesis space. For a hypothesis
h € H denote by L(h) an expected and by L(h) an
empirical loss of h. We assume the loss is bounded by
b.

Theorem 1 (Occam’s razor). For any data generating
distribution and for any “prior distribution” P(h) over
‘H with a probability greater than 1 — § over drawing
an i.i.d. sample of size N, for all h € H:

—IlnP(h) —Iné

L(h) < L(h) +b SN (1)

Proof. The proof is fairly simple and provides a good
illustration of what the “prior distribution” P(h) is.
By Hoeffding’s inequality P{L(h) — L(h) > e(h)} <
e~ 2Ne(h)? /6 for any given h € H. We require that
e=2Ne(M)*/V* < P(R)§ for some prior P(h) that satisfies
> hen P(h) = 1. Then, by the union bound L(h) <
L(h) + e(h) for all h € H with a probability of 1 — 4.

The minimal value of ¢ that satisfies the requirement

is E(h) - —InP(h)—Ind

N , which completes the proof.

We now introduce the notion of a randomized clas-
sifier. Let @ be any (posterior) distribution over H.
A randomized classifier associated with ¢ works by
choosing a new classifier h from H according to @ ev-
ery time a classification is made. We denote the loss
of a strategy @ by L(Q) = EpwgL(h) and similarly
L(Q) = EpoL(h). By taking an expectation of (1)
over the choice of h and exploiting the concavity of the
square root we obtain that with a probability greater
than 1 —§:

—EhNQ In P(h) —1Ind
. 2
5N (2)

L(Q) < L(Q) + b\/

The PAC-Bayesian bound (McAllester, 1999) was de-
rived to allow uncountably infinite hypothesis spaces,
though in our case the hypothesis space is finite. We
cite a slightly tighter version of the bound proved in
(Maurer, 2004).

Theorem 2 (PAC-Bayesian Bound). For any data
distribution and for any “prior” P over H fized ahead
of training with a probability greater than 1 — 9§ for all
distributions Q over H:

D(Q||P) + 3 In(4N) —Ind
2N ’

L(Q) < L(Q) + b\/ 3)

where D(Q||P) = Epgln % is the Kullback-Leibler

(KL) divergence between the distributions @ and P.

If the loss function is bounded by one (1), (2), and
(3) may be written in the form of a bound on the
KL-divergence between L(Q) and L(Q). For ex-
ample, (1) may be obtained as: D(L(h)||L(h)) <
W if we start from the P{L(h) — L(h) >
e} < e NPEMFEIL() form of Hoeffding’s inequal-
ity. This provides a better bound in cases when ﬁ(Q)
is sufficiently small (less than §). The choice of the
square root form of the bounds is based on their easier
analytical tractability for subsequent minimization.
By writing D(Q||P) = —H(Q) — EpwgoInP(h) it is
easy to see that (3) is an improvement over (2) when
H(Q) > 1In(4N). In our experiments (2) is usually
tighter. It is an open question whether %111(4]\/' ) can
be removed from (3), at least in the case of a countable
‘H. For example, (Blanchard & Fleuret, 2007) suggest
a parameterized tradeoff %D(Q||P)+ln(k+1)+3.5+
5= instead of D(Q|P) + 3In(4N). For our data the
tradeoff does not improve the results and therefore we
omit its discussion.
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3. A Formal Definition of Grid
Clustering

Before proceeding to the results we provide a formal
definition of grid clustering as used in this paper.

Definition 1. Grid Clustering of the parameter space
X1 X .. X Xy is a set of distributions q;(C;|X;) defining
the probability of mapping X; € X; to C; € {1,..,m;}.
If each of q;(C;|X;) is deterministic, we call the clus-
tering a deterministic grid clustering. Otherwise it is
a stochastic grid clustering.

In the following sections we assume some unknown
joint probability distribution p(Y, X1, .., X4) of the pa-
rameters and the label exists. The set of all possible
labels is denoted by Y and its size is denoted by n,,.
The size of X; is denoted by n;. The cardinality of
C; is m;. The value of each m; can vary in the range
of 1 < m; < n; for different partitions. A hypoth-
esis h in a deterministic grid clustering is comprised
of a set of deterministic mappings ¢;(C;|X;), for sim-
plicity denoted by ¢;(X;) : &; — {1,..,m}, and a set
of [], m; labels, one for each partition cell. We de-
note the hypothesis space by H and decompose it as
H = H|1 x .. x H|g X H]|y}m. Here H|; is a space of
all possible partitions of X}, or, in other words, a pro-
jection of H onto dimension i. m = (mq,..,my) is a
vector of cardinalities of the partitions along each di-
mension and H|y)s is a space of all possible labelings
of [[, m; partition cells. Similarly, h € H is decom-
posed as h = h[y X .. X h|g X hly|m. It is assumed that
a loss function [ : ) x ¥ — R7T is given. The loss of
h, denoted by L(h), is defined as an expectation over
p of L: L(h) = El(h(X1,..,Xq), Y (X1,..,Xq)). The
empirical loss of h on a sample S of size N is denoted
by ﬁ(h) and equals the average loss on the sample.

For stochastic mappings ¢;(C;|X;) it is assumed that
a random realization of the mapping is done prior to
the prediction. In other words, we choose a hypoth-
esis h at random by determining the values of ¢;(X;)
according to ¢;(C;|X;) before we make a prediction.

= {{a(Ci| X))}y, q(Y|Cy, ..,Ca)} collectively de-
notes a distribution over H associated with a random-
ized classifier called Q). The loss of @) is denoted by
L(Q) and equals L(Q) = Ep.goL(h). The empirical
loss of @ is denoted by ﬁ(Q)

We define ¢;(C;) = ni > e, 2(Cilz;) to be a marginal
distribution over C; corresponding to a wuniform
distribution over X; and the conditional distribu-
tion ¢;(C;|X;) of our choice. The entropy of a
partition along a dimension ¢ with respect to a

uniform distribution over &; is then Hy(g;) =
Hy (C) — >, 4i(ci)Ingi(c;). The mutual in-

formation between X; and C; with respect to
a uniform distribution over X; is Iy(X;;C;) =
= Y e i(cilzi) Infgi(cilai) /qie))-

4. Generalization Bound for
Multi-Classification with Grid
Clustering

In this section we state and prove a generalization
bound for multi-classification with stochastic grid clus-
tering:

Theorem 3. For any probability measure p over in-
stances and for any loss function | bounded by b, with
a probability of at least 1—6 over a selection of an i.i.d.
sample S of size N according to p, for all randomized

classifiers Q = {{q:(Ci|Xi)}{—.q (Y|Cl,..,Cd)}:

L@ < L@+ by ZCOLE
K:Z(milnnﬁ—% l_ImZ Inn,—Iné.

%

()

It is also possible to replace (4) in the theorem with:

) S mily(Xi C) + F n(4N) + K
L < L(Q
@ < \/ AR
(6)
Proof. The bounds (4) and (6) are direct conse-

quences of (2) and (3) respectively for an appropriate
choice of a prior P over H. The main part of the proof
is to define a prior P that will provide a meaningful
complexity-related slicing of H and then to calculate
—EgIn P(h) for (4) and D(Q||P) for (6).

To define the prior P over H we count the hypotheses
in ‘H. For a fixed partition there are nyn'i " possibili-
ties to assign the labels to the partition cells. There are
n; possibilities to choose the number of clusters along
a dimension 4. There are at most (" ;m ) <nitT !
possibilities to choose a cluster cardlnahty profile along
a dimension ¢. (This is the number of possibilities to
place m; — 1 ones in a sequence of n; +m; — 1 ones
and zeros, where ones symbolize a partition of zeros
("balls”) into m; bins.) We take the n/"*~! bound for
simplicity. For a fixed cardinality proﬁle lcitl, -, |Cim, |

(over a single dimension) there are (|, ", ‘) possi-
ills-5|Cimy

bilities to assign X;-s to the clusters. This multinomial
coefficient can be bounded from above by e Hv(C:)
(see (Cover & Thomas, 1991, page 284) for an elegant
proof). Putting all the combinatorial calculations to-
gether it is possible to define a distribution P(h) over
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‘H that satisfies:

P(h) > L

(7)

We pause to stress that unlike in most applications
of the PAC-Bayesian bound, in our case the prior P
and the posterior ) are defined over slightly differ-
ent hypothesis spaces. The posterior ) is defined for
named clusterings - we explicitly specify for each Xj;
the “name” of C; it is mapped to. Whereas the prior
P is defined over unnamed partitions - we only check
the cardinality profile of C;, but we cannot recover
which Xj;-s are mapped to a given C;. Nevertheless,
the “named” distribution @) induces a distribution over
the “unnamed” space by summing up over all possi-
ble name permutations. This enables us to compute
—Eg In P(h) we need for the bound.

We now turn to bound —EgInP(h). This is done
by showing that @ is concentrated around the hy-
potheses (hard partitions) h for which the entropies of
the partitions are close to the entropies Hy(g;). By
the decomposition property we can write: P(h) =
P(h|1)..P(h|a)P(h|ym), and similarly for @. Then
“EqP(h) = -5, EqnP(hl) — Eqn P(hlyn).
and similarly for D(Q||P). The last term is easy to
compute since P is uniform over Hy)» and @Q is de-
fined for a fixed m. Therefore, —EqIn P(h|y7) =
(I, mi)Inn,. For the first d terms we need to com-
pute or at least to bound Q(h|;).

Recall that hl|; is obtained from @ by drawing a clus-
ter C; for each X; € X; independently according to
the distribution ¢;(C;|X;). Let ¢ = {%,,%}
denote an empirical cluster cardinality préﬁle aloﬁg a
dimension ¢ obtained by such assignment. Then:

Eq, H(4:) = Hu(q:) — By, D(dilla:) < Hu(gi),  (8)
where H(q;) = —201 G(ci)Ing(c;) and D(Gi|l@) =
>e; Gilci) In ql(cl . And also:

P, {H(G;) —EH(§;) > e} < e 2"/ +D" (g

The latter inequality follows from the fact that the
empirical entropy H(§;) satisfies a bounded differences
property with a constant equal to m See (Panin-
ski, 2003) for a more detailed proof of (8) and (9).
Now, if §; is the cardinality profile of h|;, then Q(h|;) =
Q(Gi) = Py {¢i}- Let e(¢;) = max{0, H(¢;) — Hu(q:)}-
Since H(G:) — Hu(¢:) < H(G:) — EH(g;) by (8), from
(9) we have: Q(G;) < e~2mie(@)*/(n(n)+1)* Ty

—EqIn P(h;) = - Z

hli€H|q

Q(hl:) In P(hl;)

~ exp [}, (niHy(Ci) +miInng) + ([1; mi) Inn,]

= > QUH@G) + minny)

hl,€H|s

>~ Q@) niHu(g)+mi ani+ni(H(G:)—Hu(g:))]
hl;€H|s

< nzHU(qz) + m; hl’n,l —|— Z qZ ;€ (QL)
h“ ele
—2n4e(d)?
< nzHU(qz) + my; h’l’nl + Z n;e qz)e<1“("1>+1)2
h‘ eHl'L

< niHy(g;) +m;lnn; + / nice” e /) +1)* g
0

This completes the proof of (4).

For (6) what remains is to compute Eg In Q(h|;). To
do so we bound In Q(§;) from above. The bound fol-
lows from the fact that if we draw n; values of C;
according to ¢;(C;|X;) the probability of the resulting
type §; is bounded from above by e~ Hu(CilXi) where
Hy(GilX;) = == 32, ., gicilwi) Ingi(cilz;) (see The-
orem 12.1.2 in (Cover & Thomas, 1991)). Thus
EoInQ(hl;) < —n;Hy(C;|X;), which together with
the identity IU(X“CZ) = HU(OZ) - HU(OZ|XZ) com-
pletes the proof of (6).

5. An Optimal Solution for a Single
Feature and Feature Ranking

In this section we show that if there is only one pa-
rameter X (i.e., d = 1) a globally optimal (from a
generalization point of view) classification rule may be
efficiently found by examining the “direct” mappings
q(Y|X). In other words, for a single parameter there
is no need for intermediate clustering. The obtained
result is used in the applications section for feature
ranking. It is shown there that the bound follows ex-
tremely well the shape of the true error of a classifier
based on a single feature and is much more precise than
mutual information or normalized correlation indices.

To prove the optimality of direct mappings we start
with the observation that for any clustering C' a clas-
sification rule ¢(Y'|X) defined as

g(yle) = Zq cla)q(yle)

achieves the same loss as the loss of a hypothesis h
based on the clustering C. Therefore, the space of all
direct mappings ¢(Y'|X) incorporates all possible solu-
tions that may be achieved via intermediate clustering.
It remains to show that the generalization power of the

(10)
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direct mappings is not worse than the generalization
power of clustering-based solutions and that the global
optimum may be efficiently found.

To analyze the generalization power of a direct map-
ping we define n,, clusters c,, one for each label y € ),
ie, Cy = {¢y : y € Y}. All instances  mapped
to a cluster ¢, obtain the label y. Thus the cluster-
ing Cy is identified with the labeling Y, in particular
q(Cy|X) = q(Y|X), and we can replace Hy(Cy) in
(4) with Hy(Y) and Iy (X;Cy) in (6) with Iy (X;Y).
Moreover, in our construction there are only (n,!) pos-
sibilities to assign the labels to the clusters and not ny*
as in the case of general clustering. In addition, the
cardinality of Cy is fixed at n, and does not change
from 1 to n, where n is the cardinality of X. This
further reduces a In(n) factor from the bound. Thus,
the definition of K in (5) is improved to:

_ 2
K, = ln[(n oy 1)] + w + In(ny!) — Ind.

(11)

(We used the tighter bound (”:”3;1) instead of n™v !
Y
on the number of partitions.) And we get:

L(Q) < L(Q) + by I )
instead of (4) and
L@ < L@+ oy

instead of (6) for K| = K, +  In(4N).

For any other clustering C' the direct mapping ¢(Y|X)
defined by (10) satisfies Iy (X;C) > Iy(X;Y) by the
information processing inequality (Cover & Thomas,
1991). Furthermore, since in H every partition cell
gets a single label, Hy (Y|C') = 0. Therefore, Hy (V) <
Hy(C) because Hy(Y) = Hy(Y) — Hy(Y|C) =
Iy(C;Y) = Hy(C) — Hy(ClY) < Hy(C). Adding
the fact that the empirical losses are equal for the
clustering-based classification and the associated di-
rect mapping we obtain that both (12) and (13) for
the direct mapping are tighter than (4) and (6) for the
corresponding clustering solution.

We can further optimize (13) by looking for an op-
timal classification rule ¢*(Y|X) that minimizes it.
The minimum is achieved by iteration of the following
self-consistent equations, where p(x,y) is the empirical
joint distribution of X and Y (the derivation is done
by taking a derivative of the bound with respect to
q(Y]X) and is omitted due to lack of space):

oylz) = g((?;))e—i(zy, P (o)) IN G (KT
(14)

qy) = =X .allz), Z@x) = Y, q(ylx), and
Iy(X;Y) = + 3, 4(ylz)Infg(y|z)/q(y)]. Although

VIu(X;Y) is not necessarily convex, in our experi-
ments the iterations always converged to a global op-

timum. It is also possible to optimize a parameter-
ized tradeoff L(Q) + $Iy(X;Y), which is convex since
both mutual information I;;(X;Y’) and the empirical
loss L(Q) are convex with respect to ¢(Y|X). A linear
search over [ then leads to a global optimum of (13).

Note that the direct mapping is no longer optimal
when there is more than one parameter. For example,
for two parameters X7, Xo, each with a cardinality
n, the conditional distribution p(Y|X7, X3) is defined
over the product space of size n?n,. This requires at
least an order of n?n, samples - a number quadratic
in n - for the direct inference to be possible. However,
from (4) and (6) it follows that with grid clustering for
relatively small cluster cardinalities m; it may be pos-
sible to achieve reliable estimations when the sample
size N is linear in n. This is further discussed in the
next section.

A related bound for generalization in prediction by
a single feature is suggested in (Sabato & Shalev-
Shwartz, 2007). Sabato and Shalev-Shwartz designed
an estimator for the loss of a prediction rule based on
the empirical frequencies gemp(y|z) = P(ylz). They

In(N/8)/In(1/5) )
VN

far from the generalization error of gey,,. Compared to
their work, a strong advantage of bounds (12) and (13)
is that they hold for any prediction rule ¢(Y|X). In
particular, they hold for the maximum likelihood pre-
diction gm;(x) = argmax, p(y|z) that performs much
better than g, in practice.

prove that their estimate is at most O(

6. A Bound for Estimation of a Joint
Probability Distribution in Grid
Clustering

For a fixed set of mappings {¢;(C;|X;)} denote by
p(Y,C) the joint probability distribution of Y and C,
where C stays for (C1,..,Cy) for brevity. Denote by
p(Y,C) its empirical counterpart. Clearly, p(Y,C) is
determined by p(Y, X1, .., X4) and the set {g;(C;|X;)}-
In this section we bound the deviation between p(Y, C)
and its empirical estimation.

Theorem 4. For any probability measure p over in-
stances and an i.4.d. sample S of size N according
to p, with a probability of at least 1 — & for all grid
clusterings Q = {q;(C;| X;)}L_, the following holds:

D(p(Y, C)|p(Y, C))

> niHy (C;) + Ks
< N (15)
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Ky=> (milnni + W)

i

” (H mi> In(N +1) — Iné. (16)

Proof. The proof is based on the law of large numbers
cited below (Cover & Thomas, 1991).

Theorem 5 (The Law of Large Numbers). Let
Z1, .., ZN be i.i.d. distributed by p(Z). Then:

P{D(p(2)|p(2)) > e} < e~ NeHZIHD 17
where |Z| stays for the cardinality of Z.

Note that the cardinality of the random variable (Y, C)
is ny [ [, ms. For the proof of theorem 4 we require that
the right hand side of (17) be smaller than P(h)d.
Application of a union bound and reversion of the

requirement on £ bounds D(p(Y,C)|[p(Y,C)) for the

case of hard partitions by ny (L, mi)ln(NH) In(P(R)9)

for all h. Since D(pl|lq) is convex in the pair (p,q)
(Cover & Thomas, 1991, Theorem 2.7.2), for soft

partitions D(p(Y, C’)||p(Y C)) is bounded from above
by EQny(H m;) In(N+1)—In(P(h)J)

~ The calculation of
—Eqg In P(h) done earlier completes the proof.

Applying the inequality relating the L; norm and the
KL divergence ||P; — Po||1 < \/2D(Py||P;) (see (Cover
& Thomas, 1991)) we obtain a bound on the varia-
tional distance.

Corollary 1. Under the conditions of theorem 4:

Ip(Y, C) — p(Y, O)| < \/2 > nng](ci) )

(18)

7. Generalization Bound for the
Logarithmic Loss in Grid Clustering

The goal of this section is to provide a
bound on the logarithmic loss —Elnp(Y|C) =
—2_,eP(y,¢)Inp(y[c). This loss corresponds to the
prediction (and compression) power of the hypothesis.
Since In is an unbounded function and p(y|c) is not
bounded from zero, we define a smoothed distribution:

w1 Pyle) +
C)l = ——
P (yle) nyy+1

)

where v > 0 is the smoothing parameter. To com-
plete the definition: p*(¢) = p(¢) and p*(y,¢) =
p*(©)p*(y|c). Instead of proving the bound for p it
will be proved for p*:

~Elnp*(Y|C) = Zp (y,0) Inp*(ylc)

= (ly, &) — p(y,0) Inp*(yle) Zp v, @) Inp*(yle)
y,C

1 AN ap A nyy+ 1
< 5lp(Y. C) = 5(¥, ) 1nL

=D by, 0)In(p(ylc) +7) + In(nyy+1) (19
Yy,C
+1 U
<eln % =3 By, &) np(yle) + In(nyy + 1)
Y,C

— A(Y|C) —l—aln% +(e+D)nlny+1),  (20)

where inequality (19) is justified by (18) and ¢ is de-
fined as half of its right hand side. H(Y'|C) stays for
the empirical estimation of the entropy of Y given C.
Equation (20) is minimized for v = niy, when we get:

—Elnp*(Y|C) < H(Y|C) +cln % +(e+1)In(e +1).
(21)

One natural application of the bound (21) to be stud-
ied in future work is to the broadly used “bag-of-
words” models, where a decision is made based on
multiple observations with the conditional indepen-
dence assumption on the observations given the label.
For example, in the bag of words model for document
classification by topic we assume that the words are in-
dependent given a topic (the label Y). There is a single
parameter X coming from the space of all words, but
the classification is based on multiple observations of
this parameter - all words in the document. Since we
have a single parameter we can resort to the direct
mappings ¢(Y|X), as in section 5. Usually, a topic
that maximizes the log likelihood of all the words in
a document is assigned. After simple algebraic ma-
nipulations this can be translated to maximization of
a sum of In[g(y|x)] over the document (up to correct
normalization by In[q(y)]), which is directly related to
the expectation bounded in (21).

A related work in this context (Shamir, Sabato &
Tishby, 2008) uses some different techniques to de-
rive a bound for |H(Y|C) — H(Y|C)|. We note that
H(Y|C) = —Elnp(Y|C) is the minimal logarithmic
loss that could be achieved if we knew the true joint
distribution p(Y,C). Thus, (Shamir et al., 2008) give
a lower bound on the performance of any prediction
model based on grid clustering, whereas (21) is an up-
per bound on the performance of the prediction strat-

egy p*(Y|C).
8. Applications

In this section we provide a series of applications of the
bounds (12) and (13) to prediction by a single feature
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Figure 1. Application of bounds (12) and (13). This figure displays an application of bounds (12) and (13) to
the four datasets discussed in text. The legend in subfigure (d) corresponds to all the graphs. The graphs contain the
training loss L(gm:), the test loss L(gm:) and the value of the bound (12) for the maximum likelihood prediction rule
¢mi(z) = argmax, p(y|z). A second triplet on the graphs corresponds to L(¢*), L(q*), and the value of the bound (13) for
the prediction rule ¢*(Y'|X) that minimizes (13). Baseline corresponds to the performance level that can be achieved by
predicting the test labels using a marginal distribution of Y on the train set. All the calculations are done per parameter.
For better visibility of the points they have been connected with lines, but the lines have no meaning.

and feature ranking, as suggested in section 5. We
use (12) to bound the generalization error of the max-
imum likelihood classification rule. For zero-one loss
the maximum likelihood rule g,,;(X) returns for each
value of x the most frequent value of Y that appeared
with that x in the sample: g, (r) = arg max, p(y|z).
We also use the iterations (14) to find a classification
rule ¢*(Y'|X) that minimizes (13).

The experiments were conducted on four datasets ob-
tained at the UCI Machine Learning Repository: Con-
traceptive Method Choice (CMC), Mushrooms, Let-
ters and Nursery. In all the experiments we use 5 ran-
dom partitions of the data into 80% train and 20% test
subsets. Table 1 provides a short summary of the main
parameters of the datasets. See (Asuncion & Newman,
2007) for a full description.

Figure 1 shows the training loss and the test loss of the
maximum likelihood classification rule g,,;(Y|X) for
the four datasets considered. We stress that the maxi-
mum likelihood rule is calculated per parameter; actu-
ally there are d maximum likelihood rules ¢,,;(Y]X;),
one for each parameter i of a given problem. Along
with the test loss we draw the value of the bound
(12). Note that the bound is quite tight and follows
the shape of the test loss remarkably well in all the
cases. The gap between the bound and the test loss is
less than 0.1.

The same figure includes an additional triplet of lines
- training loss, test loss, and the bound (13) value -
corresponding to the ¢*(Y|X) classification rule that
minimizes (13). The performance of ¢* is very close to
the performance of ¢,,; and the value of (13) is very
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Table 1. Description of the datasets: for every set we
give the number of features, d, a list of cardinalities of the
features, n;, the number of labels, n,, and a train set size,
N, which is 80% of a dataset size.

DATA SET d 14-8 Ty N
CMC 9 34, 4, 4, 15, 3 1,178
2,2, 4,4,2
MusnrooMSs 22 6, 4, 10, 2, 9, 2, 2 6,499
2,2,12, 2,5, 4,
4,9,9,1,4, 3,
5,9,6,7,2
LETTERS 16 16 FOR ALL n;-S 26 16,000
NURSERY 8 3,5, 4,4, 5 10,368
3,2,3,3

Top 1 feature subset.

[ ] Corr(X;Y)
W i(x;Y)
MBound (12)

Top 2 feature subset.
1 T T
| II
1 rmll [ImHl
Top 3 feature subset.
" -l II |
0 [l
CMC Mushrooms Letter
Dataset

Agreement Level

— -

Nursery

Figure 2. Feature Ranking. Agreement of Corr(X;Y),

I(X;Y), and the bound (12) with the test set on the top-1,
top-2, and top-3 feature subsets.

close to the value of (12) with a small advantage to
g and (12) on average.

We conclude this section by comparing the bound
(12) applied to feature ranking with the stan-
dard empirical mutual information I(X;Y) =
2wy D(@)D(Yl2) m%’”)) and the normalized correla-

p(y
tion coefficient Corr(X;Y) = ——CouXY)
Var(X)Var(Y)

We compare agreement between the top-1, top-2, and
top-3 parameter subsets suggested by the indices with
the corresponding test-based sets - Figure 2. For the
top-1 choice (the best single parameter) our bound
is clearly superior - it provides a significant level of
success in two cases where the other two indices com-
pletely fail. For the top-2 choice there is a slight ad-
vantage over the mutual information and a clear ad-
vantage over the normalized correlation. In top-3 the
bound performs similarly to the mutual information
and is still superior to the normalized correlation.

indices.

9. Discussion

This paper derives generalization bounds for multi-
classification based on grid clustering. The bounds
enable evaluation of clustering solutions based on gen-
eralization properties of a built-on classifier. We ac-
knowledge that the ([, m;)Inn, term in the bounds
limits their applicability to relatively few dimensional
problems. Nevertheless, this domain contains enough
challenges such as feature ranking, where our bounds
are especially tight, collaborative filtering and many
more. An interesting direction for future work would
be to extend the applicability of the approach to higher
dimensions by utilizing dependencies between the pa-
rameters.
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