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Abstract
Similarity matrices generated from many appli-
cations may not be positive semidefinite, and
hence can’t fit into the kernel machine frame-
work. In this paper, we study the problem of
training support vector machines with an indef-
inite kernel. We consider a regularized SVM for-
mulation, in which the indefinite kernel matrix is
treated as a noisy observation of some unknown
positive semidefinite one (proxy kernel) and the
support vectors and the proxy kernel can be com-
puted simultaneously. We propose a semi-infinite
quadratically constrained linear program formu-
lation for the optimization, which can be solved
iteratively to find a global optimum solution. We
further propose to employ an additional pruning
strategy, which significantly improves the effi-
ciency of the algorithm, while retaining the con-
vergence property of the algorithm. In addition,
we show the close relationship between the pro-
posed formulation and multiple kernel learning.
Experiments on a collection of benchmark data
sets demonstrate the efficiency and effectiveness
of the proposed algorithm.

1. Introduction

Kernel methods work by embedding the data into a high-
dimensional (possibly infinite-dimensional) feature space,
where the embedding is defined implicitly through a ker-
nel function. Evaluating the kernel function on all pairs
of data points produces a symmetric and positive semidefi-
nite (PSD) kernel matrix. Support Vector Machine (SVM)
with a positive semidefinite kernel matrix has been applied
successfully in numerous classification tasks including face
recognition, image retrieval, and micro-array gene ex-
pression data analysis (Cristianini & Shawe-Taylor, 2000;
Scḧolkopf & Smola, 2001; Tong & Chang, 2001). The PSD
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property of the kernel matrix ensures the existence of a Re-
producing Kernel Hilbert Space (RKHS) and results in a
convex formulation for SVM. Thus, a global optimal solu-
tion exists.

In practice, however, similarity matrices generated from
many applications may not be PSD (Qamra et al., 2005;
Roth et al., 2003a; Shimodaira et al., 2001). The problem
of learning with a non-PSD similarity matrix (indefinite
kernel) has been addressed by many researchers (Wu et al.,
2005; Haasdonk, 2005; Lin & Lin, 2003). One simple
and popular approach is to generate a PSD kernel matrix
by transforming the spectrum of the indefinite kernel ma-
trix (Wu et al., 2005). Several representative transforma-
tion methods includedenoisewhich neglects the negative
eigenvalues (Graepel et al., 1998; Pekalska et al., 2002),
flip which flips the sign of the negative eigenvalues (Grae-
pel et al., 1998),diffusionwhich applies matrix diffusion on
the indefinite kernel (Kondor & Lafferty, 2002), andshift
which shifts all the eigenvalues by a positive constant (Roth
et al., 2003b). One common limitation of these approaches
is that the transformation may lead to the loss of valuable
information in the data.

Several other works use the non-PSD similarity matrix as
a kernel, but they change the formulation of SVM. In (Lin
& Lin, 2003), an SMO-type method is proposed to find sta-
tionary points for the non-convex dual formulation of SVM
with a non-PSD sigmoid kernel. However, this method is
based on the assumption that a corresponding RKHS still
exists such that SVM formulations are valid. Haasdonk
(2005) interprets learning with an indefinite kernel as the
minimization of distance between two convex hulls in some
pseudo-Euclidean (pE) space. However, it assumes that the
representer theorem holds in such a pE space. Ong et al.
(2004) associate the indefinite kernels with a Reproducing
Kernel Krĕın Space (RKKS), in which a general represen-
ter theorem exists and a regularized risk functional can be
defined.

Recently, Luss and d’Aspremont (2007) propose a regu-
larized SVM formulation, in which the indefinite kernel
matrix is considered as a noisy observation of some un-
known PSD one (proxy kernel). One attractive property
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of this formulation is that the support vectors as well as
the proxy kernel can be found simultaneously. However,
the convex reformulation in (Luss & d’Aspremont, 2007)
involves a nondifferentiable objective function. To facili-
tate the calculation of the gradient, Luss and d’Aspremont
(2007) quadratically smoothed the objective function, re-
sulting in two algorithms including the projected gradient
method and the analytic center cutting plan method.

In this paper, we study the problem of training SVM with
an indefinite kernel matrix following the formulation in
(Luss & d’Aspremont, 2007). We show that this problem
can be reformulated as a semi-infinite quadratically con-
strained linear program (SIQCLP), which includes a finite
number of optimization variables with an infinite number
of constraints. We then propose an iterative algorithm to
solve this SIQCLP problem, which consists of two key
steps: computing an intermediate SVM solution by solving
a quadratically constraint linear program with a restricted
subset of constraints, and updating the subset of constraints
based on the obtained intermediate SVM solution. We fur-
ther show the convergence property of the proposed itera-
tive algorithm.

One limitation of the proposed algorithm is that the com-
putational cost for solving the quadratically constraint lin-
ear program depends on the number of constraints, which
gradually increases during the iteration. We propose to
improve the efficiency of the iterative algorithm by prun-
ing inactive constraints at each iteration. We show that
such pruning will not affect the convergence property of
the algorithm. In addition, we show the close relationship
between the proposed SIQCLP formulation and multiple
kernel learning (MKL). More specifically, the intermedi-
ate quadratically constraint linear program with a restricted
subset of constraints is shown to be equivalent to a regu-
larized version of the multiple kernel learning formulation
in (Lanckriet et al., 2004). Thus, efficient algorithms for
MKL (Lanckriet et al., 2004; Rakotomamonjy et al., 2007;
Sonnenburg et al., 2006) can be applied to solve the SIQ-
CLP problem. We have performed experiments on a col-
lection of benchmark data sets. The presented experimen-
tal results demonstrate the efficiency and effectiveness of
the proposed algorithm.

2. Background

AssumeK ∈ R
n×n is a valid kernel matrix, that is,K is

positive semidefinite (PSD). Lety = [y1, · · · , yn] ∈ R
n

be the vector of class labels, whereyi ∈ {−1,+1}. The
dual formulation of 1-norm soft margin SVM classification
is given by (Scḧolkopf & Smola, 2001):

max
α∈Rd

αT e− 1

2
αT Y KY α

subject to αT y = 0, 0 ≤ α ≤ C, (1)

whereα is the vector of Lagrange dual variables,Y =
diag(y), C is a pre-specified parameter, ande is a vector
of all ones of lengthn.

SinceK is PSD, the optimization problem in Eq. (1) is a
convex Quadratic Program (QP) (Boyd & Vandenberghe,
2004); hence a global optimal solution can be found via
standard optimization techniques such as primal-dual inte-
rior point methods (Nocedal & Wright, 1999). In practice,
however, many similarity matrices may be non-PSD (in-
definite kernels), including sigmoid kernels (Vapnik, 1995)
for various values of its parameters and hyperbolic tangent
kernels (Smola et al., 2000). Additional examples include
the protein sequence similarity measures based on Smith-
Waterman and BLAST scores.

In (Luss & d’Aspremont, 2007), the indefinite kernel is
considered as a noisy observation of some unknown PSD
kernel (proxy kernel), and the following max-min opti-
mization problem is proposed for simultaneous proxy ker-
nel learning and SVM classification:

max
α∈Rd

min
K∈Rd×d

αT e− 1

2
αT Y KY α + ρ‖K −K0‖

2
F

subject to αT y = 0, 0 ≤ α ≤ C, K � 0, (2)

whereK0 is a pre-specified indefinite kernel matrix,K is
the unknown proxy kernel matrix, andρ > 0 is the pre-
specified parameter, and|| · ||F denotes the Frobenius norm
of a matrix (Golub & Van Loan, 1996).

The objective function in Eq. (2) is convex inK and con-
cave inα, thus a global optimal solution exists. How-
ever, direct optimization of Eq. (2) in terms of bothα
andK leads to a complex optimization problem involving
nondifferentiable objective function (Luss & d’Aspremont,
2007). To facilitate the calculation of the gradient, Luss and
d’Aspremont (2007) quadratically smoothed the objective
function. Two algorithms including the projected gradient
method and the analytic center cutting plan method are pro-
posed for the proposed formulation.

3. Problem Formulation

We propose to solve the optimization problem in Eq. (2) by
first reformulating it as a semi-infinite program (SIP) (Het-
tich & Kortanek, 1993a). The SIP problem refers to opti-
mization problems that maximizes the functionalF (z) sub-
ject to a system of constraints onz, expressed asg(z, t) ≤ 0
for all t in some setB. When the objective is linear
and the constraints are quadratic, the optimization problem
is known as semi-infinite quadratically constrained linear
program (SIQCLP).

For notational simplicity, we denote the objective function
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in Eq. (2) as:

S(α,K) = αT e−
1

2
αT Y KY α + ρ‖K −K0‖

2
F . (3)

The optimal solution to the max-min problem in Eq. (2)
is a saddle-point for the functionS(α,K) subject to the
constraints in Eq. (2). Let (α∗,K∗) be optimal to Eq. (2).
For any feasibleα andK in Eq. (2), we have

S(α,K∗) ≤ S(α∗,K∗) ≤ S(α∗,K); (4)

moreover, it can be verified that

S(α,K∗) = min
K̃�0

S(α, K̃) ≤ S(α,K). (5)

By adding an additional variablet ∈ R, the max-min op-
timization problem in Eq. (2) can be reformulated into a
SIQCLP problem as follows:

max
α∈Rd, t∈R

t

subject to αT y = 0, 0 ≤ α ≤ C

t ≤ S(α,K), ∀ K � 0. (6)

The optimization problem in Eq. (6) has two optimization
variables (t andα) with an infinite number of (quadratic)
constraints, i.e., one quadratic constraintt ≤ S(α,K) for
each kernel matrixK. When there is only one (fixed) ker-
nel matrixK involved in Eq. (6), this optimization problem
reduces to a standard SVM problem.

4. Algorithm

We propose an iterative algorithm to solve Eq. (6), which is
guaranteed to converge to a global optimum. The algorithm
is closely related to thebundle method(Hiriart-Urruty &
Lemarechal, 1993; Teo et al., 2007).

The optimization problem in Eq. (6) maximizes its objec-
tive function with respect to two variablest andα with an
infinite number of (quadratic) constraints. We approach
the optimum by optimizing the variablest and α with a
restricted subset of the infinite number of constraints, and
then updating the constraint subset based on the obtained
suboptimalt andα in an iterative manner. It is similar to
the strategy presented in (Sonnenburg et al., 2006). The al-
gorithm belongs to a family of algorithms for solving gen-
eral SIP problems called theexchange methods, in which
the constraints are exchanged at each iteration. The global
optimality property of the final solution after convergence
is guaranteed (Hettich & Kortanek, 1993b).

For a restricted subset of constraints, called alocalization
set of kernel matricesK = {Ki}

p
i=1

, the intermediate sub-
optimalt andα can be computed by solving the following

optimization problem:

max
α∈Rd, t∈R

t

subject to αT y = 0, 0 ≤ α ≤ C

t ≤ S(α,Ki), i = 1, · · · , p. (7)

This corresponds to a quadratically constrained linear pro-
gram (QCLP) withp quadratic constraints. The optimiza-
tion problem is often called therestricted master problem,
and the obtained suboptimal solution pair (α, t) is calledin-
termediate solution. Note that this QCLP problem can be
solved efficiently using general optimization solvers.

To approach the optimum of the SIQCLP problem from a
given intermediate solution pair (t, α), we find the next con-
straint with the maximum violation, i.e., the kernel matrix
K that minimizesS(α,K). The optimalK can be com-
puted by solving the following minimization problem:

min
K

S(α,K) = min
K

ρ‖K −K0‖
2
F −

1

2
αT Y KY α. (8)

If the optimalK∗ to Eq. (8) satisfiest ≤ S(α,K∗), then
the current intermediate solution pair (t, α) is optimal for
the optimization problem in Eq. (6). Otherwise,K∗ is
added into the localization setK. The intermediate solu-
tion pair (t, α) is updated by solving the restricted master
problem based on the updatedK. We repeat this iterative
process until convergence. The final solution is guaranteed
to be globally optimal (Sonnenburg et al., 2006).

It can be shown (Luss & d’Aspremont, 2007) that the opti-
mal K∗ to the optimization problem in Eq. (8) for a fixed
α is given by:

K∗ =
(

K0 + Y ααT Y/(4ρ)
)

+
. (9)

HereX+ refers to the positive part of a symmetric matrix
X, i.e., X+ =

∑

i max(0, λi)xix
T
i , whereλi andxi are

thei-th eigenvalue and eigenvector ofX.

Based on the discussions above, we propose an iterative
algorithm to solve the optimization in Eq. (6). The pseudo-
code is presented in Algorithm 1. Note that the algorithm
searches for a quadratic constraint (specified byK∗) with
the maximum violation in step1, then updates the inter-
mediate solution (t, α), which is repeated iteratively until
convergence. When no more constraints with violation can
be found, i.e., all constraints are satisfied, Algorithm 1 con-
verges. In practice, we determine the convergence by com-
paring an upper and lower bound of the objective as de-
scribed in the next section.

4.1. Convergence Analysis

We analyze the convergence property of Algorithm 1. Re-
call that Algorithm 1 alternates between the updating of the
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Algorithm 1 Proposed Algorithm
Input: Indefinite kernelK0 and class label vectory;
Output: α andK;
Initialization: (t0, α0)← maxα S(α, (K0)+);
Initialization: i← 1,K = ∅;
Do

Step1: computeK∗ from Eq. (9) andKi ← K∗;
if S(αi−1,Ki) ≥ ti−1 then exit the loop;

elseupdate localization setK← K ∪ {Ki};
end if
Step2: compute (ti, αi) by solving Eq. (7);
i← i + 1;

until convergence

localization setK (step1) and the updating of the interme-
diate solution pair (t, α) (step2). At the i-th iteration, a
new kernel matrixKi is computed from Eq. (9) based on
αi−1. That is,

S(αi−1,Ki) = min
K�0

S(αi−1,K). (10)

With the addition ofKi, the localization set is updated as
K = {Kj}

i
j=1. We denote

l−i = max
j≤i

S(αj−1,Kj). (11)

Let (ti, αi) be the solution pair to the optimization problem
in Eq. (7) after thei-th iteration. Denoteu+

i = ti. That is,

αi = argmax
α

(

min
K∈K

S(α,K)

)

, (12)

u+

i ≡ ti = min
K∈K

S(αi,K) = max
α

min
K∈K

S(α,K), (13)

whereK is the updated restricted localization set.

The following theorem shows that Algorithm 1 makes con-
tinuous progress towards the optimal solution:

Theorem 4.1. Let l−i and u+

i be defined in Eq. (11) and
Eq. (13), respectively. Let (α∗, t∗) be the optimal solution
pair to the optimization problem in Eq. (6). Then

u+

i ≥ t∗ ≥ l−i . (14)

Moreover, the sequence{u+

i } is monotonically decreasing,
and the sequences{l−i } is monotonically increasing.

Proof. For any feasibleα in Eq. (6), we have

min
K∈K

S(α,K) ≥ min
K�0

S(α,K). (15)

It follows that the inequality above also holds for their cor-
responding pointwise maximum with respect toα. From
Eq. (13) and the equality below

t∗ = max
α∈Rd

min
K�0

S(α,K), (16)

we haveu+

i ≥ t∗. On the other hand, it follows from
Eq. (10) that

Kj = arg min
K�0

S(αj−1,K), j = 1, · · · , i. (17)

Thus{(αj−1, S(αj−1,Kj)), j = 1, · · · , i} is a set of fea-
sible solution pairs to the optimization problem in Eq. (6).
Since(α∗, t∗) is the optimal solution pair to Eq. (6), we
havet∗ ≥ S(αj−1,Kj), for j = 1, · · · , i. If follows from
Eq. (11) thatt∗ ≥ l−i .

From Eq. (13), we have

u+

i = max
α

min
K∈K

S(α,K). (18)

Thus, the sequence{u+

i } is monotonically decreasing, as
the size of localization setK monotonically increases. It
follows from Eq. (11) that{l−i } is monotonically increas-
ing. This completes the proof of the theorem.

Based on the result in Theorem 4.1, we can use the gap be-
tweenu+

i andl−i to trace the convergence of Algorithm 1.
When this gap is smaller that a pre-specified tolerance, we
stop the algorithm.

4.2. Pruning Inactive Constraints

In Algorithm 1, a quadratically constraint linear program
(QCLP) is involved at each iteration (step2). The com-
putational cost for solving QCLP grows with the number
of quadratic constraints, which increases by one after each
iteration. We show that at each iteration, many (inactive)
quadratic constraints can be pruned, while retaining the
convergence property of the algorithm.

Assume that(αi, ti) is the optimal solution pair at thei-th
iteration withK

i = {Kj}
p
j=1

as the localization set. We
further partitionKi into two subsets asKi = K

i
act ∪K

i
ina

such that

ti = S(αi,K), ∀ K ∈ K
i
act, (19)

and

ti < S(αi,K), ∀ K ∈ K
i
ina, (20)

where the equalities in Eq. (19) and inequalities in Eq. (20)
are calledactive and inactive constraints (Nocedal &
Wright, 1999), respectively. LetK∗ be the optimal ma-
trix given in Eq. (9) withα = αi. In Algorithm 1, we use
K

i∪K∗ as the new localization set. We propose to improve
the efficiency by removing the inactive constraints from the
optimization and updating the new localization setK

i+1 as
K

i+1 = K
i
act ∪K∗. Let (αi+1, ti+1) be the optimal solu-

tion pair at the(i + 1)-th iteration with the updatedKi+1

as the localization set. To show the convergence, we need
to proveti+1 ≤ ti, as summarized below:
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Lemma 4.1. Let ti and ti+1 be defined as above. Then
ti+1 ≤ ti.

Proof. Prove by contradiction. Assume thatti+1 ≤ ti
doesn’t hold, i.e.,ti+1 > ti.

Let (α̃, t̃) be the optimal solution pair to the optimization
problem in Eq. (7) withKi

act as the localization set. It is
clear thatti+1 ≤ t̃, asKi

act ⊂ K
i+1 = K

i
act ∪K∗. Thus

t̃ ≥ ti+1 > ti.

For anyK ∈ K
i
act, we haveS(α̃,K) ≥ t̃. Sincet̃ > ti,

the following holds for anyK ∈ K
i
act:

S(α̃,K) ≥ t̃ > ti = S(αi,K). (21)

For anyη ∈ (0, 1), letβ = ηα̃+(1− η)αi. SinceS(α,K)
is concave onα andti = S(αi,K) for anyK ∈ K

i
act from

Eq. (19), the following holds for anyK ∈ K
i
act:

S(β,K) ≥ ηS(α̃,K) + (1− η)S(αi,K) > ti. (22)

Recall that for anyK ∈ K
i
ina, we haveS(αi,K) > ti.

SinceS(α,K) is continuous onα, andK
i
ina is a finite set,

there exists anǫ ∈ (0, 1) sufficiently close to zero such that

S(βǫ,K) > ti, ∀ K ∈ K
i
ina, (23)

whereβǫ = ǫα̃ + (1− ǫ)αi.

It follows from Eqs. (22) and (23) that

t̂ = min
K∈Ki

S(βǫ,K) > ti. (24)

Since (βǫ, t̂) is a feasible solution pair to Eq. (7) withKi as
the localization set, Eq. (24) contradicts with our assump-
tion that (αi, ti) is the optimal solution pair to Eq. (7). This
completes the proof of the lemma.

Lemma 4.1 shows that the upper bound defined in Eq. (13)
with the inactive constraints pruned as above decreases
monotonically. As the lower bound defined in Eq. (11) al-
ways increases monotonically, the proposed pruning strat-
egy retains the convergence property in Theorem 4.1.

5. Relationship with Multiple Kernel
Learning

We show the close relationship between the proposed SIQ-
CLP formulation in Eq. (6) and the multiple kernel learning
formulation in (Lanckriet et al., 2004).

For a given set of kernel matrices{Ki}
p
i=1

and a class label
vectory, Lanckriet et al. (2004) propose to learn an optimal
convex combination of thep pre-specified kernel matrices

by solving the following optimization problem:

min
{θi}

max
α∈Rd

αT e−
1

2
αT Y

(

p
∑

i=1

θiKi

)

Y α

subject to
p
∑

i=1

θi tr(Ki) = 1,

αT y = 0, 0 ≤ α ≤ C, (25)

whereY = diag(y), andC is the pre-specified parameter.

Recall thatK0 is a indefinite kernel matrix. For each of the
given PSD kernel matrixKi, we denote

µi = ‖Ki −K0‖
2
F , i = 1, · · · , p, (26)

whereµi measures the distance betweenKi and K0 in
terms of Frobenius norm. Consider a regularized version
of the optimization problem in Eq. (25) given by:

min
{θi}

max
α∈Rd

αT e−
1

2
αT Y

(

p
∑

i=1

θiKi

)

Y α + ρ

p
∑

i=1

θiµi

subject to
p
∑

i=1

θi = 1, αT y = 0, 0 ≤ α ≤ C, (27)

whereρ is the pre-specified parameter as in Eq. (6). The
optimization problem in Eq. (27) computes an optimal lin-
ear combination of thep pre-specified kernel matrices by
maximizing the margin for SVM classification, while pe-
nalizing kernels with a large deviation fromK0.

The following theorem shows the equivalence relationship
between the regularized MKL problem in Eq. (27) and the
SIQCLP formulation in Eq. (7).

Theorem 5.1. Let {Ki}
p
i=1

be a set of pre-specified PSD
kernel matrices. Then the optimization problem in Eq. (7)
is equivalent to the one in Eq. (27).

Proof. Since all constraints in Eq. (27) are linear and the
objective is convex on{θi} and concave onα, the min-
imization and the maximization in Eq. (27) can be ex-
changes. This leads to the following optimization problem:

max
α∈Rd

min
K�0

αT e−
1

2
αT Y KY α + ρ

p
∑

i=1

θiµi

= max
α∈Rd

min
∑

θi=1
αT e−

1

2
αT Y

p
∑

i=1

θiKiY α + ρ

p
∑

i=1

θiµi

= max
α∈Rd

min
∑

θi=1

(

p
∑

i=1

θiti

)

, (28)

whereti is defined as

ti =

(

αT e−
1

2
αT Y KiY α + ρµi

)

. (29)
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Figure 1.Convergence of the proposed algorithms without the
pruning strategy applied (top graph) and with the pruning strat-
egy applied (bottom graph).

From Eq. (28) and Eq. (29), the optimization problem in
Eq. (27) can be reformulated as:

max
α∈Rd, t∈R

t

subject to αT y = 0, 0 ≤ α ≤ C,

t ≤ αT e−
1

2
αT Y KiY α + ρµi,

i = 1, · · · , p,

which is equivalent to the SIQCLP formulation given in
Eq. (7). We complete the proof of this theorem.

The equivalent result in Theorem 5.1 implies that our pro-
posed SIQCLP formulation in Eq. (6) can be solved by
recycling existing efficient MKL implementations (Rako-
tomamonjy et al., 2007; Sonnenburg et al., 2006).

6. Experiments

We experimentally evaluate the convergence property of
the proposed algorithms. We also compare the proposed al-
gorithms with other representative ones using a collection
of benchmark data sets.

6.1. Experimental Setup

We use several benchmark data sets from the UCI repos-
itory (Newman et al., 1998) including Sonar, Ionosphere,

Breast Cancer, and Diabetes, as well as USPS (Hull, 1994)
and Heart1. For USPS, we select two classes correspond-
ing to two digits3 and5, and randomly select600 samples
for each digit.

In our simulation study, we first generate Gaussian ker-
nels from the data with the parameter value estimated
via cross-validation and then construct indefinite kernels
through perturbation. More specifically, we randomly gen-
erate a matrixE with zero mean and identity covariance
matrix, and then applyξÊ as the perturbation, wherêE =
(E + ET )/2 andξ > 0 is small constant. We setC = 1 in
SVM. The value ofρ is estimated via cross-validation.

6.2. Convergence

In this experiment, we empirically evaluate the conver-
gence property of the proposed algorithms with and with-
out pruning. We also investigate the number of kernel ma-
trices involved when the pruning strategy is employed. We
use the sonar data set for this study, and the perturbation
matrix is set to be0.1Ê.

The results are presented in Figure 1. The top graph in Fig-
ure 1 shows the convergence of the upper bound as well as
the lower bound of the objective value when the algorithm
without the pruning strategy is applied. The bottom graph
shows the convergence result for the case when the pruning
strategy is applied. We can observe from the figure that the
upper bound and lower bound curves approach each other
gradually during the iteration. More specifically, the up-
per bound monotonically decreases, while the lower bound
monotonically increases, both approaching the optimal ob-
jective value. This is consistent with our convergence re-
sults in Section 4.1. Interestingly, our results show that the
proposed algorithms with or without the pruning strategy
applied result in a similar convergent rate. We further ob-
serve that the gap between the upper and lower bound is
less that10−2 after about150 iterations, and it takes about
600 iterations to attain a gap smaller than10−5.

Figure 2 shows the number of kernels (the size of the lo-
calization set) involved at each iteration. We can observe
from the figure that with the pruning strategy, the number of
kernels involved in the algorithm stabilizes around a small
constant. In contrast, this number increases gradually when
the pruning strategy is not applied. These results demon-
strate the advantage of the proposed pruning strategy.

We show in Figure 3 the generalization performance (mea-
sured by classification accuracy) of the proposed algorithm
with pruning at each of the first 70 iterations. We observe a
large variation at the first few iterations, while the accuracy
becomes more stable after about 40 iterations. We further
run the algorithm until convergence and the resulting accu-

1http://www.is.umk.pl/projects/datasets-stat.html#heart
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Data Set Size λ− num. λ+ num. λmin λmax |λmax/λmin| Denoise Flip Shift SVM Indefinite SVM

Sonar 208 57.41 150.62 −1.36 18.42 13.55 78.57 79.52 78.10 72.86 80.95
Ionosphere 351 169.62 181.45 −25.50 94.49 3.71 75.57 71.43 71.41 68.00 77.43

Breast Cancer 683 323.21 359.82 −3.51 390.52 111.26 95.38 95.62 95.38 89.54 95.36
Heart 270 125.57 144.71 −10.96 42.93 3.92 71.02 67.28 65.42 65.43 72.22

USPS-3-5 1200 520.12 680.31 −3.54 81.99 23.16 96.25 96.88 95.63 96.11 96.81
Diabetes 768 381.22 385.18 −3.93 8.13 2.06 68.83 64.28 62.98 66.23 70.08

Table 1.Comparison of the proposed algorithm with other representative algorithms in terms of classification accuracy (in percent-
age). All values shown in the table are the averaged ones over 10 partitions of the data into training and test sets with a ratio4 : 1.
λ− num (λ+ num) denotes the number of negative (positive) eigenvalues;λmin (λmax) denotes the minimum (maximum) eigenvalue;
|λmax/λmin| denotes the ratio of the absolute values ofλmax andλmin. SVM refers to applying indefinite kernel in the SVM formu-
lation directly, while indefinite SVM refers to our proposed algorithm with the pruning strategy applied.

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Iteration

N
um

be
r o

f k
er

ne
ls

 

 
Without pruning
With pruning

Figure 2.The number of kernel matrices involved for the pro-
posed algorithms with and without the pruning.

racy is about 76%. We obtain a similar observation from
other data sets. This implies that an early-stopping strategy
could be employed for the proposed algorithm.
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Figure 3.Generalization performance (measured by classification
accuracy in percentage) of the proposed algorithm with pruning.

6.3. Classification Performance

In this experiment, we compare our proposed algo-
rithms (Indefinite SVM) with other representative ones in-
cluding Denoise, Flip, Shift, and SVM using indefinite ker-
nels in terms of classification accuracy. The presented ex-

perimental results are averaged over 10 random partitions
of the data into a training and a test set with a ratio4 : 1.

The experimental results are summarized in Table 1. We
also report the maximum and minimum eigenvalues of the
indefinite kernel matrix in the table. We can observe from
the table that Indefinite SVM is competitive with all other
algorithms in most cases. It outperforms all other algo-
rithms on the Sonar, Ionosphere, Heart, and Diabetes data
sets, where the perturbed kernel matrix has a relatively
small ratio|λmax/λmin|. For the other two data sets in-
cluding Breast Cancer and USPS-3-5, where the perturbed
kernel matrix has a relatively large ratio|λmax/λmin|, In-
definite SVM is comparable to the best among all other al-
gorithms. These results demonstrate the effectiveness of
the proposed learning algorithm, especially when the in-
definite kernel matrix is highly non-PSD. A similar trend
has been observed in (Luss & d’Aspremont, 2007).

7. Conclusion

In this paper, we study the problem of training SVM
with an indefinite kernel matrix following the formula-
tion in (Luss & d’Aspremont, 2007). We propose a semi-
infinite quadratically constrained linear program formula-
tion, which can be solved iteratively. The algorithm alter-
nates between the computation of an intermediate SVM so-
lution by solving a quadratically constraint linear program
with a subset of constraints, and the computation of the
new constraint set based on the obtained intermediate SVM
solution. We further propose to improve the efficiency of
the iterative algorithm by pruning inactive constraints at
each iteration. We show that such pruning will not affect
the convergence property of the algorithm. In addition, we
show the close relationship between the proposed SIQCLP
formulation and multiple kernel learning. The presented
analysis provides new insights into the nature of this learn-
ing formulation.

We have performed a simulation study using a collection
of benchmark data sets. Our results verify the conver-
gence property of the proposed algorithms. Our empiri-
cal results show that the proposed algorithms with or with-
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out the pruning strategy applied result in a similar conver-
gent rate, while a much smaller number of kernel matri-
ces are involved when the pruning strategy is applied. Our
results also demonstrate the favorable performance of the
proposed algorithms in terms of classification accuracy in
comparison with several other representative algorithms.
Our future works include the analysis of the convergence
rate of the proposed algorithms similar to the analysis con-
ducted in (Teo et al., 2007), the estimation of the regulariza-
tion parameterρ, and the application of the proposed algo-
rithms to real-world applications involving indefinite ker-
nels such as protein sequence and structure analysis based
on various sequence/structure alignment measures.

Acknowledgments

This research is sponsored in part by funds from the Ari-
zona State University and the National Science Foundation
under Grant No. IIS-0612069.

References
Boyd, S., & Vandenberghe, L. (2004).Convex optimization. Cam-

bridge University Press.

Cristianini, N., & Shawe-Taylor, J. (2000).An introduction
to support vector machines and other kernel-based learning
methods. Cambridge University Press.

Golub, G. H., & Van Loan, C. F. (1996).Matrix computations.
Johns Hopkins University Press. 3 edition.

Graepel, T., Herbrich, R., Bollmann-Sdorra, P., & Obermayer, K.
(1998). Classification on pairwise proximity data.NIPS(pp.
438–444).

Haasdonk, B. (2005). Feature space interpretation of svms with
indefinite kernels.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27, 482–492.

Hettich, R., & Kortanek, K. O. (1993a). Semi-infinite program-
ming: theory, methods, and applications.SIAM Review, 35,
380–429.

Hettich, R., & Kortanek, K. O. (1993b). Semi-infinite program-
ming: Theory, methods, and applications.SIAM Review, 35,
380–429.

Hiriart-Urruty, J.-B., & Lemarechal, C. (1993).Convex analysis
and minimization algorithms II. Springer.

Hull, J. J. (1994). A database for handwritten text recognition
research.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16, 550–554.

Kondor, R. I., & Lafferty, J. D. (2002). Diffusion kernels on
graphs and other discrete input spaces.ICML (pp. 315–322).

Lanckriet, G. R. G., Cristianini, N., Bartlett, P. L., Ghaoui, L. E.,
& Jordan, M. I. (2004). Learning the kernel matrix with
semidefinite programming.Journal of Machine Learning Re-
search, 5, 27–72.

Lin, H.-T., & Lin, C.-J. (2003). A study on sigmoid kernels for
svm and the training of non-psd kernels by smo-type methods.
Technical Report, National Taiwan University.

Luss, R., & d’Aspremont, A. (2007). Support vector machine
classification with indefinite kernels.NIPS.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998). UCI
repository of machine learning databases.

Nocedal, J., & Wright, S. J. (1999).Numerical optimization
springer series in operations research. Springer.

Ong, C. S., Mary, X., Canu, S., & Smola, A. J. (2004). Learning
with non-positive kernels.ICML.

Pekalska, E., Paclik, P., & Duin, R. P. W. (2002). A generalized
kernel approach to dissimilarity-based classification.Journal
of Machine Learning Research, 2, 175–211.

Qamra, A., Meng, Y., & Chang, E. Y. (2005). Enhanced percep-
tual distance functions and indexing for image replica recog-
nition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27, 379–391.

Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2007).
More efficiency in multiple kernel learning.ICML.

Roth, V., Laub, J., Kawanabe, M., & Buhmann, J. M. (2003a).
Optimal cluster preserving embedding of nonmetric proximity
data. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 25, 1540–1551.

Roth, V., Laub, J., Kawanabe, M., & Buhmann, J. M. (2003b).
Optimal cluster preserving embedding of nonmetric proximity
data. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 25, 1540–1551.
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