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Abstract

We address the problem of learning classi-
fiers for a large number of tasks. We derive
a solution that produces resampling weights
which match the pool of all examples to the
target distribution of any given task. Our
work is motivated by the problem of predict-
ing the outcome of a therapy attempt for a
patient who carries an HIV virus with a set
of observed genetic properties. Such predic-
tions need to be made for hundreds of possi-
ble combinations of drugs, some of which use
similar biochemical mechanisms. Multi-task
learning enables us to make predictions even
for drug combinations with few or no train-
ing examples and substantially improves the
overall prediction accuracy.

1. Introduction

In multi-task learning one seeks to solve many clas-
sification problems in parallel. Some of the classifi-
cation problems will likely relate to one another, but
one cannot assume that the tasks share a joint con-
ditional distribution of the class label given the input
variables. The challenge of multi-task learning is to
come to a good generalization across tasks: each task
should benefit from the wealth of data available for the
entirety of tasks, but the optimization criterion needs
to remain tied to the individual task at hand.

Our work is motivated by the problem of predicting the
therapeutic success of a given combination of drugs for
a given strain of the Human Immunodeficiency Virus-1
(HIV-1). HIV is associated with the acquired immun-
odeficiency syndrome (AIDS). Being a disease that
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claimed more than 25 million lives since 1981, AIDS is
one of the most destructive epidemics in recorded his-
tory. Currently there are more than 33 million people
infected with HIV (UNAIDS/WHO, 2007).

Antiretroviral therapy is hampered by HIV’s strong
ability to mutate and develop viral quasi-species that
can quickly be dominated by resistant variants. In or-
der to decide on a course of therapy, virus samples
taken from each individual patient are tested for a
set of resistance-relevant mutations. Given this set of
identified mutations together with the patient’s med-
ication history, a medical practitioner needs to decide
which combination of drugs to administer. The large
number of genetic mutations and the wide array of
available drug combinations render the process of pre-
dicting the success of a potential therapy difficult, at
best, for a human doctor.

Historic treatment records of HIV patients cover only
a small portion of all possible drug combinations. For
many of these combinations, only few treatments have
been recorded. This scarceness of training data pre-
cludes separate training of a powerful prediction model
for each combination from only records of treatments
which used the same drug combination. Distinct com-
binations can have similar effects when they intersect
in jointly contained drugs, or when they include drugs
that use similar mechanisms to affect the virus. There-
fore, in order to predict the outcome of a given drug
combination, it is desirable to exploit data from re-
lated combinations and thereby achieve generalization
over both virus mutations and combinations of drugs.

We contribute a new multi-task learning model that
can handle arbitrarily different data distributions for
different tasks without making assumptions about the
data generation process or the relation between tasks.
We show that by appropriately weighting each in-
stance in the pool of all examples, one can match the
distribution that governs the pool of examples of all
tasks to each of the single task distributions. We show
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how appropriate weights can be obtained by discrimi-
nating the labeled sample for a given task against the
pooled sample.

The rest of this paper is structured as follows. After
formalizing the problem setting in Section 2, we review
related transfer learning models in Section 3. We de-
vise the model for multi-task learning by distribution
matching in Section 4. In Section 5 we describe the
data sets and the experimental setting and report on
experimental results. Section 6 concludes.

2. Problem Setting

In supervised multi-task learning, each of several
tasks z is characterized by an unknown joint dis-
tribution p(x, y|z) of features x and label y given
the task z. The joint distributions of different
tasks may differ arbitrarily but usually some tasks
have similar distributions. A training sample D =
〈(x1, y1, z1), . . . , (xm, ym, zm)〉 collects examples from
all tasks. There may be tasks with no data. For each
example, input attributes xi, class label yi, and the
originating task zi are known. The entire sample D is
governed by the mixed joint density p(z)p(x, y|z). The
prior p(z) specifies the task proportions.

The goal is to learn a hypothesis fz : x 7→ y for each
task z. This hypothesis fz(x) should correctly predict
the true label y of unseen examples drawn from p(x|z)
for all z. That is, it should minimize the expected loss

E(x,y)∼p(x,y|z)[`(fz(x), y)]

with respect to the unknown joint distribution
p(x, y|z) for each individual z.

This abstract problem setting models the HIV therapy
screening application as follows. Input x describes the
genotype of the virus that a patient carries, together
with the patient’s treatment history. Genotype infor-
mation is encoded as a binary vector indicating the
presence and absence of each out of a predefined set
of resistance-relevance mutations, respectively. The
treatment history can be represented as a binary vec-
tor indicating which drugs have been administered
over the course of past treatments. A candidate com-
bination of drugs plays the role of the task z: each task
has an associated binary vector z that indicates a set
of drugs that a medical practitioner is currently giv-
ing consideration. The binary class label y indicates
whether the therapy will be successful.

In addition to training data, we may have prior knowl-
edge on the similarity of tasks which is encoded in a
kernel function k(z, z′). Prediction models for differ-
ent drug combinations can be similar because the sets

of drugs intersect (we will later refer to this as the
drug feature kernel), or because similar sets of muta-
tions in the virus render the drugs in the set ineffective
(mutation table kernel).

3. Prior Work

One obvious strategy for multi-task learning is to learn
independent models for each target task t by mini-
mizing an appropriate loss function on the portion of
Dt = {(xi, yi, zi) ∈ D : zi = t}. The other extreme
could be a one-size-fits-all model f∗(x) trained on the
entire sample.

In many applications, task-level descriptions or prior
knowledge on task similarity encoded in a kernel are
available. Bonilla et al. (2007) study an extension of
the one-size-fits-all model and find that training with a
kernel defined as the multiplication of an input feature
kernel and a task-level kernel outperforms a gating net-
work. Task-level features have also been utilized for
task clustering and for a task-dependent prior on the
model parameters (Bakker & Heskes, 2003).

Another simple extension to the one-size-fits-all model
would be to train a model for a target task from all
data with weighted examples from other tasks, using
one fixed uniform weight for each task. Such a model
is described by Wu and Dietterich (2004).

Our work is inspired by learning under covariate shift.
In the covariate shift setting the marginals ptrain(x)
and ptest(x) of training and test distributions dif-
fer, but the conditionals are identical ptrain(y|x) =
ptest(y|x). If training and test distributions were
known, then the loss on the test distribution could be
minimized by weighting the loss on the training distri-
bution with an instance-specific factor. Shimodaira
(2000) illustrates that the scaling factor has to be
ptest(x)

ptrain(x) . Bickel et al. (2007) derive a discriminative
expression for this marginal density ratio that can be
estimated – without estimating the potentially high-
dimensional densities of training and test distributions
– by discriminating training against test data.

Hierarchical Bayesian models for multi-task learning
are based on the assumption that task-specific model
parameters are drawn from a common prior. The
task dependencies are captured by estimating the com-
mon prior. Yu et al. (2005) impose a normal-inverse
Wishart hyperprior on the mean and covariance of
a Gaussian process prior that is shared by all task-
specific regression functions. Mean and covariance of
the Gaussian process are estimated using the EM al-
gorithm. A Dirichlet process can serve as prior in a hi-
erarchical Bayesian model and cluster the tasks (Xue
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et al., 2007); all tasks in one cluster share the same
model parameters. Evgeniou and Pontil (2004) derive
a kernel that is based on a hierarchical Bayesian model
with Gaussian prior (covariance matrix is scalar) on
the parameters of a regularized regression.

Larder et al. (2007) tackle the problem of predicting
virological response to a given HIV drug combination
with neural networks. Lathrop and Pazzani (1999) ap-
ply combinatorial optimization to the same problem
using features extracted from the viral genotype and
the drugs in the combination. Altmann et al. (2007)
approach the problem by including various phenotypic
information and an estimate of future evolutionary de-
velopment of the virus in the learning process.

4. Multi-Task Learning by Distribution
Matching

In learning a classifier ft(x) for target task t, we seek
to minimize the loss function with respect to p(x, y|t).
Simply pooling the available data for all tasks would
create a sample governed by

∑
z p(z)p(x, y|z). Our

approach now is to create a task-specific resampling
weight rt(x, y) for each element of the pool of exam-
ples. The sampling weights match the pool to the
target distribution p(x, y|t). The weighted sample is
governed by the correct target distribution, but is still
larger as it draws from the sample pool for all tasks.

Instead of sampling from the pool, one can weight
the loss incurred by each instance by the resampling
weight. The expected weighted loss with respect to the
mixture distribution that governs the pool equals the
loss with respect to the target distribution p(x, y|t).
Equation 1 defines the resampling weights.

E(x,y)∼p(x,y|t)[`(f(x, t), y)] (1)
= E(x,y)∼∑

z p(z)p(x,y|z) [rt(x, y)`(f(x, t), y)]

In the following, we will show that

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)

satisfies Equation 1. Equation 2 expands the ex-
pectation and introduces a fraction that equals one.
Equation 3 expands the sum over z in the numerator
to run over the entire expression because the integral
over (x, y) is independent of z. Equation 4 is the ex-
pected loss over the distribution of all tasks weighted
by p(x,y|t)∑

z p(z)p(x,y|z) .

E(x,y)∼p(x,y|t)[`(f(x, t), y)] (2)

=
∫ ∑

z p(z)p(x, y|z)∑
z′ p(z′)p(x, y|z′)p(x, y|t)`(f(x, t), y)dxdy

=
∫ ∑

z

(
p(z)p(x, y|z)

p(x, y|t)∑
z′ p(z′)p(x, y|z′) (3)

`(f(x, t), y)
)

dxdy

= E(x,y)∼∑
z p(z)p(x,y|z) (4)[
p(x, y|t)∑

z′ p(z′)p(x, y|z′)`(f(x, t), y)
]

Equation 4 signifies that we can train a hypothesis for
task t by minimizing the expected loss over the distri-
bution of all tasks weighted by rt(x, y). This amounts
to minimizing the expected loss with respect to the
target distribution p(x, y|t).
Equation 4 leaves us with the problem of estimat-
ing the joint density ratio rt(x, y) = p(x,y|t)∑

z p(z)p(x,y|z) .
One might be tempted to train density estimators for
p(x, y|t) and

∑
z p(z)p(x, y|z). However, obtaining es-

timators for potentially high-dimensional densities is
unnecessarily difficult because ultimately only a scalar
weight is required for each example.

4.1. Discriminative Density Ratio Model

In this section, we derive a discriminative model that
directly estimates the resampling weights rt(x, y) =

p(x,y|t)∑
z p(z)p(x,y|z) without estimating the individual den-

sities. We reformulate the density ratio p(x,y|t)∑
z p(z)p(x,y|z)

in terms of a conditional model p(t|x, y). This con-
ditional has the following intuitive meaning: Given
that an instance (x, y) has been drawn at random from
the pool ∪zDz = D of samples for all tasks (includ-
ing Dt); the probability that (x, y) originates from Dt

is p(t|x, y). The following equations assume that the
prior on the size of the target sample is greater than
zero, p(t) > 0. In Equation 6 Bayes’ rule is applied
twice and in Equation 7 p(x, y) and p(z) are canceled
out. Equation 8 follows by

∑
z p(z|x, y) = 1.

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)
(5)

=
p(t|x, y)p(x, y)

p(t)
1∑

z p(z)p(z|x,y)p(x,y)
p(z)

(6)

=
p(t|x, y)

p(t)
∑

z p(z|x, y)
(7)

=
p(t|x, y)

p(t)
(8)
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The significance of Equation 8 is that it shows how the
resampling weights rt(x, y) = p(x,y|t)∑

z p(z)p(x,y|z) can be de-
termined without knowledge of any of the task densi-
ties p(x, y|z). The right hand side of Equation 8 can be
evaluated based on a model p(t|x, y) that discriminates
labeled instances of the target task against labeled in-
stances of the pool of examples for all tasks. Intu-
itively, p(t|x, y) characterizes how much more likely
(x, y) is to occur in the target distribution than it is to
occur in the mixture distribution of all tasks. Instead
of potentially high-dimensional densities p(x, y|t) and
p(x, y|z), a conditional distribution with a single vari-
able needs to be modeled. One can apply any proba-
bilistic classifier to model this conditional distribution.

4.2. Soft-Max Model for Density Ratio
Estimation

We model p(t|x, y) of Equation 8 for all tasks jointly
with a soft-max model (the multi-class generalization
of the logistic model) with model parameters v, dis-
played in Equation 9. The parameter vector v is a
concatenation of task-specific subvectors vz, one for
each task z. With this model an estimate for p(t|x, y)
is given by p(z = t|x, y,v); this is the evaluation of the
soft-max model with respect to task t.

p(z|x, y,v) =
exp(vT

z Φ(x, y))∑
z′ exp(vT

z′Φ(x, y))
(9)

Equation 9 requires a problem-specific feature map-
ping Φ(x, y). Without loss of generality we define
this mapping for binary labels y ∈ {+1,−1} in Equa-
tion 10; δ is the Kronecker delta. In the absence of
prior knowledge about the similarity of classes, input
features x of examples with different class labels y are
mapped to disjoint subsets of the feature vector.

Φ(x, y) =
[

δ(y, +1)Φ(x)
δ(y,−1)Φ(x)

]
(10)

With this feature mapping the models for positive and
negative examples do not interact and can be trained
independently.

For training the soft-max model we maximize the reg-
ularized log-likelihood of the data. Prior knowledge on
the similarity of tasks in the form of a positive semi-
definite kernel function k(z, z′) can be be encoded in
the covariance matrix of a Gaussian prior N(0, Σ) on
parameter vector v. We set all main diagonal entries
of Σ to the scalar parameter σ2

v and set the secondary
diagonal entries corresponding to the covariances be-
tween vz and v′z to k(z, z′)ρσ2

v (assuming kernel values
0 ≤ k(z, z′) ≤ 1). Parameter σ2

v specifies the variance
of each element in v. k(z, z′)ρ is the correlation co-
efficient between elements of subvectors vz and v′z;

parameter ρ specifies the strength of this correlation.
The covariance matrix Σ is required to be invertible
and therefore 0 ≤ ρ < 1. All other entries of Σ are set
to zero. When prior knowledge on the task similarities
is encoded in the prior on the model parameters, then
this prior knowledge dominates the optimization cri-
terion for small samples while the data-driven portion
of the criterion becomes dominant and overrides prior
beliefs as more data arrives.

Optimization Problem 1 Over parameters v, max-
imize

∑

(xi,yi,zi)∈D

log(p(zi|xi, yi,v)) + vTΣ−1v.

The solution of Optimization Problem 1 is a maximum
a posteriori estimation of the soft-max model (Equa-
tion 9) over the model parameters v using a Gaussian
prior with covariance matrix Σ. Tasks with no training
examples are covered naturally in Optimization Prob-
lem 1. In this case, the Gaussian prior with the task
kernel k(z, z′) encoded in the covariance matrix deter-
mines the model.

For our experiments we use a kernelized variant of Op-
timization Problem 1 by applying the representer theo-
rem. Details on the kernelization of multi-class logistic
regression can be learned from Zhu and Hastie (2002).

4.3. Weighted Empirical Loss and Target
Model

The multi-task learning procedure first determines re-
sampling weights rz(x, y) for all tasks and instances
by solving Optimization Problem 1. In this section we
describe the second step of training an array of target
models, one for each task, using weighted examples.

With the results of Optimization Problem 1 the dis-
criminative expression for the weights of Equation 8
can be estimated. Using these weights we can evalu-
ate the expected loss over the weighted training data
as displayed in Equation 11. It is the regularized em-
pirical counterpart of Equation 4.

E(x,y)∼D

[
p(t|x, y,v)

p(t)
`(f(x, t), y)

]
+

wT
t wt

2σ2
w

(11)

An instance of Optimization Problem 2 is solved for
each task independently to produce a separate model
for this task. Optimization Problem 2 minimizes
Equation 11, the weighted regularized loss over the
training data using a standard Gaussian log-prior with
variance σ2

w on the parameters wt. Each example
is weighted by the discriminatively estimated density
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fraction from Equation 8 using the solution of Opti-
mization Problem 1.

Optimization Problem 2 For task t: over parame-
ters wt, minimize

∑

(xi,yi)∈D

p(t|xi, yi,v)
p(t)

`(f(xi,wt), yi) +
wT

t wt

2σ2
w

.

5. HIV Therapy Screening

We model HIV therapy screening as a multi-task learn-
ing problem. The input x to the prediction problem
is given by attributes of the viral genotype and the
patient’s treatment history. The combination of drugs
z plays the role of the task. Success or failure of the
therapy constitutes class-label y.

In the next subsections we describe the data sets, ref-
erence methods, and the empirical results of our study.

5.1. Data Sets and Prior Knowledge on Task
Similarity

We use data from the EuResist project (Rosen-Zvi
et al., 2008). The data set comprises a total number
of 52846 treatment records from the treatment histo-
ries of 16999 HIV patients treated in hospitals in the
period of 1977 through 2007.

We use two different definitions of therapeutic success
and failure to tag the data: virus load labeling and
multi-conditional labeling.

According to our virus load labeling definition a ther-
apy is successful if the viral load (number of virus
copies per ml blood plasma, cp/ml) drops below the
established level of virus detection of 400 cp/ml during
the time of the treatment. Otherwise the treatment is
a failure. In multi-conditional labeling, a therapy is
successful if the viral load measured in the time range
between 28 and 84 days after the start of the therapy
decreases by at least 2 orders of magnitude compared
to the most recent viral load measured one to three
months before the start of the therapy, or the viral
load drops below 400 cp/ml 56 days after the start of
the therapy. A drawback of this definition is that due
to the strict time intervals it imposes on the measure-
ments, class labels that adhere to this labeling are only
available for a small number of records. The virus load
labeling does not require these strict time intervals by
making use of any viral load measurement during the
course of therapy to label it.

Out of all available treatment records we extract two
different data sets using the two labelings. With the
virus load labeling we extract 3260 and with the multi-
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Figure 1. Histogram over number of treatment records for
drug combinations (tasks) in the virus load data set (left)
and multi-condition data set (right).

conditional labeling 2011 treatment records with cor-
responding ratios of 65.7% and 64.1% successful treat-
ments. The size of these data sets is much smaller than
the size of the original data due to missing viral load
measurements, or missing virus sequence information.

A number of 545 distinct drug combinations (tasks z)
occur at least once in the virus load data set; 433 occur
in the the multi-conditional data set. The histogram
over sample sizes per task is displayed in Figure 1.
For many combinations, only a few examples occur in
the data. For instance, in the virus load data set we
observe 253 out of 545 drug combinations with only
one data point and 411 with less than 5 instances.
Similarly, the multi-conditional data set has 213 out
of 433 drug combinations with a single data point and
331 with less than 5 observations.

We extract two types of features for each instance:
a genotypic description of the virus and information
about the treatment history of the patient. We use the
viral genotype taken from the patient shortly before
the treatment and represent it by a binary vector in-
dicating the presence of resistance-relevant mutations
of the viral sequence (Johnson et al., 2007). Drug-
resistant viral quasi-species evolve during the course
of the treatment due to selective pressure imposed by
the drug. As they remain in the patient’s body, the
treatment history plays an important role for predict-
ing the outcome of a potential treatment. Hence, we
extract all drugs given to the patient in previous treat-
ments and use a binary vector representation with a
one entry for each drug given to the patient in the
treatment history. The 82-dimensional feature vector
x for each data point results from the concatenation
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Table 1. Classification accuracies with standard errors of differences to distribution matching method (ste.∆). Symbols
(•,◦,∗,¦) indicate statistical significance according to a paired t-test with significance level α = 0.05, (•) compared to
separate baseline, (◦) compared to pooled baseline, (∗) compared to hierarchical Bayesian kernel baseline, (¦) compared
to hierarchical Bayesian Gaussian process baseline.

prior hier. Bayes hier. Bayes distribution
data set knowledge separate ste.∆ pooled ste.∆ kernel ste.∆ Gauss. proc. ste.∆ matching

virus load none 67.87% 1.80 75.00% 1.47 76.69% 1.39 76.53% 1.36 • ◦ ∗ ¦ 79.14%
drug.feat. 67.87% 1.76 75.46% 1.39 75.31% 1.34 • ◦ ∗ 77.91%
mut.table 67.87% 1.78 75.61% 1.37 76.84% 1.16 • ◦ ∗ 79.29%

multi- none 64.64% 2.41 76.67% 1.13 77.17% 1.29 76.43% 1.44 • ◦ ∗ ¦ 79.40%
condition drug.feat. 64.64% 2.29 78.41% 1.63 75.19% 1.44 • ∗ 78.16%

mut.table 64.64% 2.38 78.66% 1.11 77.42% 1.24 • 79.16%

of 65 genotypic and 17 historic treatment features.

We have prior knowledge about the similarity of com-
binations and encode this knowledge into two differ-
ent task similarity kernels k(z, z′). The binary drug
indicator vector has an entry for each drug; entries
of one indicate the presence of a drug in the combi-
nation. The drug indicator kernel is the inner prod-
uct between the normalized drug indicator vectors of
two combinations. The mutation table kernel is based
on tables about the resistance-associated mutations of
single drugs (Johnson et al., 2007). We construct bi-
nary vectors indicating resistance-relevant mutations
for the set of drugs occurring in a combination. The
kernel computes the normalized inner product between
such binary vectors for two drug combinations.

5.2. Reference Methods

The first reference method is training of a separate
logistic regression model for each task without any in-
teraction (“separate”). Tasks without any training ex-
amples get a constant classifier that assigns each test
example with 50% to each of both classes.

The next baseline is a one-size-fits-all model; all ex-
amples are pooled and only one common logistic re-
gression is trained for all tasks (“pooled”). For the
experiments with prior knowledge on task similarity
we multiply the feature kernel with the task kernel
values k(x,x′)(k(z, z′) + 1) and train one model using
this kernel (Bonilla et al., 2007). For task kernels that
can have a value of zero we include a “+1” term to
ensure that the feature kernel does not vanish.

The third reference method (“hier. Bayes kernel”) is a
logistic regression with the hierarchical Bayesian ker-
nel khBayes(x,x′) = (λ + δ(z, z′))k(x,x′) of Evgeniou
and Pontil (2004); δ(z, z′) is the Kronecker delta and λ

is a tuning parameter. For the experiments with task
similarity kernel the hierarchical Bayes and the task
kernel are multiplied. As second hierarchical Bayesian
method (“hier. Bayes Gauss. proc.”) we use the Gaus-
sian process regression of Yu et al. (2005).

5.3. Experimental Setting and Results

In our experiments we study the benefit of distribu-
tion matching for HIV therapy screening compared to
the reference methods described in Section 5.2. Op-
timization Problem 1 is solved with limited-memory
BFGS and Optimization Problem 2 with Newton gra-
dient descent using a logistic loss. For the prior term
p(t) required in Optimization Problem 2 we use a MAP
estimate |Dt|+γ∑

z(|Dz|+γ) with a symmetric Dirichlet prior.
We use RBF kernels for all methods.

We apply a training-test split of the data consistent
with the dates of the treatment records. We sort the
treatment records by date and use the first 80% of the
records as training data and the last 20% as test data.
This procedure yields 653 and 403 test examples for
the virus load and multi-conditional data set, respec-
tively. The date consistent split is necessary because
new drugs get approved over time, and under pressure
of new drugs the viral population evolves. In such en-
vironments, the prediction models should be able to
learn from data seen in the past and perform well on
unseen data in the future.

We tune the prior and regularization parameters of all
methods, the Dirichlet parameter γ, and the variance
of the RBF kernels on tuning data resulting from a
date consistent split of the training data.

The evaluation measure is the accuracy of predicting
the correct label (success or failure of a treatment)
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separate pooled hier. Bayes kernel hier. Bayes Gauss. proc distr. matching 
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Figure 2. Accuracy over different number of training examples for target combination; virus load data set (left), multi-
condition data set (right). Error bars indicate the standard error of the differences to distribution matching. The key can
be found in the box right above the diagrams.

on the test set. Table 1 shows the results of the pre-
diction accuracy for all methods over both data sets
without and with two different types of prior knowl-
edge on combination similarity. The columns “ste.∆”
placed next to the accuracy columns display the stan-
dard error of the differences to the distribution match-
ing method.

Multi-task learning by distribution matching outper-
forms, or is as good as, the best alternative method in
all cases. The improvement over the separate model
baseline is about 10-14%. We can reject the null hy-
pothesis that the pooled and the hierarchical Bayesian
kernel baseline is at least as accurate as distribution
matching in four and five cases respectively out of six
according to a paired t-test at α = 0.05.

For distribution matching, prior knowledge does not
improve the accuracy. The pooled baseline benefits
from prior knowledge for the multi-condition data set.
For the case without prior knowledge we do not ob-
serve a statistically significant difference of the two

hierarchical Bayesian methods, but they are both sig-
nificantly worse than distribution matching according
to the paired t-test. Note that the Gaussian process
baseline is a regression model; all other methods are
classification models.

Figure 2 displays the accuracy over the combinations
in the test set grouped by the number of available ex-
amples for the settings without and with the mutation
table kernel. For instance, an accuracy of 74% for the
first group “0-2” means, that only test examples from
combinations are selected that have zero, one, or two
training examples each, and the accuracy on this sub-
set of the test examples is 74%. Each of the four groups
covers about the same number of test examples. The
error bars indicate the standard error of the differences
to the distribution matching method. Note, that the
statistical tests described above are based on all test
data and are not directly related to the group-specific
error bars in the diagrams.

All methods benefit from larger numbers of training
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examples per drug combination. The slightly decreas-
ing accuracy for the virus load data set with “>38”
training examples is surprising. Further analysis re-
veals that in this case there is an accumulation of test
examples with history profiles very different from the
training examples of the same combination.

For all methods that generalize over the tasks the ben-
efit compared to the separate model baseline is the
largest for the smallest group (“0-2” and “0-1” train-
ing examples respectively).

6. Conclusion

We devised a multi-task learning method that cen-
ters around resampling weights which match the dis-
tribution of the pool of examples of multiple tasks to
the target distribution for a given task at hand. The
method creates a weighted sample that reflects the de-
sired target distribution and exploits the entire corpus
of training data for all tasks. We showed how ap-
propriate weights can be obtained by discriminating
the labeled sample for a given task against the pooled
sample. After weighting the pooled sample, a classifier
for the given task can be trained. In our experiments
on HIV therapy screening we found that the distribu-
tion matching method improves on the prediction ac-
curacy over independently trained models by 10-14%.
According to a paired t-test, distribution matching is
significantly better than the reference methods for 17
out of 20 experiments.

A combination of drugs is the standard way of treat-
ing HIV patients. The accuracy to which the likely
outcome of a combination therapy can be anticipated
can therefore directly impact the quality of HIV treat-
ments.
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