
Fast Estimation of First-Order Clause Coverage through
Randomization and Maximum Likelihood

Ondřej Kuželka kuzelo1@fel.cvut.cz
Filip Železný zelezny@fel.cvut.cz

Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic

Abstract

In inductive logic programming, θ-
subsumption is a widely used coverage
test. Unfortunately, testing θ-subsumption
is NP-complete, which represents a crucial
efficiency bottleneck for many relational
learners. In this paper, we present a
probabilistic estimator of clause coverage,
based on a randomized restarted search
strategy. Under a distribution assumption,
our algorithm can estimate clause coverage
without having to decide subsumption for
all examples. We implement this algorithm
in program ReCovEr. On generated graph
data and real-world datasets, we show that
ReCovEr provides reasonably accurate
estimates while achieving dramatic runtimes
improvements compared to a state-of-the-art
algorithm.

1. Introduction

In most inductive logic programming (ILP) algo-
rithms, learned hypothesis are (sets of) first-order
clauses. Usually, θ-subsumption is used to test
whether a clause entails an example. Since ILP sys-
tems need to evaluate large numbers of clauses during
hypothesis search, efficiency of the subsumption pro-
cedure is one of the crucial factors for performance of
learning. Unfortunately, deciding θ-subsumption is an
NP-complete problem.

One line of research has focused on developing al-
gorithms for this problem using sophisticated heuris-
tics from the field of constraint satisfaction problems
(CSP). Maloberti et Sebag (2004) exploited the cor-
respondence of θ-subsumption with CSP to develop

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

the algorithm Django. Django is currently considered
the fastest subsumption checker, outperforming tra-
ditional techniques (based on the Prolog unification
mechanism) by orders of magnitude. Therefore we
employ Django in comparative experiments later in
this paper. Another stream of research dealt with in-
complete heuristic algorithms for θ-subsumption. Se-
bag et al. (1997) presented a tractable approximation
of θ-subsumption called stochastic matching. Arias
et al. (2007) implemented a randomized table-based
method.

Unlike the mentioned incomplete heuristic algorithms,
our approach uses a complete, albeit randomized, sub-
sumption procedure that correctly decides both sub-
sumption and non-subsumption if given sufficient fi-
nite time. Our ultimate estimation of the clause cov-
erage (i.e. the number of subsumed examples) is how-
ever an approximation, rapidly achieved by restarting
the subsumption procedure each time with a bounded
runtime. Subsequent restarts generate an integer se-
quence, from which the coverage is estimated by max-
imum likelihood.

Randomized restarted strategies, exploited in our
work, have been extensively studied in the past decade
(Gomes et al., 2000). They have been demonstrated
to be extremely useful for solving many hard com-
binatorial problems such as satisfiability of boolean
formulas or for solving constraint satisfaction prob-
lems. Reported reduction in runtimes are often in or-
ders of magnitude. Randomized restarted strategies
have been also used in inductive logic programming
(Železný et al., 2006), however, not for subsumption
checking. Rather, restarts were applied on the clause-
search procedure.

This paper is organized as follows. In Section 2 we for-
malize subsumption and expose the basic algorithms
employed as building blocks in our estimation ap-
proach. In Section 3 we conduct a preliminary moti-
vating study of runtime distribution. The estimation

Fast Estimation of Clause Coverage

Algorithm 1 SubsumptionCheck(C, e): A simple
subsumption check algorithm

Input: Clause C, example e;
if C ⊆ e then

return YES
else

Choose variable V from C using a heuristic function
for ∀S ∈ PossibleSubs(V, C, e) do

C′ ← Substitute V with S
if ∀W ∈ Adjacency(V) : PossibleSubs(W, C′, e) 6= ∅ then

SearchedNodes← SearchedNodes + 1
if SubsumptionCheck(C′, e) = YES then

return YES
end if

end if
end for
return NO

end if

algorithm is then developed in Section 4. In Section 5,
we compare our algorithm with Django on synthetic
and on real-life data. Section 6 concludes the paper.

2. Preliminaries

2.1. Language

In the rest of the paper we assume for simplicity
that hypotheses C are clauses without function and
constant symbols and examples e are ground clauses.
When needed, clauses will be treated as atom sets, e.g.
for two clauses C and D, C ⊆ D will denote that C
contains all literals contained by D. θ-subsumption is
defined as follows

Definition We say that clause C θ-subsumes clause
D (denote C ¹θ D) iff there exists a substitution θ
such that Cθ ⊆ D.

2.2. Subsumption Algorithm

We consider a simple heuristic algorithm (Algorithm
1) for verifying whether a clause C subsumes an ex-
ample e. Similarly to Django (Maloberti & Sebag,
2004) this algorithm is inspired by the CSP frame-
work. It is a backtracking search algorithm with for-
ward checking, a variable selection heuristic and ran-
domization. The heuristic function aims at choosing
variables whose substitution makes it likely that an
inconsistency, if one exists, is detected soon. For a
variable V , the function computes the sum of occur-
rences of variables in clause C that have already been
grounded and that share at least one literal with V .
This sum is then multiplied by 1 + 1

D , where D is an
upper bound on the size of the domain of V computed
in the initialisation phase of the algorithm’s run. The
variable which maximizes this function is selected; in
case of a tie, a random choice is made with uniform
probability among the highest scoring variables. Func-

tion PossibleSubs(V, C, e) returns all terms S (in a
random order), which can be substituted for V satis-
fying that all literals l ∈ C remain consistent with e.
The function prunes away a subset of possible ground-
ings for V whose inclusion in θ would imply Cθ * e. In
general though, not all such groundings are detected
by the function.

3. Subsumption Test Runtimes

We first aimed at obtaining a domain-independent
runtime distribution of the subsumption algorithm
and thus conducted preliminary experiments with ran-
domly generated hypotheses and examples from the
domain of oriented colored graphs. In the clausal rep-
resentation, each graph acquires the form of a definite
clause

h← l1 ∧ l2 ∧ . . .

where h is a fixed head and li are first-order atoms,
each being one of edge(t1, t2), black(t3), red(t4). In
hypotheses, ti are variables, in examples these are con-
stants.

For generality, we devised two different graph gener-
ators. The first generator generates Erdos-Rényi ran-
dom graphs where any two vertices are connected with
a pre-set probability c (by an edge of a random orienta-
tion). The second produces scale-free (“small world”)
graphs. Here, the graph grows until some desired size
is reached; at any step a vertex is added and connected
to k vertices already present in the graph. An edge is
attached to a vertex with probability increasing with
the number of edges already connected to the vertex.
In both algorithms, all vertices are colored as black
with probability 0.5 and red otherwise. We will refer to
the parameter c (k, respectively) of a random uniform
(scale-free, respectively) graph as the connectivity of
the graph.

We subjected Algorithm 1 to experiments with ran-
dom sets of hypotheses and examples, under various
settings of n and c (n and k, respectively), where n
denotes number of vertices in the underlying graph
and c and k are parameters of the random graphs ex-
plained above. Here, we review our principal findings
about the respective runtime distributions, since they
motivate the design of the estimation algorithm in the
next section.

Our first objective was to verify the presence of heavy
tails in the runtime distributions F (t). For t > 0,
the number F (t) is the probability that the tested al-
gorithm resolves a random subsumption instance in
no more than t units of time, corresponding to the
number of explored search nodes. Informally, a heavy-

Fast Estimation of Clause Coverage

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F(

x)

YES region (c ≤ 0.1)

NO region (c ≥ 0.25)

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F(

x)

YES region (c ≤ 0.1)

NO region (c ≥ 0.35)

Figure 1. Top: The runtime distributions for satisfiable in-
stances with hypotheses built using the Erdos-Rényi ran-
dom graph generator with n = 15 vertices and connectivity
consecutively c ∈ {0.1, 0.15, 0.2, 0.25}. The graphs corre-
sponding to examples had n = 50 vertices and connectivity
p = 0.3. Bottom: The subsumption test runtime distribu-
tions for unsatisfiable instances with hypotheses with con-
nectivity consecutively c ∈ {0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

tailed distribution indicates the non-negligible proba-
bility of subsumption instances on which the checking
algorithm gets stuck for an extremely long runtime.
For example, a heavy tail is exhibited if 1−F (t) decays
at a power-law rate, i.e. slower than standard distri-
butions which decay exponentially. The presence of a
heavy tail in an empirically obtained runtime distri-
bution F (t) is usually checked graphically, by plotting
1 − F (t) against t on a log-log scale. In the case of a
power-law distribution, this plot then acquires a linear
shape (Gomes et al., 2000).

A series of experiments in the phase transition frame-
work (Giordana & Saitta, 2000), which we have per-
formed, revealed a systematic progression from heavy-
tailed regimes corresponding to configurations located
in the YES region of the phase transition spectrum
to non-heavy-tailed regimes corresponding to config-
urations located in the NO region. This observation
agrees with the previous study (Gomes et al., 2005).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F(

x)

Figure 2. Effect of the restarted strategy for satisfiable
(top) and unsatisfiable instances (bottom). The random
graphs corresponding to hypotheses had n = 15 vertices
and connectivity c = 0.15. In both cases, the random
graphs corresponding to examples had n = 50 vertices and
connectivity c = 0.3. Both hypotheses and examples were
randomly generated by the Erdos-Rényi generator.

This progression is shown in Fig. 1 for the Erdos-Rényi
graph data. The same trends were observed for the
small-world graph data. The plotted runtime distribu-
tions refer to subsumption checks between hypotheses
with fixed numbers of vertices and connectivity chang-
ing among particular distributions, and examples with
fixed numbers of vertices and with fixed connectivity.
The runtime distributions plotted in the top panel of
Fig. 1 refer to satisfiable problem instances, i.e. those
where the hypotheses θ-subsume the examples. The
distributions in the bottom panel of Fig. 1 refer to
unsatisfiable problem instances.

Due to the observed presence of heavy tails in a range
of parameters, we next assessed the impact of restarts.
For this sake we designed a complete restarted ran-
domized subsumption algorithm, which repeatedly ex-
ecutes Algorithm 1. At each execution n = 1, 2, . . . ,
the number of search nodes in the Algorithm 1 is
bounded by some pre-defined number R(n). This loop
is terminated once answer YES or NO is obtained from

Fast Estimation of Clause Coverage

Algorithm 1. Completeness of this restarted approach
is guaranteed by the assumption that R(n) → ∞ as
n → ∞. Recall that randomization is facilitated by
tie-breaking in the heuristic function used in Algo-
rithm 1 and by randomization of the value ordering.

The basic trends we observed for all tested param-
eter values are represented by Fig. 2: (i) restarts
significantly reduce runtime expectation for both sat-
isfiable and unsatisfiable instances, (ii) unsatisfiable
instances take much longer to prove in the restarted
approach. Observation (i) alone motivates to use the
restarted variant of Algorithm 1 as a fast complete
method for subsumption testing. We explore this idea
elsewhere (Kuželka & Železný, 2009), whereas this pa-
per addresses observation (ii). This observation is eas-
ily explained: while satisfiability can in principle be
shown in any single restart, unsatisfiability can only be
shown after n restarts making R(n) sufficiently high.
We would like to avoid the runtime components corre-
sponding to R(n) series growing to excessive values.

4. ReCovEr: A Restarted Coverage
Estimator

We first explain the intuition underlying ReCovEr.
We are given a clause C, and example set E and we
would like to estimate the coverage cov(C,E) = |{e ∈
E |C ¹θ e}|. Let us run Algorithm 1 on C and e,
successively for all e ∈ E. For each e, we however stop
the algorithm if no decision has been made in R steps.
Let E ⊆ E be the subset of examples proven to be
subsumed by C in this experiment. Denote s1 = |E|.
We now remove all examples in E from E and re-
peat this experiment, obtaining analogical number s2.
Further such iterations generate numbers s3, s4, etc.
Clearly, for the desired value cov(C, E), we have that
cov(C,E) = limj→∞ Sj where Sj =

∑j
i=1 si. Under a

certain assumption, the series Sj is geometrical rather
than arbitrary. The main idea of ReCovEr is that the
limit of Sj for j →∞ can thus be estimated by extrap-
olating the series from its first few elements S1, S2,
Thus we achieve a coverage estimate without excessive
effort to refute subsumption for the examples not sub-
sumed by C.

In order to precisely derive an estimation algorithm
following the above idea, we first need to make the
following assumption.

Assumption 4.1 Given a clause C and a set of ex-
amples E, the probability p that Algorithm 1 finds a
solution (i.e. returns YES as its answer) before it ex-
plores more than R nodes of the search tree, is the
same for all e ∈ E such that C subsumes e.

Algorithm 2 ReCovEr(C, E, R,M, ∆): Algorithm
for coverage estimation

Input: Clause C and set of examples E, Integers R (‘cutoff’),
M , ∆;

tries← 0
Unknown← Examples
CoveredInIthTry ← []
repeat

tries← tries + 1
CoveredInThisTry ← 0
for ∀E ∈ Unknown do

Answer ← Run SubsumptionCheck(C, E) with number of
searched nodes limited to R
if Answer = PositiveMatching then

CoveredInThisTry ← CoveredInThisTry + 1
Unknown← Unknown\E

end if
end for
CoveredInIthTry[tries]← CoveredInThisTry

until TerminationCondition

return LikelihoodEstimate(tries)

In other words, we assume that properties of particular
examples such as their size are not dramatically differ-
ent. The assumption will be empirically validated in
the next section.

We assume a given clause C and we fix a constant
cutoff value R. In the first step, for each e ∈ E we run
SubsumptionCheck(P, e) (Algorithm 1), stopping it
as soon as the number of searched nodes has reached R.
Then, after |E| restarts (each time with a different e ∈
E), we can derive the probability that the algorithm
has produced exactly m1 ‘YES’ responses in this first
step. In particular, this probability P (m1) is

P (m1) =
(

A
m1

)
pm1(1− p)A−m1 (1)

where A = |{e ∈ E|C ¹θ e}|. In the next step, all m1

examples shown to be subsumed in the first step are
removed from E and the procedure is repeated with
the remaining examples. In general, we can derive the
probability that exactly mi YES answers are generated
in the i-th step. Thus for i = 2, we obtain

P (m2|m1) =
(

A−m1
m2

)
pm2(1− p)A−m1−m2 (2)

and similarly for an arbitrary i ≥ 1, we have

P (mi|mi−1, . . . , m1) =

„
A−Pi−1

j=1 mj

mi

«
p

mi (1− p)
A−Pi

j=1 mj

(3)

The probability of a sequence (m1, . . . , mk), where mi

is the number of examples for which YES was produced
in the i-th step, is given by

Fast Estimation of Clause Coverage

P (m1, . . . , mk) =
k∏

i=1

P (mi|mi−1, . . . , m1) (4)

Substituting for P (mi|mi−1, . . . ,m1) from Eq. 3 and
taking the logarithm Eq. 4 results in

ln (P (m1, . . . ,mk)) =
k∑

i=1

(α + mi ln p + β) (5)

where

α = ln
(

A−∑i−1
j=1 mj

mi

)

and

β =


A−

i∑

j=1

mj


 ln(1− p)

To find the parameters A and p for which
P (m1, . . . , mk) is maximized, we take the partial
derivative of Eq. 5 with respect to p and then find
its roots, yielding

p =
∑k

i=1 mi∑k
i=1 mi +

∑k
i=1

(
A−∑i

j=1 mj

) (6)

Finding the global maximum of P (m1, . . . , mk) from
Eq. 4 on the set

D = {(A, p)|A ∈ {1, 2, . . . , |E|} ∧ p ∈ [0; 1]} (7)

is now straightforward, since using (6) we can find the
maximum on every line

Li = {(i, p)|p ∈ [0; 1]} (8)

The maximum on line Li is located either at the value
of p given by (6) or at one of the borders of Li. It
then suffices to evaluate (4) at these three points of
Li for every i (1 ≤ i ≤ |E|). The estimate of A then
equals the index i of the Li on which the maximum is
located.

The described estimator is used in ReCovEr (Algo-
rithm 2). The question how to choose k, i.e. how
long a sequence (m1, . . . ,mk) should be generated as
the input to the estimator, is tackled iteratively: the
sequence is being extended until a termination condi-
tion is met. We have considered several termination
conditions, of which two turned out to be quite useful.

The first termination condition stops generating the
sequence when two subsequent estimates differ by less
than some ∆e, specified as a parameter. The second
termination condition stops generating the sequence
when estimate and number of examples already shown
to be covered by the clause differ again by less than
some ∆c, which ensures that the estimator will never
overestimate the actual coverage by more than ∆c. A
minimum length M of the sequence is however imposed
in both previous cases, to avoid premature estimates
coinciding by chance.

Another degree of freedom in Algorithm 2 is the cutoff
R, which may significantly affect the performance of
the restarted algorithm. A heuristic method suggests
itself that first tries to find a suitable cutoff. Unlike
Algorithm 2 it starts with a base cutoff value, and
then doubles it after every single restart. If at any
restart Algorithm 1 with cutoff set to R covers fewer
examples than the same algorithm at previous restart
with cutoff set to R

2 , then we can accept cutoff R
2 .

5. Experiments

In this section, we first investigate the sensitivity of
ReCovEr to a violation of Assumption 4.1. Then
we evaluate its performance and precision on graph
data generated by the two random graph generators
described in Section 2 and on real-world data from
organic chemistry and from engineering. We compare
performance of ReCovEr with that of the state-of-
the-art θ-subsumption algorithm Django.

5.1. Sensitivity Analysis

Here we address Assumption 4.1. Informally, we first
want to verify (i) how the assumption deviates from
the empirical ‘truth’, and subsequently, (ii) how much
these deviations influence ReCovEr’s precision.

(i) According to Assumption 4.1, probability p ∈ [0; 1]
would be a constant. Dismissing this assumption, we
treat p as a random variable with some distribution
on [0; 1], which we would like to estimate. A standard
approach to this task is to parameterize a Beta dis-
tribution on [0; 1] from empirical data. To obtain the
data, we experimented with the settings from Section
3 with parameters of generated hypotheses c = 0.35,
n = 10, parameters of generated examples c = 0.3,
n = 50 and ReCovEr’s cutoff R = 75. This resulted
in Beta distributions with standard deviation extend-
ing up to about 0.25 (i.e. 25% of the p’s range). These
distributions are plotted in dashed lines in Fig. 3.

(ii) Now we investigate ReCovEr’s sensitivity to the
modeled deviations. We assume to have n = 100 ex-

Fast Estimation of Clause Coverage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

p

P
ro

ba
bi

lit
y

de
ns

ity
 o

f p

0 0.01 0.02 0.03 0.04 0.05 0.06

1

2

3

4

5

6

7

var(p)

R
oo

t m
ea

n
sq

ua
re

 e
rr

or

Figure 3. Top: Beta distributions with mean µ = 0.5 and
variance consecutively 0, 0.005, . . . , 0.06, which model the
distribution of p (solid lines). Beta distributions fitted to
actual probabilities are shown in dashed lines. Bottom:
Dependence of root mean square error of ReCovEr’s es-
timates on the variance of p.

amples, of which 50 were covered by a clause C. Fur-
ther, probabilities pi that Algorithm 1 finds a solu-
tion for a covered example ei in time less than R were
sampled from the Beta distribution with given mean
µ = 0.5 and variance consecutively 0, 0.005, . . . , 0.06
(i.e. growing up to the 25% standard deviation).
Then, we simulated ReCovEr’s estimation procedure
on these data. The top panel of Fig. 3 displays the
beta distributions (solid lines) from which probabili-
ties pi were sampled. We used the stopping condition
based on difference of estimate and lower bound, the
parameters were M = 3, ∆ = 1.

The bottom panel of Fig. 3 displays the dependence
of root mean square error on the variance of the beta
distributions in the top panel. It is encouraging to
see that the root mean square error grows roughly lin-
early with growing variance in p’s distribution, indi-
cating ReCovEr’s robustness towards this variance.
Of course, the ultimate judge of whether this depen-
dence is acceptable is the extent to which a learning
algorithm based on ReCovEr would be affected by

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

real count

es
tim

at
ed

 c
ou

nt
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

real count

es
tim

at
ed

 c
ou

nt

Figure 4. Precision of ReCovEr (Algorithm 2) presented
as 1000 points with coordinates (estimated coverage, actual
coverage). Hypotheses and examples were generated by
the Erdos-Rényi random graph generator with c = 0.3,
n = 15 for hypotheses and c = 0.3, n = 100 for examples.
The 1000 estimates correspond to 1000 different hypotheses
tested on a pre-fixed set of 100 examples. Top: Base value
for cutoff is R = 100. Bottom: Base value for cutoff is
R = 200.

the estimation imprecision caused by the estimation.
This is studied further.

5.2. Experiments with Generated Graph Data

Figure 4 demonstrates the precision of ReCovEr on
the graph data generated by the Erdos-Rényi genera-
tor by showing 1000 pairs (estimated coverage, actual
coverage). Hypotheses and examples were generated
with c = 0.3 for hypotheses and c = 0.3 for examples.
The graphs corresponding to hypotheses had 15 ver-
tices, and the graphs corresponding to examples had
100 vertices. The top panel refers to estimates ob-
tained by Algorithm 2 enhanced by cutoff selection
with base cutoff R = 100, while the bottom panel
refers to estimates obtained by the same algorithm
with base cutoff R = 200. A bias towards coverage
under-estimation can be observed, as well as a positive
effect of the higher base cutoff on estimation precision.

Fast Estimation of Clause Coverage

Table 1 shows average runtimes of ReCovEr and
Django. Table 2 shows average runtimes of Django
and ReCovEr on artificial graph data with small-
world topology generated by Algorithm 5. In this case,
the graphs underlying the hypotheses had 15 vertices
and their connectivity was k = 4. The graphs under-
lying the examples had 100 vertices and connectivity
k = 20. A dramatic speedup from Django’s runtime is
exhibited in both cases.

Note that there is no immediate reason to avoid
the under-estimation bias because coverage is usually
tested on two example sets (positive and negative).
The two results are usually subtracted thus (mostly)
canceling the bias. Whether the observed estimation
variance is tolerable for the task of clause ranking usual
in inductive logic programming is the subject of the
experiments in the next section.

Algorithm Avg. Time [s]
ReCovEr, R = 100 6.7
ReCovEr, R = 200 12.5

Django 483.2

Table 1. Average coverage test runtimes for the configura-
tion from Fig. 4.

Algorithm Avg. Time [s]
ReCovEr, R = 100 8.9
ReCovEr, R = 200 16.3

Django 519.8

Table 2. Average coverage test runtimes for the configura-
tion with small world graph data.

5.3. Experiments with Real-World Data

In order to assess performance in conditions of a real-
life learning setting, we decided not to generate clauses
entirely randomly. Our intention was to simulate gen-
eral principles of clause production in an inductive
logic programming system, while avoiding an overfit
to a specific clause search strategy (which would e.g.
be a result of adhering to a specific heuristic function
for selecting literals). Thus we developed a simple re-
lational learner, which we use for further experiments
with ReCovEr. The learner (Algorithm 3) is a ran-
domized variation of a specific-to-general beam search.
It starts with the most specific clause ⊥ and at each
search step, it generates at least n · |Beam| new hy-
potheses by removing random subsets of literals from
the hypotheses already present in Beam. The output
of the algorithm is one best clause, which is why we
assess its quality through precision and recall.

Algorithm 3 Learner(⊥, p, BeamSize, Tries): A
Clause Learner

Input: Most specific clause ⊥, Real numbers p, Integers
BeamSize, MaxSearched

Beam← {⊥}
BestClause← ⊥
repeat

Candidates← Beam
for ∀hi ∈ Beam do

for i = 1 . . . BeamSize do
GenerateClause(hi)
C ← connected components of c
Evaluate each ci ∈ C
Candidates← candidates ∪ C

end for
end for
for ∀h ∈ Candidates such that h is estimated to be better
than BestClause do

if h is shown to be better than BestClause by a determin-
istic subsumption algorithm then

BestClause← h
end if

end for
Choose BeamSize best hypotheses from Candidates and add
them to Beam
Explored← Explored + 1

until Beam = {} or Explored = Tries

The first set of experiments, which we have con-
ducted with Algorithm 3, deals with the Mutagenesis
dataset (Srinivasan et al., 1996). This dataset con-
sists of descriptions of 188 organic molecules, which
are marked according to their mutagenicity. In our ex-
periments, we used only the information about atom-
bond relationships and about types of atoms. We
did not consider numerical parameters such as lumo
or logp. Our relational-logic representation of these
molecules consisted of ternary literals for atomic bonds
bond(at1, at2, bondType), unary literals representing
types of particular bonds and unary literals for atom
types. We have considered three variants of rela-
tional logic description of the molecules, with grow-
ing complexity (size of examples). The first ver-
sion Muta-v1 uses a naive representation. Here,
each molecular bond is represented by a single literal
bond(at1, at2, bondType), thus imposing a bond orien-
tation (atom order) chosen at random. The second
source of imprecision of this representation is that two
variables in a clause may represent the same (chemi-
cal) atom, which does not make intuitive sense. The
second version Muta-v2 deals with the first source
of imprecision, as it represents every atomic bond
with a pair of literals bond(at1, at2, bondType) and
bond(at2, at1, bondType). The third version Muta-
v3 solves the second source of imprecision by adding
literals different(a, b) for all pairs of atom-representing
constants a, b.

The second set of experiments pertains to class-labeled
CAD data (product structures) described in (Žáková

Fast Estimation of Clause Coverage

et al., 2007), consisting of 96 CAD examples each con-
taining several hundreds of first-order literals.

The main observation provided by the experiments is
that ReCovEr becomes quickly superior to Django
as the example size grows, whereas the two algorithms
do not significantly differ in terms of the training-set1

accuracy of the discovered clauses. It is interesting
to note that Django’s poor runtime performance on
the learning tasks with large examples (CAD data
and Muta-v2) was often due to occasional subsump-
tion cases. Clearly, this is a manifestation of heavy
tails present in Django’s runtime distribution. Un-
like Django, ReCovEr was exhibiting steady perfor-
mance.

Dataset ReCovEr [s] Django [s]
Muta-v1 42 29
Muta-v2 513 1627
Muta-v3 1695 >5h

CAD 121 >2h

Table 3. Average runtimes of the learner (Algorithm 3, p =
0.75, Tries = 10) for real-world datasets.

Dataset Avg. Precision Avg. Recall
Muta-v1 0.84 0.61
Muta-v2 0.81 0.65
Muta-v3 0.83 0.84

CAD 0.92 0.7

Table 4. Quality of learned hypotheses for ReCovEr

Dataset Avg. Precision Avg. Recall
Muta-v1 0.86 0.6
Muta-v2 0.82 0.65
Muta-v3 n.a. n.a.

CAD n.a. n.a.

Table 5. Quality of learned hypotheses for Django

6. Conclusions

In this paper, we have introduced ReCovEr, an al-
gorithm exploiting restarts for a maximum-likelihood
based estimation of clause coverage. ReCovEr avoids
heavy tails as well as laborious proving of certain un-
satisfiable subsumption instances. We have shown
that ReCovEr provides favorable runtimes while
achieving reasonable precision, which is illustrated by

1As this paper is not concerned with improving gener-
alization performance, we did not measure accuracies on
hold-out test sets.

experiments on synthetic graph data and on real-
life data from organic chemistry and engineering. In
future work we mainly want to develop theoretical
bounds for ReCovEr’s estimation precision.

Acknowledgements. We are grateful to ICML 2008 re-

viewers for their insightful comments and to the area chair

for his extensive effort to understand and improve our ini-

tially unclear presentation. The authors are supported

by the Grant Agency of the Czech Republic through the

project 201/08/0486 Merging Machine Learning with Con-

straint Satisfaction.

References

Arias, M., Khardon, R., & Maloberti, J. (2007). Learn-
ing Horn expressions with Logan-H. Journal of Ma-
chine Learning Research, 8, 549–587.

Giordana, A., & Saitta, L. (2000). Phase transitions in
relational learning. Machine Learning, 41, 217–251.

Gomes, C. P., Fernández, C., Selman, B., & Bessière,
C. (2005). Statistical regimes across constrainedness
regions. Constraints, 10, 317–337.

Gomes, C. P., Selman, B., Crato, N., & Kautz, H. A.
(2000). Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. Journal of Auto-
mated Reasoning, 24, 67–100.

Kuželka, O., & Železný, F. (2009). A restarted strat-
egy for efficient subsumption testing. Fundamenta
Informaticae, spec. issue on multi-relational data
mining. (Accepted).

Maloberti, J., & Sebag, M. (2004). Fast theta-
subsumption with constraint satisfaction algo-
rithms. Machine Learning, 55, 137–174.

Sebag, M., & Rouveirol, C. (1997). Tractable induc-
tion and classification in first-order logic via stochas-
tic matching. IJCAI97 (pp. 888–893). Morgan Kauf-
mann.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E.,
& King, R. D. (1996). Theories for mutagenicity:
A study in first-order and feature-based induction.
Artificial Intelligence, 85, 277–299.

Železný, F., Srinivasan, A., & Page, D. (2006). Ran-
domised restarted search in ILP. Machine Learning,
64, 183–208.

Žáková, M., Železný, F., Garcia-Sedano, J., Tissot,
C. M., Lavrač, N., Křemen, P., & Molina, J.
(2007). Relational data mining applied to virtual en-
gineering of product designs. ILP06 (pp. 439–453).
Springer.

