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Abstract

The exploration-exploitation dilemma has
been an intriguing and unsolved problem
within the framework of reinforcement learn-
ing. “Optimism in the face of uncertainty”
and model building play central roles in ad-
vanced exploration methods. Here, we inte-
grate several concepts and obtain a fast and
simple algorithm. We show that the proposed
algorithm finds a near-optimal policy in poly-
nomial time, and give experimental evidence
that it is robust and efficient compared to its
ascendants.

1. Introduction

Reinforcement learning (RL) is the art of maximizing
long-term rewards in a stochastic, unknown environ-
ment. In the construction of RL algorithms, the choice
of exploration strategy is of central significance.

We shall examine the problem of exploration in the
Markov decision process (MDP) framework. While
simple methods like e-greedy and Boltzmann explo-
ration are commonly used, it is known that their be-
havior can be extremely poor (Koenig & Simmons,
1993). Recently, a number of efficient exploration al-
gorithms have been published, and for some of them,
formal proofs of efficiency also exist. We review these
methods in Section 2. By combining ideas from several
sources, we construct a new algorithm for efficient ex-
ploration. The new algorithm, optimistic initial model
(OIM), is described in Section 3. In Section 4, we show
that many of the advanced algorithms, including ours,
can be treated in a unified way. We use this fact to
sketch a proof that OIM finds a near-optimal policy
in polynomial time with high probability. Section 5
provides experimental comparison between OIM and
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a number of other methods on some benchmark prob-
lems. Our results are summarized in Section 6. In the
rest of this section, we review the necessary prelimi-
naries, Markov decision processes and the exploration
task.

1.1. Markov Decision Processes (MDPs)

Markov decision processes are the standard framework
for RL, and the basis of numerous extensions (like
continuous MDPs, partially observable MDPs or fac-
tored MDPs). An MDP is characterized by a quintuple
(X, A, R, P,v), where X is a finite set of states; A is a
finite set of possible actions; R : X X Ax X — Pk is the
reward distribution, R(z,a,y) denotes the mean value
of R(z,a,y), P: X x Ax X — [0,1] is the transition
function; and finally, v € [0, 1) is the discount rate on
future rewards. We shall assume that all rewards are
nonnegative and bounded from above by R?

max*

A (stationary) policy of the agent is a mapping
m: X x A—0,1]. For any 2o € X, the policy of the
agent and the parameters of the MDP determine a
stochastic process experienced by the agent through
the instantiation xq, ag, 70, T1, A1, 71, ..., Tt, G, Tpy . .

The goal is to find a policy that maximizes
the expected value of the discounted total re-
ward. Let wus define the state-action value
function (value function for short) of 7w as

Q™ (z,a) := E(Ztﬁo Yiry ‘ xzxo,aza()) and  the
optimal value function as

Q" (z,a) := max Q™ (z,a)

for each (z,a) € X x A. Let the greedy action at x
w.r.t. value function Q be a¥ := argmax, Q(z,a).
The greedy policy of @ deterministically takes the
greedy action in each state. It is well-known that the
greedy policy of Q* is an optimal policy and Q* satis-
fies the Bellman equations:

Q*(w,0) = Y Pl a,y)(R(z.a,y) +1Q"(v.af))).
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1.2. The Exploration Problem

In the classical reinforcement learning setting, it is as-
sumed that the environment can be modelled as an
MDP, but its parameters (that is, P and R) are un-
known to the agent, and she has to collect information
by interacting with the environment. If too little time
is spent with the exploration of the environment, the
agent will get stuck with a suboptimal policy, without
knowing that there exists a better one. On the other
hand, the agent should not spend too much time vis-
iting areas with low rewards and/or accurately known
parameters.

What is the optimal balance between exploring and
exploiting the acquired knowledge and how could the
agent concentrate her exploration efforts? These ques-
tions are central for RL. It is known that the optimal
exploration policy in an MDP is non-Markovian, and
can be computed only for very simple tasks like k-
armed bandit problems.

2. Related Literature

Here we give a short review about some of the most
important exploration methods and their properties.

2.1. e-greedy and Boltzmann Exploration

The most popular exploration method is e-greedy ac-
tion selection. The method works without a model,
only an approximation of the action value function
Q(z,a) is needed. The agent in state x selects the
greedy action a% or an explorative move with a ran-
dom action with probabilities 1 — € and ¢, respectively.
Sooner or later, all paths with nonzero probability will
have been visited many times, so, a suitable learning
algorithm can learn to choose the optimal path. It is
known, for example, that Q-learning with nonzero ex-
ploration converges to the optimal value function with
probability 1 (Littman & Szepesvari, 1996), and so
does SARSA (Singh et al., 2000), if the exploration
rate diminishes according to an appropriate schedule.

Boltzmann exploration selects actions as follows: the
exp(Q(s.0)/T)

S reacxp(Qs,a)/T)’

where ‘temperature’ T (>0) regulates the amount of

explorative actions. Convergence results of the e-

greedy method carry through to this case.

probability of choosing action a is

Unfortunately, for the e-greedy and the Boltzmann
method, exploration time may scale exponentially in
the number of states (Koenig & Simmons, 1993).

2.2. Optimistic Initial Values (OIV)

One may boost exploration with a simple trick: the
initial value of each state action pair can be set to
some overwhelmingly high number. If a state x is vis-
ited often, then its estimated value will become more
exact, and therefore, lower. Thus, the agent will try
to reach the more rarely visited areas, where the esti-
mated state values are still high. This method, called
‘exploring starts’ or ‘optimistic initial values’, is a
popular exploration heuristic (Sutton & Barto, 1998),
sometimes combined with others, e.g., the e-greedy ex-
ploration method. Recently, Even-Dar and Mansour
(2001) gave theoretical justification for the method:
they proved that if the optimistic initial values are suf-
ficiently high, Q-learning converges to a near-optimal
solution. One apparent disadvantage of OIV is that if
initial estimations are too high, then it takes a long to
fix them.

2.3. Bayesian Methods

We may assume that the MDP (with the unknown
values of P and R) is drawn from a parameterized
distribution My. From the collected experience and
the prior distribution My, we can calculate succes-
sive posterior distributions My,t = 1,2,... by Bayes’
rule. Furthermore, we can calculate (at least in prin-
ciple) the policy that minimizes the uncertainty of the
parameters (Strens, 2000). Dearden (2000) approx-
imates the distribution of state values directly. Ex-
act computation of the optimal exploration policy is
infeasible and Bayesian methods are computationally
demanding even with simplifying assumptions about
the distributions, e.g., the independencies of certain
parameters.

2.4. Confidence Interval Estimation

Confidence interval estimation algorithms are between
Bayesian exploration and OIV. It assumes that each
state value is drawn from an independent Gaussian
distribution and it computes the confidence interval of
the state values. The agent chooses the action with
the highest upper confidence bound. Initially, all con-
fidence intervals are very wide, and shrink gradually
towards the true state values. Therefore, the behavior
of the technique is similar to OIV. The IEQL+ method
of Meuleau and Bourgine (1999) directly estimates
confidence intervals of @-values, while Wiering and
Schmidhuber (1998) calculate confidence intervals for
P and R, and obtain @-value bounds indirectly. Strehl
and Littman (2006) improve the method and prove a
polynomial-time convergence bound. Both algorithms
are called model-based interval estimation. To avoid



The Many Faces of Optimism: a Unifying Approach

confusion, we will refer to them as MBIE(WS) and
MBIE(SL).

Auver and Ortner (2006) give a confidence interval-
based algorithm, for which the online regret is only
logarithmic in the number of steps taken.

2.5. Exploration Bonus Methods

The agent can be directed towards less-known parts of
the state space by increasing the value of ‘interesting’
states artificially with bonuses. States can be interest-
ing given their frequency, recency, error, etc. (Meuleau

& Bourgine, 1999; Wiering & Schmidhuber, 1998).

The balance of exploration and exploitation is usually
set by a scaling factor x, so that the total immediate
reward of the agent at time ¢ is ry 4+ & - by (x4, ag, Tey1),
where b; is one of the above listed bonuses. The
bonuses are calculated by the agent and act as intrin-
sic motivating forces. Exploration bonuses for a state
can vary swiftly and model-based algorithms (like pri-
oritized sweeping or Dyna) are used for spreading the
changes effectively. Alas, the weight of exploration k
needs to be annealed according to a suitable schedule.

Alternatively, the agent may learn two value functions
separately: a regular one, )} which is based on the
rewards r; received from the environment, and an ex-
ploration value function (¥ which is based on the ex-
ploration bonuses. The agent’s policy will be greedy
with respect to their combination Q] + xQf. Then
the exploration mechanism may remain the same, but
several advantages appear. First of all, the changes
in k take effect immediately. As an example, we can
immediately switch off exploration by setting s to 0.
Furthermore, )} may converge even if Qf does not.

Confidence interval estimation can be phrased as an
exploration bonus method: see IEQL+ (Meuleau &
Bourgine, 1999) or MBIE-EB (Strehl & Littman,
2006). Even-Dar and Mansour (2001) have shown that
e-greedy and Boltzmann explorations can be formu-
lated as exploration bonus methods although rewards
are not propagated through the Bellman equations.

2.6. E? and R-max

The Euplicit explore or exploit (E®) algorithm of
Kearns and Singh (1998) and its successor, R-max
(Brafman & Tennenholtz, 2001) were the first algo-
rithms that have polynomial time bounds for finding
near-optimal policies. R-max collects statistics about
transitions and rewards. When visits to a state enable
high precision estimations of real transition probabili-
ties and rewards then state is declared known. R-max
also maintains an approximate model of the environ-

ment. Initially, the model assumes that all actions
in all states lead to a (hypothetical) maximum-reward
absorbing state. The model is updated each time when
a state becomes known. The optimal policy of the
model is either the near-optimal policy in the real en-
vironment or enters a not-yet-known state and collects
new information.

3. Construction of the Algorithm

Our agent starts with a simple, but overly optimistic
model. By collecting new experiences, she updates
her model, which becomes more realistic. The value
function is computed over the approximate model with
(asynchronous) dynamic programming. The agent al-
ways chooses her action greedily w.r.t. her value func-
tion. Exploration is induced by the optimism of the
model: unknown areas are believed to yield large re-
wards. Algorithmic components are detailed below.

Separate exploration values. Similarly to the ap-
proach of Meuleau and Bourgine (1999), we shall sep-
arate the ‘true’ state values from exploration values.
Formally, the value function has the form

Q(:z:,a) = Qr(z7a) + Qe(xv CL)

for all (z,a) € X x A, where Q" and Q¢ will summarize
external and exploration rewards, respectively.

‘Garden of Eden’ state. Similarly to R-max, we
introduce a new hypothetical ‘garden of Eden’ state
zg, and assume an extended state space X' = X U
{zg}. Once there, then, according to the inherited
model, the agent remains in zg indefinitely and re-
ceives Rpy.x reward for every step, which may ex-
ceed RO, =:max, ., R(z,a,y), the maximal reward
of the original environment.

Model approximation. The agent builds an approx-
imate model of the environment. For each z,y € X
and a € A, let N¢(z,a), Ni(x,a,y), and C¢(z,a,y) de-
note the number of times when a was selected in x up
to step t, the number of times when transition z — y
was experienced, and the sum of external rewards for
z % y transitions, respectively. With these notations,
the approximate model parameters are

S Nt(va'?y)

C z,a,y
Pt(xvavy) = Nt(JT CL) t( )

and Rt(l’,a, y) = m

Suitable initializations of Ny(z,a), Ni(z,a,y) and
Ci(z,a,y) will ensure that the ratios are well-defined
everywhere. The exploration rewards are defined as

Rma)u

. ify=uxg;
Reza) = { g gy

lfy#JTE,
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for each z,y € X U{xg}, a € A, and are not modified
during the course of learning.

Optimistic initial model. The initial model as-
sumes that xg has been reached once for each state-
action pairs: for each x € XU{zg},y € X anda € A,

No(z,a) =1,

NO((E7a7y) = 07
NO(QT,@JUE) = 17

C()(C.U,(l,/y) = 0.
Co(z,a,2p) =0.

Then, the optimal initial value function equals
1
Qo(x,a) = QS(I'v a)+Q8(m, a) = 0+mRmax = Vmax

for each (z,a) € X’ x A, analogously to OIV.

Dynamic programming. Both value functions can
be updated using the approximate model. For each
x € X, let a; be the greedy action according to the
combined value function, i.e.,

0, = argmax(Q" (v, ) + Q*(z,a).

The dynamic programming equations for the value
function components are

Qii(@,a):= Y Prla,ay) (Rolwa.y) +1Q)(3,0,))

yeX

Q@ a)i=7 Y Pi(e,a.p)Q5 (v, ay)

yeX
+ Pt(xv a, xE)Vmax~

Episodic tasks can be handled as usual way; we intro-
duce an absorbing final state with 0 external reward.

Asynchronous update. The algorithm can be on-
line, if instead of full update sweeps over the state
space updates are limited to state set L; in the ‘neigh-
borhood’ of the agent’s current state. Neighborhood is
restricted by computation time constraints; any asyn-
chronous dynamic programming algorithm suffices. It
is implicitly assumed that the current state is always
updated, i.e., zy € L;. In this paper, we used the im-
proved prioritized sweeping algorithm of Wiering and
Schmidhuber (1998).

Putting it all together. The method is summarized
as Algorithm 1.

4. Analysis

In the first part of this section, we analyze the similari-
ties and differences between various exploration meth-
ods, with an emphasis on OIM. Based on this analy-
sis, we sketch the proof that OIM finds a near-optimal
policy in polynomial time. Details of the proof can be
found in (Szita & Lérincz, 2008).

4.1. Relationship to Other Methods

‘Optimism in the face of uncertainty’ is a common
point in exploration methods: the agent believes that
she can obtain extra rewards by reaching the unex-
plored parts of the state space.

Note that as far as the combined value function @ is
concerned, OIM is an asynchronous dynamic program-
ming method augmented with model approximation.

Optimistic initial values. Apparently, OIM is the
model-based extension of the OIV heuristic. Note
however, that optimistic initialization of Q-values is
not effective with a model: the more updates are made,
the less effect the initialization has and it fully dimin-
ishes if value iteration is run until convergence. There-
fore, naive combination of OIV and model construction
is contradictory: the number of DP-updates should be
kept low in order to save the initial boost, but it should
be as high as possible in order to propagate the real
rewards quickly.

OIM resolves this paradox by moving the optimism
into the model. The optimal value function of the
initial model is Qy = Viax, corresponding to OIV.
However, DP updates can not, but only model updates
may lower the exploration boost.

Note that we can set the initial model value as high
as we like, but we do not have to wait until the initial
boost diminishes, because Q" and Q¢ are separated.

R-max. The ‘Garden of Eden’ state g of OIM
is identical to the fictitious max-reward absorbing
state of R-MAX (and E3). In both cases, the agent’s
model tells that all unexplored (z,a) pairs lead to zg.
R-MAX, however, updates the model only when the
transition probabilities and rewards are known with
high precision, which is only after many visits to (z, a).
In contrast, OIM updates the model after each single
visit, employing each bit of experience as soon as it is
obtained. As a result, the approximate model can be
used long before it becomes accurate.

Exploration bonus methods. The extra reward
offered by the Garden of Eden state can be un-
derstood as an exploration bonus: for each visit of
the pair (z,a), the agent gets the bonus b(z,a) =
W(Vmax — Qt(sc,a)). It is insightful to contrast
this formula with those of the other methods like the
frequency-based bonus by = —« - N¢(z,a) or the error-

based bonus by = o - |Qey1(x, a) — Qi(x, a)|.

Model-based interval exploration. The explo-
ration bonus form of the MBIE method of Strehl and
Littman (2005) sets by = N (ray- MBIE-EB is not
an ad-hoc method: the form of the bonus comes from
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Algorithm 1 The Optimistic initial model algorithm

Input: zg € X initial state, € > 0 required precision, optimism parameter Ry, .y

Model initialization: ¢t :=0; Vz,y € X,Va € A:

N(z,a,y) =0, N(z,a,zg) =1, N(z,a) :==1, C(z,a,y) =0, Q"(z,a) := 0, Q°(z,a) =

repeat

Rmax/(]- - ’Y)a

a; := greedy action w.r.t. Q" + Q°; apply a; and observe r; and ;41

C($t, ag, Z‘t+1) =
L; := list of states to be updated
for each z € L; do

C(xt,at, ey1) + 165 N(24, 0, Te41) i=

N(z¢,ap,we01) + 1; N(xg,at) := N(zg,a0) + 1

Qhia(,0) 1= Syex P, a,y) (Rl a.y) +9Q5 5, 0,))
Q§+1(x7a) = P(xaaaxE)RmaX/(l - )+72yex P(z,a y)Qt (yvau)

end for
ti=t+1
until Bellman-error> €

confidence interval estimations. The comparison to
MBIE-EB will be especially valuable, as it converges
in polynomial-time and the proof can be transported
to OIM with slight modifications.

4.2. Polynomial-time Convergence

Theorem 4.1 There exists a constant C so that
for any e > 0,6 > 0, 1 := €/4, €3 := €1(1 — ),

— R e  (2cix)PlalEt . 1\ Y/©
H o= ol tees K= (756% mi) "
OIM converges almost surely to a mnear-optimal
policy in polynomial time if started — with
Rmax > €2 (1 7) (Rgldx)Q ln(KRglax) that iS, with

probability 1 — 0, the number of timesteps where
Q’TOIM(:Et,at) > Q (x¢,at) — € does mot hold, is

IX|H \5 [AI(RD,07 1,2 1
O(( €1 ) (1-7)e3 In )

For the sketch of the proof, we shall follow the tech-
nique of Kearns and Singh (2002) and Strehl and
Littman (2006), and will use the shorthands [KS] and
[SL] for referring to them. See (?) for the detailed
proof with a slightly better polynomial bound.

A pair (z,a) is declared known, if it has been visited at
least m = C( |XlH) (RY.,)%In 1 times, with a suitable
constant C. OIM preserves the optimism of the value

function:

Lemma 4.2 Let Q; be the sequence of Q-functions
generated by OIM. Then, it holds with probability
1 —0/2 that for any t, Qi(x,a) > Q*(x,a) — €.

Proof: According to [SL], with probability 1 — /2,
> P, a,9) (Ri(x,a,9) + V" (1)) (1)

—Q"(z,a) > —f/+/Ne(z,a),

where 8 = RO, /(1 — v)v/In(2|X[[A|m/0)/2 =
L R ).

We will show that

Rmax/(Nt('ra a)(l - 7))

For Ny(x,a) < (1}%";)"6 ,
Lh.s. and we can omit the second term (and prove the
stricter inequality). If the relation is reversed, then the
first term can be omitted. In both cases, we arrive at
the requirement Ryax > 62(1 53 (Rglax) In(KRY..),

which holds by assumption.

+ €3 > B/\/ Ne(z,0a). (2)

the first term dominates the

At step t, a number of DP updates are carried out. We
proceed by induction on the number of DP-updates.
Initially, Q) (z,a) > Q*(x,a)—e;, then Q(H‘l)(x a) =
Zy Pt(x’ a, y) (Rt(xa a, y) + VV( )( )) + Ntr(n;);)
> Zypt(x’ a, y) (Rt(xv a, y) + V(V*( ) - 61)) + Ntr(n;);)
— B/ Ne(x,a) —ver + w ey
> Q*(x,a) —ve1 — €3 = Q*(x,a) — €,
where we applied (1), (2), the induction assumption
and the definition of es. O

Let M denote the true (and unknown) MDP, let M
be the approximate model of OIM, and define M
so that it is identical to M for known pairs, and
equals M for unknown pairs. The parameters of M
and M are nearly identical: if (x,a) becomes known,
then the local values of P and R are O(m)z—
approximations of P and R with probability 1 — §/2
(Lemma 5 of [KS]). Therefore, by Lemma 4 of [KS],

Q7 (2, 0) — Q (2, 0)| < e 3)

Define the H-step truncated value function of policy
mas Q"(z,a,H) := E(Ziovtrt T =T0,0 = ao).

According to [KS] Lemma 2, H = 1— In 51(%@:}/)

is an
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€1-horizon time, i.e., |Q%,(x,a, H)—QF%,(z,a)| < € for
any (z,a), m and any MDP M with discount factor .

Consider a state-action pair (z1, a;) and a H-step long
trajectory generated by w. Let Aj; be the event that
an unknown pair (z,a) is encountered along the tra-
jectory. Then, by Lemma 3 of [SL],

Qi (r1,01) > Qg (21,a1) — Vinax Pr(Anr). (4)

To conclude the proof, we separate two cases (following
the line of thoughts of Theorem 1 in [SL]). In the first
case, an exploration step will occur with high prob-
ability: Let V2, = R%_ /(1 —~). Suppose that
Pr(Apy) > €1/V2,., that is, an unknown pair (z,a)
is visited in H steps with high probability. This can
happen at most m | X| |A]| times, so by the Hoeffding-
Azuma bound, with probability 1 —§/2, all (x,a) will

m|X||A|HV?
€1

become known after O( max | +) exploration

steps.

On the other hand, if Pr(Ay) < €/V2,., then the
policy is near-optimal with probability 1 — §:
OIM

OIM
QY  (r1,a01) > Q% (21,01, H)

o
> QE\FZ " (1’17(117H) - Vnolax Pr(AM)

oM oM
ZQXZ (1’17(117H)—€12Q§\r—4 (1’170,1)—261

OIM
ZQ}[ (1‘17(11)—361 ZQ*(Z‘l,al)—461

= Q*(xl,al) — €

where we applied (in this order) the property that
truncation decreases the value function; Eq. (4); our
assumption; the e;-horizon property of H; Eq. (3);
Lemma 4.2 and the definition of €;.

5. Experiments

To assess the practical utility of OIM, we compared
its performance to other exploration methods. Ex-
periments were run on several small benchmark tasks
challenging exploration algorithms.

For fair comparisons, benchmark problems were taken
from the literature without changes, nor did we change
the experimental settings or the presentation of ex-
perimental data. It also means that the presentation
format varies for different benchmarks.

5.1. RiverSwim and SixArms

The first two benchmark problems, RiverSwim and
SizArms, were taken from Strehl and Littman (2006).

The RiverSwim MDP has 6 states, representing the
position of the agent in a river. The agent has two

Table 1. Results on the RiverSwim task.

Method Cumulative reward

E3 3.020-10% 4 0.027 -109
R-MAX 3.014-10% 40.039 -106
MBIE(SL) || 3.168-105 £0.023 -10°
MBIE-EB | 3.093-10% 4 0.023 -10°
OIM 3.201-10% £0.016 -10°

Table 2. Results on the SizArms task.

Method Cumulative reward

E3 1.623-106 + 0.244 -10°
R-MAX 2.819-10% £ 0.256 -10°
MBIE(SL) 9.205-10% + 0.559 -10°
MBIE-EB 9.486-10% + 0.587 -10°
OIM 10.007-10% + 0.654 -10°

possible actions: she can swim either upstream or
downstream. Swimming down is always successful,
but swimming up succeeds only with a 30% chance
and there is a 10% chance of slipping down. The low-
ermost position yields +5 reward per step, while the
uppermost position yields +10000.

The SizArms MDP consists of a central state and six
‘payoff states’. In the central state, the agent can play
6 one-armed bandits. If she pulls arm k£ and wins,
she is transferred to payoff state k. Here, she can get
a reward in each step, if she chooses the appropriate
action. The winning probabilities range from 1 to 0.01,
while the rewards range from 50 to 6000 (for the exact
values, see Strehl & Littman, 2006).

Data for E3, R-MAX, MBIE and MBIE-EB are taken
from Strehl and Littman (2006). Parameters of all
four algorithms were chosen optimally. Following a
coarse search in parameter space, the R, parameter
for OIM was set to 2000 for RiverSwim and to 10000
for SizArms. State spaces are small and value iteration
instead of prioritized sweeping was completed in each
step.

On both problems, each algorithm ran for 5000 time
steps and the undiscounted total reward was recorded.
The averages and 95% confidence intervals are calcu-
lated over 1000 test runs (Tables 5.1 and 5.1).

5.2. 50 x 50 Maze with Subgoals

Another benchmark problem, Maze WithSubgoals, was
suggested by Wiering and Schmidhuber (1998). The
agent has to navigate in a 50 x 50 maze from the
start position at (2,2) to the goal (with +1000 re-
ward) at the opposite corner (49,49). There are sub-
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Table 3. Results on the Maze WithSubgoals task. The num-
ber of steps required to learn p-optimal policies (p=0.95,
0.99, 0.998) on the 50x 50 maze task with suboptimal goals.
In parentheses: how many runs out of 20 have found the
goal. ‘k’ stands for 1000.

Method 95% 99% 99.8%
€-GREEDY, € = 0.2 - (0) - (0) - (0)
€-GREEDY, € = 0.4 || 43k (4) | 52k (4) | 68k (4)
RECENCY-BONUS 27k (19) | 55k (18) | 69k (9)
FREQ.-BONUS 24k (20) | 50k (16) | 66k (10)
MBIE(WS) 25k (20) | 42k (19) | 66k (18)
OIM 19k (20) | 29k (20) | 31k (20)

optimal goals (with +500 reward) at the other two
corners. The maze has blocked places and punishing
states (—10 reward), set randomly in 20-20% of the
squares. The agent can move in four directions, but
with a 10% chance, its action is replaced by a random
one. If the agent tries to move to a blocked state, it
gets a reward of —2. Reaching any of the goals resets
the agent to the start state. In all other cases, the
agent gets a —1 reward for each step.

Each algorithm was run on 20 different mazes for
100,000 steps. After every 1000 steps, we tested the
learned value functions by averaging 20 test runs, in
each one following the greedy policy for 10,000 steps,
and averaging cumulated (undiscounted) rewards. We
measured the number of test runs needed for the algo-
rithms to learn to collect 95%, 99% and 99.8% of the
maximum possible rewards in 100,000 steps, and the
number of steps this takes on average, if the algorithms
can meet the challenge.

The algorithms that we compared were the recency
based and frequency based exploration bonus meth-
ods, two versions of e-greedy exploration, MBIE(WS)
and OIM. All exploration rules applied the improved
prioritized sweeping of Wiering and Schmidhuber
(1998). OIM’s Ryax was set to 1000. The results
are summarized in Table 3.

5.3. Chain, Loop and FlagMaze

The next three benchmark MDPs, the Chain, Loop
and FlagMaze tasks were investigated, e.g., by
Meuleau and Bourgine (1999), Strens (2000) and Dear-
den (2000). In the Chain task, 5 states are lined up
along a chain. The agent gets +2 reward for being
in state 1 and +10 for being in state 5. One of the
actions advances one state ahead, the other one resets
the agent to state 1. The Loop task has 9 states in

Table 4. Average accumulated rewards on the Chain task.
Optimal policy gathers 3677.

METHOD PHASE 1 | PHASE 2 | PHASE 8
QL+VAR.-BONUS - 25701 -
QL+ERR.-BONUS - 25301 -
QL e-GREEDY 1519 1611 1602
QL BOLTZMANN 1606 1623 -
IEQL+ 2344 2557 -
BAYESIAN QL 1697 2417 -
BAYESIAN DP? 3158 3611 3643
OIM 3510 3628 3643

two loops (arranged in a 8-shape). Completing the
first loop (using any combination of the two actions)
yields +1 reward, while the second loop yields +2, but
one of the actions resets the agent to the start. The
FlagMaze task consists of a 6 X 7 maze with several
walls, a start state, a goal state and 3 flags. Whenever
the agent reaches the goal, her reward is the number
of flags collected.

The following algorithms were compared: Q-learning
with variance-based and TD error-based exploration
bonus (model-free variants), e-greedy exploration,
Boltzmann exploration, IEQL+, Bayesian Q-learning,
Bayesian DP and OIM. Data were taken from Meuleau
and Bourgine (1999), Strens (2000) and Dearden
(2000). According to the sources, parameters for all
algorithms were set optimally. OIM’s Ry,.x parame-
ter was set to 0.5, 10 and 0.005 for the three tasks,
respectively.

Each algorithm ran for 8 learning phases. The total
cumulated reward over each learning phase was mea-
sured. Omne phase lasted for 1000 steps for the first
two tasks and 20,000 steps for the FlagMaze task. We
carried out 256 parallel runs for the first 2 tasks and
20 for the third one.

6. Summary of the Results

We proposed a new algorithm for exploration and rein-
forcement learning in Markov decision processes. The
algorithm integrates concepts from other advanced ex-
ploration methods. The key component of our al-
gorithm is an optimistic initial model. The optimal
policy according to the agent’s model will either ex-
plore new information that helps to make the model

'Results for Phase 5.
2Augmented with limited amount of pre-wired
knowledge (the list of successor states).
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Table 5. Average accumulated rewards on the Loop task.
Optimal policy gathers 400.

METHOD PHASE 1 | PHASE 2 | PHASE 8
QL+VAR.-BONUS - 179¢ -
QL+ERR.-BONUS - 1791 -
QL e-GREEDY 337 392 399
QL BOLTZMANN 186 200 -
IEQL+ 264 293 -
BAYESIAN QL 326 340 -
BAYESIAN DP? 377 397 399
OIM 393 400 400

Table 6. Average accumulated rewards on the FlagMaze
task. Optimal policy gathers approximately 1890.

METHOD PHASE 1 | PHASE 2 | PHASE 8
QL e-GREEDY 655 1135 1147
QL BOLTZMANN 195 1024 —
TEQL+ 269 253 —
BAvEsiaAN QL 818 1100 —
BAYESIAN DP? 750 1763 1864
OIM 1133 1169 1171

more accurate, or follows a near-optimal path. The ex-
tent of optimism regulates the amount of exploration.
We have shown that with a suitably optimistic initial-
ization, our algorithm finds a near-optimal policy in
polynomial time. Experiments were conducted on a
number of benchmark MDPs. According to the exper-
imental results our novel method is robust and com-
pares favorably to other methods.
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