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Abstract

Low-rank matrix approximation is an effective
tool in alleviating the memory and computa-
tional burdens of kernel methods and sampling,
as the mainstream of such algorithms, has drawn
considerable attention in both theory and prac-
tice. This paper presents detailed studies on the
Nystrdm sampling scheme and in particular, an
error analysis that directly relates the Nystr
approximation quality with the encoding pow-

A useful way to alleviate the memory and computational
burdens of kernel methods is to utilize the rapid decay-
ing spectra of the kernel matrices (Williams & Seeger,
2000) and perform low-rank approximation in the form of
K = GG, whereG € R™ ™ with m < n. However, the
optimal (eigenvalue) decomposition takeén?) time and
efficient alternatives have to be sought. In the following,
we give a brief review on efficient techniques for low-rank
decompositions of symmetric, positive (semi-)definite ker
nel matrices.

ers of the landmark points in summarizing the
data. The resultant error bound suggests a sim-
ple and efficient sampling scheme, theneans
clustering algorithm, for Nystim low-rank ap-
proximation. We compare it with state-of-the-art
approaches that range from greedy schemes to
probabilistic sampling. Our algorithm achieves
significant performance gains in a number of su-
pervised/unsupervised learning tasks including
kernel PCA and least squares SVM.

Greedy approaches have been applied in several fast al-
gorithms for approximating the kernel matrix. In (Smola
& Scholkopf, 2000), the kernel matrikx’ is approximated

by the subspace spanned by a subset of its columns. The
basis vectors are chosen incrementally to minimize an up-
per bound of the approximation error. The algorithm takes
O(m?nl) time using a probabilistic heuristic, wheres the
random subset size. In (Ouimet & Bengio, 2005), a greedy
sampling scheme is proposed based on how well a sample
point can be represented by a (constrained) linear combi-

nation of the current subspace basis in the feature space.
Their algorithm scales a®(m?n). Another well-known
greedy approach for low-rank approximation of positive
emi-definite matrices is the incomplete Cholesky decom-

1. Introduction

Kernel methods play a central role in machme_ learning an&Osition (Fine & Scheinberg, 2001: Bach & Jordan, 2005:
have demonstrated huge success in modelling real-worl

DA : ach & Jordan, 2002). It is a variant of the Cholesky
data with highly complex, nonlinear structures. Examples " o :
) . : - ~““decomposition that skip pivots below a certain threshold,
include the support vector machine, kernel Fisher diserimi : . ,
and factorizes the kernel matrix as K = GG’ where

nant analysis and kernel principal component analysis. Th € R"*™ is a lower triangular matrix
key element of kernel methods is to map the data into a '
kernel-induced Hilbert spacg(-) where dot product be- Another class of low-rank approximation algorithms stem
tween points can be computed equivalently through the kerfrom the Nystbm method. The Nysfm method was orig-
nel evaluationy(x;), p(x;)) = K(z;,x;). Givenn sam-  inally designed to solve integral equations (Baker, 1977).
ple points, this necessitates the calculation okam sym-  Given a kernel matrixk', the Nystbm method can be
metric, positive (semi-)definite kernel matrix. Thereantt deemed as choosing a subsetofcolumns (hence rows)
complexities in terms of both space (quadratic) and timels € R™*™, and reconstructing the complete kernel ma-
(usually cubic) can be quite demanding for large problemstrix by K ~ EW ~'E’, whereW is the intersection of
posing a big challenge on practical applications. the selected rows and columns &f. The most popular
sampling scheme for Nygtm method is random sampling,
which leads to fast versions of kernel machines (Williams
& Seeger, 2001; Lawrence & Herbrich, 2003) and spectral
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clustering (Fowlkes et al., 2004). In (Platt, 2005), selerawhile still preserving its computational efficiency.

variants of multidimensional scaling are all shown to be re- AT . .
lated to the Nystim approximation. Our key finding is that the Nystm low-rank approxima-

tion depends crucially on the quantization error induced by
There are also a large body of randomized algorithms foencoding the sample set with the landmark points. This
low-rank decomposition of arbitrary matrices (Frieze et al suggests that, instead of applying the greedy or probabilis
1998; Achlioptas & McSherry, 2001, Drineas et al., 2003),tic sampling, the landmark points can be simply chosen as
where the goal is to design column/row sampling proba-the k-means cluster centers, which finds a local minimum
bilities that achieve provable probabilistic bounds. Ehes of the quantization error. To the best of our knowledge,
algorithms are designed for a more general purpose ante k-means has not been applied in the Ngstiow-rank

will not be the focus of this paper. However, we note thatapproximation. The complexity df-means is only linear
one of these randomized algorithms has been recently rén the sample size and dimension and, as our analysis ex-
vised for efficient low-rank approximation of the symmet- pected, it demonstrates very encouraging performance that
ric Gram matrix (Drineas & Mahoney, 2005). Therefore is consistently better than all known variants of Ngstr

we will use it as a representative of randomized algorithmd\e also compare it with the greedy approach of incomplete
in our empirical evaluations. The basic idea of (Drineas &Cholesky decomposition and again obtain positive results.
Mahoney, 2005) is to sample the_ cqlumns of t_he kemel MaThe rest of the paper is organized as follows. In Section 2,
trix based on a pre-computed distribution using the norms

. - . we give a brief introduction of the Nystm method. In
of the columns. The reconstruction of the kernel matrix is . ; .
. ) e Section 3, we present an error analysis on how the Nystr
also normalized by the sampling distribution.

low-rank approximation is affected by the chosen landmark
In terms of efficiency, greedy approaches usually takepoints, and propose the-means algorithm for the sam-
O(m?n) time for sampling, while the random scheme only pling step. In Section 4, we compare our approach with
needsO(n) and is much more efficient. Probabilistic ap- a number of state-of-the-art low-rank decomposition tech-
proaches, or randomized algorithms in general, are usuallgiques (including both greedy and probabilistic sampling
more expensive in that the sampling distributions have t@approaches). The last section gives concluding remarks.
be computed based on the original matrix, which require

at leastO(n?). In terms of memory, note that_the matrices o Nystrom Method

(£ and W) needed in the Nystim method with random

sampling can be simply computed on demand. This greatlyrhe Nystbm method is originated from the numerical
reduces the memory requirement for very large-scale probireatment of integral equations of the form

lems. In contrast, the intermediate matrices for greedy ap-

proaches have to be incrementally updated and stored. /p(y)k(x, Y)bi(y)dy = \idi(x), Q)

Although the Nystdm method possesses desirable scalintherep(_) is the probability density functiork is a posi-
properties and has been applied with success in various mﬁ(/e definite kernel function and: > \s > --- > 0 and
phine learning problems, ana_lysis (.)n .its key step.of choosaol ¢, ...arethe eigenvalu;as anld gigegnf_unctio_ns of thein-
ing the landmark set is relatively limited. In (Drineas & teéral ’equation respectively. Given a set of i.i.d. sample
Mahoney, 2005), a probabilistic error bound is provided{x - - }’drawn fromp.() the basic ide;a{ ié 0 ap

i _ H H 1,42,---,4q )y -
on the Nystém low raf‘k approxmathn. However, the proximate the integral in (1) by the empirical average:
error bound only applies to the specially designed sam-

pling scheme, which needs to compute the norms of all 13

the rows/columns of the kernel matrix and is hence quite EZ k(z,x;)di(x5) = Nidi(z). 2
expensive. In (Zhang & Kwok, 2006), a block quantiza- J=1

tion sche_me is propos_ed for fas_t spectral embedding. _Théhoosingyc in (2) from {1, 25, . .., z,} leads to a standard
kernel eigen-system is approximated by first ComPUt'”geigenvaIue decompositioA WU @ = U@A@, where
a block-wise constant kernel matrix and then extrapolat-;-(q) - (q) x
N : K" = k(z;,xz;) fori,j = 1,2,...,q, U9 € RI*
ing its eigenvectors through the weighted Ngstrexten- * S ) ¢

) o has orthonormal column ) ¢ RI*j iagonal
sion. However, the error analysis is only on the block- as .Ot onormarl columns am’d €K sad 390. a
matrix. The eigenfunctions;’s and eigenvalues,;’s in

guantization step, and how the Ny@in method affects the . (@ (@) o
approximation quality in general remains unclear. Thus,(slgecggr bzeoz(a)rir)).rommated ly'* and A, as (Williams &

the motivation of this paper is to provide a more concrete

analysis on h_ow tr_le sampllng scheme (or the _c_:h0|ce of the () ~ \/ﬁU](f)> A~ )\Eq)/Q- ©)

landmark points) in general influences the Ngstrlow- _ . _

rank approximation, and to improve the sampling strategyl his means, the Nysim method using different subset
sizesgq’s are all approximations ta,; and ¢; in the inte-
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gral equation (1). As a result, the Ny&in method us- 3.2. Approximation Error of Sub-Kernel Matrix
ing a smallg can also be deemed as approximating the . . ) "
Nystrom method using a large Suppose the sample set In this sgctlon we a'l'pplya clustered dgta n_10de|to analyze
X = {2}, with the corresponding x n kernel matrix the quality of Nystém low rank approximation. Here, the

K. Then the Nysittm method that randomly chooses asub-data clusters can be naturally obtgined by'assigning eaph
setZ — {z}™, of m landmark points will approximate sample to the closest Ia_ndmark point. As will be seen, this
the eigen-system of the full kemnel matdk® . — @ A x modeﬂ allows us to glerlve an explicit error bound for the
by (Williams & Seeger, 2001) Nystrom approximation.

- n Again, suppose that the landmark segis= {z;}!",, and

Dy~ \/jEégAgl, A~ —Az. (4)  the whole sample seY is partitioned intan disjoint clus-

" m tersSy’s. Let c(i) be the function that maps each sam-
Here, E € R™™ with E;; = k(z;,2;), and®z,Az € ple z; € X to the closest landmark point;) € Z, i.e.,
R™>™ contain the eigenvectors and eigenvaluesiofe  ¢(i) = argminj—; 2... ., [|2; — z;||. Our goal is to study
R™>*™ whereW;; = k(z;, z;). Using the approximations the approximation error in (5):
in (4), K can be reconstructed as £ = ||K _ EW,lE,HF ’ ©)

!/
( /%Eq,ZAZl) (%Az) ( /%E(I)ZAgl) where| - || » denotes the matrix Frobenious norm.

_ First, we consider the simpler notion jpértial approxima-
_ 1

= EWE. ©) tion error defined as follows.

Equation (5) is the basis for Nysm low-rank approx-  Definition 1. Suppose each cluster hassample$. Re-
imation of the kernel matrix (Williams & Seeger, 2001; peat the following sampling proce@stimes: at each time

K

12

Fowlkes et al., 2004). t, pick one sample from each cluster, and denote the set of
samples chosen at times Xz,. ThenX = {X7, U X7, U
3. Error Analysis of the Nystrom Method ...UX7, }, and the whole kernel matrix will be correspond-

_ _ o ingly decomposed int6? blocks, each of size: x m. Let
In this section we analyze how the Nyd&tn approximation K7, 1,,andEz, z be them x m similarity matrices defined
error depends on the choice of landmark points. We firspn (Xz,, X7,) and(Xz,, Z), respectively, andll’ € R™*™
provide an important observation (Section 3.1), and thenhe kernel matrix defined offi. Thepartial approximation

derive the error bound in more general settings based on &roris the difference betweeliz, 7, and its Nystom ap-
“clustered” data model (Section 3.2-3.4). The error boundproximation under the Frobenius norm

gives important insights on the design of efficient sam-
pling schemes for accurate low-rank approximation (Sec-

tion 3.5). We assume the kernglsatisfies the following property:

(k(a, b) = (e, d))* < Cx (lla — cl*+ b — d|[2) , Ya,b,c,d

(8)
Proposition 1. Given the data set’ = {x;}? ,, and the whereC% is a constant depending @nand the sample set
landmark point seg = {z;}-,. Then the Nystm recon- ~ X The validity of this assumption on a number of com-
struction of the kernel entri (z;, z;) will be exact if there  monly used kernels will be proved in Section 3.4.
exist two landmark points such thaf = z;, andz, = z;. Proposition 2. For kernel k satisfying property (8), the
partial approximation error£z, 7, is bounded by

1.1, = | Kz,7, — Br, z2W B, 5| F. ()

3.1. Observation

Proof. Let K,, z € R'™ be the similarity betweemn,

and the landmark pointg. Then the Nysim reconstruc- &1,1;, < \/ZmC;’;(eL +ez,)+ \/mcfgezi
tion of the kernel entry will beKr“zW*lK;j’Z, where - N .
W € R™*™ js the kernel matrix defined on the land- +y mCyez, + mCy /erez W™ ||r. (9)

mark setz. Let(j/l)/(k) be thekth roz"’) of W, then we  heree, is the quantization error induced by coding each
have K, z = W andK,, = = W'? sincex; = z,,  sample inz, by the closest landmark point i, i.e.,
andz; = z,. As a result, the reconstructed entry will be 5
W(p)W*I(W(‘”)’ = qu = K(zp’zq) = K(xl,xj) O er; = inEXI,; H‘Ll - ZCU)H : (10)

1 H H w0 "
Proposition 1 indicates that the landmark points should be [ cluster sizes differ, add “virtual samples” to each cluster

h i | fficiently with th iginal data. H such that all the clusters have the same size (which is equal to
chosen to overlap suimiciently with the original data. HOW- 7 _ .y, |5, 1), The virtual samples added to clusty are

ever, it is often impOSSib|e_t0 use a small landmark set tG:hosen as the landmark point for that cluster, so they will not
represent every sample point accurately. induce extra quantization errors but will loosen the bound.
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Proof. We will first define the following matrices Proof. Here we sum up the terms in (9) separately.

Az, 7, =K1, 7, —W;Bz1, z = E1, 2 — W; T
Cr s W, > \/2mCher, +ez) ¢2mc§(z Z« fez. vz,
Z =1 =1 :

and then show that they have bounded Frobenius norms
Without loss of generality, we specify the indices as fol-

=FEz1, =z — (11)

lows: Kz, 7,(p,q) = k(zz,0),71,(9)); Ez.2(p,q) =

k(1 (p)s 2¢)s B1;,2(0: @) = k(21,(p), 2¢); @andW (p, q) =
k(zp, z4). With property (8), we have
| Az.z, % = Y (Hez)oz,0) = ke 2))”
P,q=1
m ) )
< & Y (lonw -3l + ez - =)
P,q=1

m%(zwmmzwﬂzmm@m@
p=1 q=1

= 2mC’fY (ezi + ezj) ,
whereez, is the same as that in (10) sine€ (q)) = q.

For matrixBz, z, we have

Z (k(xfi(p)’ zq) — k(2p, Zq))

p.q

meY Z ||xL (p)
p=1

2

| Bz, z|%

IN

— 5| = mChez,

and similarly for matrixCz, z ||Cz, z||3. < mChexz,.

Note that the partial approximation erré¥, 7, (7) can be
re-written as follows using (11).

| €z.z;|lF =||W+Az,z, —(W + BIi,z)W_l(W-i-CIj,z)/HF
= HW-‘FAL-,IJ- ~W'-C7,z—Bz,z —BIi,ZWAC/Ij,Z HF

< || Az,z,llr+| Bz, 2l +1|Cz,.2llr + | Bz, 2llF || Oz, 2l | W e
Using the bounds oAz, 7, ||, || Bz, z||, [|Cz, , z|| together
with the definition in (11), we have Proposition2 [

3.3. Approximation Error of Complete Kernel Matrix

With the estimated partial approximation error, we can now

obtain a bound on the complete error for Ngstrapprox-

q/ZmC"Z VT Ter, +Z er; | < 2T\/mC" Te

wheree = Z;-Tzl €7, = Yuex @i = zew || is the same
as defined in proposition 3. Similarly, the second term (and
the third term) in (9) can be summarized as

\/mCxez —\/ka (Zﬁ) <T\/mC§(eT

The last term in (9) can be summarized as

,

2
Zmox\/ez ez, [|lW 1| r = mCXI|W ™ IHF(Z\/@I)

1,j=1

ngXHW_IHFTe

By combining all these terms, we arrive at Proposition 3.
O

3.4.C% Under Different Kernels

In this section, we show that many commonly used ker-
nel functions satisfy the property in (8). Consider the sta-
tionary kernelk (z,y) = (|L%H) including the Gaus-
sian kernelz(a) = exp(—a?), Laplacian kernek(«) =
exp(—a), and inverse distance kernela) = (a + ¢)!

By using the mean value theorem and triangular inequality,
we have, for any:, b, ¢, d € R?,

(k(a,b) = k(c,d))* = (x(la—bl/o)~r(llc—d|/0))*
= [5'(&)/o] (la—bll = e = dIl)”.

Letv; = a—candvy, = b—d. Note that we havéc—d|| <
l[a =0l + [[v1]| + [[v2|| and similarly[la — b[| < [c —d]| +
[loill + [lv2]|. Solla — b]| — |lc — d|| is always bounded by

le = dl))® (la—ell + b —d|))*
2 (la— el +[lb—d|f*) .

(lla = ol = <
<

imation (6). The basic idea is to sum up the partial errorsgg C% can be chosen asax[2+/(£)/o]2 which is often

&, z;overalli,j =1,2,...T.

Proposition 3. The error of the Nystim approximation (6)
is bounded by

E < AT /mCheT + mChTe|W ™| p

Ze(i) ||2 is the

(12)

whereT = ml?x|8k|, ande = 37", ||z —

total quantization error of coding each samplge X with
the closest landmark point; € Z.

bounded C% is 515 5,z forthe Gauss|ano}—2 for the Laplacian,
and 6264 for the inverse distance). Similarly, for polyno-

mial kernels of the fornk(z, y) = ((z,y) + €)%,
(k(a,b) — k(e,d)* = ((ab+e)? — (dd + &)
P (€)(a'b—cd))’ = (p'(€) ((a— )b+ (b—d)'c))”

20" ()1 (ll(a — )b + [|(b — d)'c]*)
20" ()R] (lla — cl* + [Ib — d||*) ,

—

IN A
8O
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whereR is the larger one of the two quantities: the max- position of them x m matrix S = G'G = VAV".
imum pairwise distance between samples, and maximum

4. SoC%k can be chosen asax[#/(¢)R]? = d®RC. low-rank approximation is useful for algorithms that rely

on eigenvectors of the kernel matrix, such as kernel PCA
(Scholkopf et al., 1998), Laplacian eigenmap (Belkin &
Niyogi, 2002) and normalized cut.

The error bound in Proposition 3 provides important in- . ) .
sights on how to choose the landmark points in the Nystr 'Ot that the Nystim method, when designed originally

method. As can be seen, consistently, that for a number sqlve i.ntegral equations, d,id hot prqvide orthogonal ap-
commonly used kernels, the most important factor that inProximations to the kernel eigenfunctions. Thanks to the

fluences the approximation quality dsthe error of quan- matrix completion view (5) (Fowlkes et al., 2004; Williams
o ; . & Seeger, 2001), the Nystm method can be utilized for
tizing each of the samples i with the closest landmark in - : .

Z. If this quantization error is zero, the Ny&itn low-rank obta_lnlng orthogc_mgl eigenvectors (PropOS|t|on"4), toug
approximation of the kernel matrix will also be exact. This the time complexity increases from the simple Nystrex-

; 5 .
agrees well with the ideal case discussed in Section 3.1, [ENSion (4) ofO(mn) to O(m*n). In the experiments we
focus on the orthogonalized eigenvector approximation.

3.5. Sampling Procedure

Motivated by this observation and the fact ttkatmeans
clustering can find a local minimum of the quantization er-

ror (Gersho & Gray, 1992), we propose to use the Center;’able 1.Complexities of basis selection for the different methods.

obtained from thé&-means as the landmark points. Hekre, _ Ours  Nystom Drimjas |CZD
is the desired number of landmark pointsdn The larger time | O(mn)  O(n)  O(n”)  O(m™n)
the k, the more accurate the approximation though at the ~_SPace| O(mn) O(mn) O(mn) O(mn)

cost of higher computations. Despite its simplicity, #he

means procedure can greatly improve the approximatiom/e compare altogether five low-rank approximation algo-
quality compared to other sampling schemes, as will baithms, including: 1. incomplete Cholesky decomposition
demonstrated empirically in Section 4. Recent advanceCD)?; 2. Nystibm method (with random sampling); 3.
in speeding up thé-means algorithms (Elkan, 2003; Ka- the method in (Drineas & Mahoney, 2005); 4. our method
nungo et al., 2001) also make titisneans-based sampling (for simplicity, the maximum number d@f-means iterations

strategy particularly suitable for large-scale problems. is restricted tal0); 5. SVD. Note that SVD (or eigenvalue
decomposition in our context) provides the best low-rank
4. Experiments approximation in terms of both the Frobenius norm and

spectral norm (Golub & Van Loan, 1996). The complexi-
This section presents empirical evaluations of the variousies of basis selection (i.e., choosiAgandW in Nystrom,
low-rank approximation schemes. First, we discuss howor sampling the columns in (Drineas & Mahoney, 2005)
the low rank approximation fits into different applications and ICD) in the different algorithms are listed in Table 1.
One is to solve linear systems of the fo({f§ + o)z = a, Evaluations are performed in the contexts of kernel matrix
where K is the kernel matrixg > 0 is a regularization approximation (Section 4.1), kernel PCA (Section 4.2), and
parameter and is then x n identity matrix. Given the LS-SVM classification (Section 4.3). We use core(TM)-
low-rank approximationX ~ GG’, the following holds  dual PC with 2.13GHz CPU and the codes are in matlab.
(Williams & Seeger, 2001) by the Woodbury formula
4.1. Approximating the Kernel Matrix

1
-1 o = _ =1
(K+ol)™ =~ o (I Glol+GG)" G ) - (13) We first examine the performance of the low-rank approx-

) ) . imation schemes by measuring their approximation errors
which only needsO(m™n) time and O(mn) MeMONY. iy terms of the Frobenius norm) on the kernel matrix. We
Therefore, it can be used in speeding up the Gaussian praygose 2 number of benchmark data sets from the LIB-

cesses (Williams & Seeger, 2001) and least-squares SVMy/\ archiveé, summarized in Table 2. Note that our ap-
(LS-SVM) (Suykens & Vandewalle, 1999). proximation error bound in Proposition 3 applies to most

The second application is to reconstruct the eigen-systerkernel functions (Section 3.4), and preliminary experimen

of a matrix approximated by its low-rank decomposition. tal results with these kernels have shown the superiority
of our sampling scheme compared with other low-rank ap-

Proposition 4. Given the low-rank approximatiod’ ~ proximation methods. However, due to lack of space, we

GG, whereG € R™*™ andm < n, the topm eigenvec-
torsU of K can be obtained a8 ~ GVA~/2in O(m?n) 2http://www.di.ens.fr/~fbach/kernel-ica/index.htm
time, wherdl, A € R™*™ are from the eigenvalue decom- 3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2.A summary of data sets.

[ — : T
data german splice adultla dna * if;ﬁﬁiﬂ"i;&,iﬁ;"gp""g *
size 1000 1000 1605 2000 x k-means centers e

dimension 24 60 123 180 30t
data segment wla svmgdla satimage
size 2310 2477 3089 4435

dimension 19 300 4 36 25¢

20t

low-rank approximation error (g)

will only report results for the Gaussian kerrf€lz, y) = £
exp(—[lz — yl[*/7). Here, is chosen as the average T
squared distance between data points and the mean of each quantization error ()

data set. We gradually increase the subset:siZeom 1%

to 10% of the data size. To reduce statistical variability, re-
sults of methods 2, 3, and 4 are based on averages over
repetitions.

jgure 2.Low-rank approximation error versus quantization error
different sampling schemes.

The approximation errors are plotted in Figure 1. As can

be seen, our algorithm is only inferior to SVD on most dataminimum misalignment errormin 4cgsxs |[U — UA|| .

sets. Moreover, though the method in (Drineas & Mahoney,The parameter setting is the same as in Section 4.1, ex-
2005) involves a more complicated probabilistic samplingcept that we fixn = 0.05n for all the low-rank decom-
scheme, its performance is only comparable or sometimegosition algorithms. Again, results of methods 2, 3, 4 in
even worse than the Ny#sim method with simple random Table 3 are averaged over 20 repetitions. As we can seen,
sampling. Similar observations have also been reported iour algorithm is the best on most data sets, next comes the
the context of SVD (Drineas et al., 2003). ICD seems to bestandard Nystrm and the method by (Drineas & Mahoney,
inferior on several data sets. However, for data sets whos2005). The time consumptions of all low-rank approxima-
kernel spectra decay rapidly to zé(such as theegment, tion schemes are significantly lower than SVD.
svmguidela andsatimage), ICD can also quickly attain

performance comparable to others. 4.3. Least Squares SVM

We also examine empirically the relationship betw&en Given the kernel matrixX, the training labelsy &

ande under different sampling schemes. Figure 2 reports{+1}»x1 and the regularization paramet@r> 0, the LS-

the results on thgerman data, wheren = 100 and each  SvM classifierf(r) = >, a;é(x, z;) + b is solved by

sampling scheme is repeated 100 times. As can be seef,— /N ~'1/y/ My, anda = M~'(1 — by), where

there is a strong, positive correlation betweéeainde. This 1 is a vector of all ones, and/ = Y (K + I/C)Y and

is observed on most data and agrees with our error analysis: — diag(y). Note thatd/ ~! = Y (K + I/C)~'Y can be
computed efficiently using (13).

4.2. Kernel PCA . N .
We evaluate different low-rank approximation schemes in

In kernel PCA, the key step is to obtain eigenvectors of theLS-SVM, using some difficult pairs of thedSPS digits°.
centered kernel matriff K H, whereH = I — 111’ € = We use Gaussian kernetp(—||z — y||?/~) andC = 0.5.
R™*"_ Following Proposition 2 of (Ouimet & Bengio, Table 4 reports the classification performance of the stan-
2005), with the low-rank decompositiol ~ GG’, the  dard LS-SVM, and those with different low-rank approxi-
centered kernel matrix can be written @G)(HG)' or  mation schemes, at = 0.05n and0.1n. Again, methods
(G—-G)(G—G)',whereG € R™™ and all its rows equal 2, 3, 4 are repeated 20 times. For= 0.05n, our approach

to the mean of rows i6. Hence the topn eigenvectors can is significantly better than methods 1,2,3 with a confidence
be obtained irfD(m?n) time according to Proposition 4. level that is at leas$9.5%. Form = 0.1n, ours is also
better with a confidence level that is at 1e8%t5% on the

irst 7 pairs. For the last 4 pairs, the differences between
our approach and methods 1,2,3 are not statistically signif
icant. Note, however, that the testing errors obtained by th
various approximation algorithms on these 4 pairs are all
4Note that the (squared) rank-approximation error of SVD close to those of the exact LS-SVM, i.e., all approximation

isY " ., o whereo;'s are the singular values @€ sorted in  algorithms have reached their possibly best performance.
descending order (Golub & Van Loan, 1996). Therefore,ifSVD's

error in Figure 1 drops rapidly, so does the spectrurof Sftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/

We evaluate the low rank approximation schemes by th
embedding onto the top 3 principal directions. We align
the approximate embeddings)with the standard KPCA

embedding ) through a linear transform, and report the
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Figure 1.Approximation errors (in terms of the Frobenius norm) on the kerndixiay different low-rank approximation schemes.

Table 3.Approximation errors and CPU time consumed for the different lovi-epproximation schemes in the context of kernel PCA.
Due to the lack of space, we do not show the standard deviation of the CleU tim

approximation error CPU time (seconds)
data Ours Nystdm Drineas ICD SVD Ours  Nystom Drineas ICD
german (4.40£0.58)x 10~ 2 (2.64:058)x10~ 1  (2.71+0.34)x10" ! 5.11x10° ! 27.6 0.8 0.03 0.3 0.09
splice (3.444+0.43)x10~!  (1.06+0.11)x 10° (1.070.11)x 10° 1.27x10° 24.2 0.9 0.05 0.6 0.1
adultla (4.414£0.49)x 1072 (2.86:0.42)x10~ !  (2.84+0.66)x10~ !  6.19x10~! | 134.8 3.0 0.2 4.0 0.7
dna (1.88+0.21)x 1071 (1.09+0.08)x 10° (1.01£0.14)x 10° 1.17x10° 197.0 6.6 0.5 10.6 15
segment (7.8744.43)x107*  (8.37+4.08)x1072  (1.84+0.99)x1072  2.37x1072 | 322.8 4.2 0.3 1.8 1.0
wla (1.55£0.78)x 101 (2.81£0.62)x10~!  (6.05+3.39)x10~!  1.11x10° 3940 128 1.8 35.3 3.6
svmguidela | (5.16+2.12)x10™%  (3.71+2.26)x1073  (2.78£1.60)x10~2  5.07x10~* | 650.4 6.7 0.5 24 2.3
satimage | (5.204£0.97)x10~%  (6.19£0.28)x10~ %  (6.80+1.01)x10"2  2.47x10~2 | 2762.8 16.1 1.5 15.9 7.5

5. Conclusion Region under grant 614907.

The Nystdbm method is a useful technique for low-rank ap-
proximation. However, analysis on its key step of choos-R€ferences

ing the landmark points and especially that in terms ofachlioptas, D., & McSherry, F. (2001). Fast computation
approximation quality is still limited. In this paper, we  qf |ow rank matrix approximationsProceedings of the

draw an intuitive but important connection between the 53ih Annual ACM Symposium on Theory of Computing
Nystrom approximation quality and the encoding capaci- (pp. 611 — 618).

ties of landmark points. Our analysis suggests the k-means

as a natural sampling scheme. Despite its simplicity, théBach, F., & Jordan, M. (2002). Kernel independent com-
k-means-based sampling gives encouraging performance ponent analysislournal of Machine Learning Reseaich
when empirically compared with state-of-the-art low-rank 3, 1-48.

approximation techniques. One future direction is to uti-

lize label/side information for task-specific decompasiti ~ Bach, F., & Jordan, M. (2005). Predictive low-rank decom-
where one excellent example is (Bach & Jordan, 2005) in Position for kernel methods.Proceedings of the 22th

the context of incomplete Cholesky decomposition. International Conference on Machine Learni(gp. 33
— 40).
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Table 4.Testing errors (in %) on different pairs of tRkSPS digits.

m = 0.05n m = 0.1n

data| LS-SVM | SVD Ours Nystom Drineas ICD| SVD Ours Nystom Drineas ICD
0.97 0.97 0.7&0.09 1.56:0.51 2.6%1.64 4.62| 0.97 0.81%0.11 0.940.18 154035 1.22
2.47 247 291055 4.48151 454116 4.12| 247 272022 2.7#0.59 294059 4.94
1.67 0.83 1.9%0.62 2.821.10 2.980.73 5.30| 1.67 1.29%0.31 154046 158051 2.23
2.71 3.31 3.930.84 564145 552121 6.02| 2.71 2.76:0.23 3.78 053 3.94055 4.21
2.76 214 3.38:0.65 4.34:1.52 4.281.38 4.29| 214 2.66:0.34 2.820.53 3.120.58 4.60
0.59 0.59 1.04:0.35 2.69%-1.34 2.240.98 5.65| 0.89 0.610.25 1.03:0.45 1.18-0.44 5.05
1.45 1.16 1.04050 2.792.00 2.520.85 2.33| 145 1.130.23 1.22-0.51 1.79-0.37 291
1.44 0.86 0.96:0.10 1.4A40.64 245125 3.76| 0.86 0.96:0.17 0.840.09 1.080.39 261
491 491 6.531.18 7.3%1.39 7.03:1.25 7.36| 3.98 5.25:0.64 522077 549083 552
2.88 259 254040 3.280.96 3.3:1.03 8.06| 259 2.6@0.26 2.440.36 2.43:0.45 5.47
1.21 0.60 1.540.63 2.7%¢1.25 252133 3.93| 1.21 1.240.32 1.25041 1.480.29 212
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