
Optimizing Estimated Loss Reduction for Active Sampling in Rank

Learning

Pinar Donmez pinard@cs.cmu.edu

Jaime G. Carbonell jgc@cs.cmu.edu

Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 USA

Abstract

Learning to rank is becoming an increasingly
popular research area in machine learning.
The ranking problem aims to induce an or-
dering or preference relations among a set of
instances in the input space. However, col-
lecting labeled data is growing into a burden
in many rank applications since labeling re-
quires eliciting the relative ordering over the
set of alternatives. In this paper, we pro-
pose a novel active learning framework for
SVM-based and boosting-based rank learn-
ing. Our approach suggests sampling based
on maximizing the estimated loss differential
over unlabeled data. Experimental results on
two benchmark corpora show that the pro-
posed model substantially reduces the label-
ing effort, and achieves superior performance
rapidly with as much as 30% relative im-
provement over the margin-based sampling
baseline.

1. Introduction

Learning to rank has recently drawn broad attention
among machine learning researchers (Joachims, 2002;
Freund et al., 2003; Cao et al., 2006). The objec-
tive of rank learning is to induce a mapping (ranking
function) from a predefined set of instances to a set
of partial (or total) orders. For instance, in recom-
mendation systems each customer is represented with
a set of features ranging from the income level to age
and her preference order over a set of products (e.g.
movies in Netflix). The ranking task is to learn a map-
ping from the feature space to a set of permutations of
the products. The applications include document re-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

trieval, collaborative filtering, product rating, and so
on. In this paper, we are interested in IR applications,
and focus on document retrieval. A number of queries
are provided such that each query is associated with
an ordering of documents indicating the relevance of
each document to the given query. Like many other
ranking applications, this requires a human expert to
carefully examine the documents in order to assign
relevance-based permutations. It is often unrealistic
to spend extensive human effort and money for label-
ing in ranking. Thus, it is crucial to design methods
that will considerably reduce the labeling effort with-
out significantly sacrificing ranking accuracy.

The active learning paradigm addresses this type of
problem. The central idea is to start with only a small
amount of labeled examples and sequentially select
new examples to be labeled by an oracle. The selected
examples are then added to the training set. It is clear
that labeling data in ranking requires a complete (or
partial) ordering of data whereas in classification la-
beling considers only absolute class assignments. The
target domain of a set of permutations is more com-
plex than that of absolute classes. Hence, it is even
more crucial to select the most informative examples
to be labeled in order to learn a ranking model using
fewer labeled examples.

In this paper, we propose a novel active sampling
framework for SVM rank learning (Joachims, 2002),
or RankSVM in short, and RankBoost (Freund et al.,
2003). The proposed method considers the capacity of
an unlabeled example to update the current model if
rank-labeled and added to the training set. We show
that this capacity can be defined as a function that
estimates the error of a ranker introduced by the ad-
dition of a new example. The capacity function takes
different forms in RankSVM and RankBoost due to
different formulations of the ranking function. For
example in the case of RankSVM, the ranking func-
tion is defined via a normal vector which is a weighted
sum of the support vectors whereas the ranking func-



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

tion is a weighted sum of weak learners in RankBoost.
However, in both cases, the proposed strategy selects
the samples which are estimated to produce a faster
convergence from the current predicted ranking to the
true ranking. Our empirical evaluations on two bench-
mark corpora from topic distillation tasks in TREC
competitions show a significant advantage favoring our
method against the margin-based sampling heuristic
of (Brinker, 2004; Yu, 2005) and a random sampling
baseline.

The rest of the paper is organized as follows: Section 2
provides a brief literature review to the related work.
Section 3 motivates the choice of the proposed active
learning framework and introduces two novel methods
for active learning in the RankSVM and RankBoost
settings. In Section 4, we report the experimental re-
sults and demonstrate the effectiveness of our methods
on benchmark datasets. Finally, we offer our conclu-
sions and next steps in Section 5.

2. Related Work

A number of strategies have been proposed for active
learning in the classification framework. Some of those
center around the version space (Mitchell, 1982) reduc-
tion principle (Tong & Koller, 2000): selecting unla-
beled instances that limit the volume of the version
space the most, or equivalently selecting the ones with
the smallest margin. Some of the others adopt the idea
of reducing the generalization error (Roy & McCallum,
2001; Xu et al., 2003; Nguyen & Smeulders, 2004; Don-
mez et al., 2007): the selection of the unlabeled data
that has the highest affect on the test error, i.e. points
in the maximally uncertain and highly dense regions
of the underlying data distribution (Xu et al., 2003;
Nguyen & Smeulders, 2004; Donmez et al., 2007).

Unfortunately, it is not straightforward to extend these
theoretical principles to ranking problems. The gen-
eralization power of ranking functions is measured by
different evaluation metrics than the ones used for clas-
sification. Moreover, the classical performance metrics
for ranking, such as MAP (Mean Average Precision),
precision at the kth rank cut-off, NDCG (Normalized
Discounted Cumulative Gain), etc., are harder to di-
rectly optimize than the classical loss functions for
classification, i.e. log loss, 0/1 loss, squared loss, etc.

Recently, there have been attempts to address the
challenges in active sampling for rank learning.
Brinker (2004) uses a notion of the margin as an ap-
proximation to reducing the volume of the version
space. The margin in the ranking scenario is defined
as the minimum difference of scores between two in-

stances assuming the ranking solution is a real-valued
scoring function. Yu (2005) adopted the same notion
of margin for SVM rank learning and proposed a batch
mode for instance selection that minimizes the sum of
the rank score differences of all data pairs within a
set of samples. Yu (2005) proposed an efficient im-
plementation which considers only the rank-adjacent
pairs and showed that this strategy is optimal in terms
of selecting the most ambiguous set of samples with re-
spect to the ranking function. The major drawback of
this margin-based sampling method of (Brinker, 2004;
Yu, 2005) is that a scoring function for ranking may
assign very similar scores to instances with the same
rank label since the ranking function does not distin-
guish between the relative order of two relevant or
two non-relevant examples. However, such instances
do not carry any additional information for the rank
learner to distinguish between the relevant and the
non-relevant data.

Another recent development in active rank learning
is the divergence-based sampling method of (Amini
et al., 2006). The proposed method selects the sam-
ples at which two different ranking functions maxi-
mally disagree. One of the two functions is the current
ranking function trained on the labeled data, and the
other is a randomized function obtained by cross vali-
dation. The divergence-based strategy is effective only
when provided with a sufficiently large initial labeled
set, which is impractical for many real-world ranking
applications, such as document retrieval.

3. Active Sampling in Rank Learning

3.1. Motivation

This section presents a novel method for active learn-
ing using RankSVM and RankBoost. Roy and McCal-
lum (2001) argue that an optimal active learner is the
one that asks for the labels of the examples that, once
incorporated into training, would result in the lowest
expected error on the test set. The expected error on
the test set can be estimated using the posterior dis-
tribution P̂D(y | x) of class labels estimated from the
training set using some loss function L

EP̂D
=

∫

x

L(P (y | x), P̂D(y | x))P (x) (1)

Their aim is then to select the point x∗ such that when
added to the training set with a chosen label y∗, the
classifier trained on the new set {D + (x∗, y∗)} would
have less error than any other candidate x.

∀(x, y)EP̂D+(x∗,y∗)
≤ EP̂D+(x,y)

(2)



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

Since the true label y∗ is unknown, the expectation
calculation is carried out by calculating the estimated
error for each possible label y ∈ Y , and then taking
the average weighted by the current learner’s posterior
P̂D(y | x). The naive implementation of this method
would be quite inefficient and almost intractable on
large datasets. Roy and McCallum (2001) address this
problem using fast updates for a Naive Bayes classifier.
Although efficient re-training procedures are available
for some learners such as SVMs (Cauwenberghs & Pog-
gio, 2000), it would still be infeasible for ranking tasks,
especially considering the interactive nature of rank-
ing systems. In this paper, we propose a method to
estimate how likely the addition of a new example will
result in the lowest expected error on the test set with-
out any re-training on the enlarged training set. Our
method is based on the likelihood of an example to
change the current hypothesis significantly. There are
a number of reasons why we believe this is a reasonable
indicator for estimating that error:

• Adding a new data point to the labeled set can
only change the error on the test set if it changes
the current learner.

• The more significant that change, the greater
chance to learn the true hypothesis faster.

• We note that a big change in the current hypoth-
esis might not always lead to better generaliza-
tion. However, as more data is sampled and the
hypothesis gets closer to the truth, it is less likely
that a single outlier could hurt the performance
noticeably.

In the following sections, we briefly review the
RankSVM and the RankBoost algorithms and propose
a novel active learning method for each.

3.2. Preliminaries

Assume the data is represented as a set of feature vec-
tors ~x ∈ R

d and corresponding labels (ranks) y ∈ Y =
{r1, r2, ..., rn} where n denotes the number of ranks.
We assume binary relevance in this paper, though our
framework can be generalized to multi-level ranking
scenarios as long as the rank learner works on pair-
wise preference relationships, which is the case for the
majority of rank learning algorithms. Features are nu-
merical values for attributes in the data. Assume fur-
ther that there exists a preference relationship between
data vectors such that yi ≻ yj denotes ~xi is ranked
higher than ~xj . A perfect ranking function f ∈ F

preserves the order relationships between instances:

~xi ≻ ~xj ⇔ f(~xi) > f(~xj)

Suppose we are given a set of instances D = {(~xi, yi) :
(~xi, yi) ∈ X × Y }m

i=1. The objective for rank learning
is to learn a mapping f : X × Y 7→ R that minimizes
a given loss function on the training data.

3.3. SVM Rank Learning

Assume f ∈ F is a linear function, i.e. f(~x) = 〈~w, ~x〉,
that satisfies

~xi ≻ ~xj ⇔ 〈~w, ~xi〉 > 〈~w, ~xj〉

The SVM model targeting this problem can be formu-
lated as a Quadratic Optimization problem:

min
~w

1

2
‖~w‖2 + C

∑

ξij (3)

subject to 〈~w, ~xi〉 ≥ 〈~w, ~xj〉 + 1 − ξij , ξij ≥ 0 ∀i, j

The above optimization can be equivalently written
by re-arranging the constraints and substituting the
trade-off parameter C for λ = 1

2C
as follows:

min
~w

K
∑

k=1

[

1 − zk

〈

~w, ~x1
k − ~x2

k

〉]

+
+ λ‖~w‖2 (4)

where [. . .]+ indicates the standard hinge loss. ~x1 −~x2

is a pairwise difference vector whose label z is positive,
i.e., z = +1 if ~x1 ≻ ~x2 and z = −1 otherwise. K is
the total number of such pairs in the training set. Fi-
nally, a ranked list is obtained by sorting the instances
according to the output of the ranking function in de-
scending order.

3.4. Active Sampling for RankSVM

Let us consider a candidate example ~x ∈ U , where
U is the set of unlabeled examples. Assume ~x is
incorporated into the labeled set with a rank label
y ∈ Y . We denote the total loss on the instance
pairs that include ~x by a function of ~x and ~w, i.e.

D(~x, ~w) =
∑Jy

j=1 [1 − zj 〈~w, ~xj − ~x〉]+ where Jy is the
number of examples in the training set with a differ-
ent label than the label y of ~x. For instance, Jy is
the number of negative(non-relevant) examples in the
training set if y is assumed to be positive(relevant),
and vice versa. The objective function to be mini-
mized by RankSVM then becomes:

min
~w

{

λ‖~w‖2 +

K
∑

k=1

[

1 − zk

〈

~w, ~x1
k − ~x2

k

〉]

+
+ D(~x, ~w)

}

(5)

Assume ~w∗ is the solution to the optimization in Equa-
tion 4, and it is unique. Burges and Crisp (2000) show



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

the necessary and sufficient conditions for the unique-
ness of the SVM solution. There are only rare cases
where uniqueness does not hold, thus it is a rather
safe assumption to make. Since we do not actually re-
run the optimization problem on the enlarged data, we
restrict ourselves to the current solution(hypothesis)
~w∗. Instead of re-optimizing, we estimate the effect
of adding each candidate instance on the training loss
using the current solution to tell how much incorpo-
rating x into the labeled set is likely to change the
current hypothesis. First, let us consider two cases.

1. Assume ~w∗ = argmin~w D(~w, ~x)
Then, ~w∗ is also the solution to the optimization
problem in Equation 5, combining the assump-
tion with ~w∗ being the solution to Equation 4.
That means, adding ~x to the training set would
not change the current hypothesis. From an ac-
tive learning point of view, this example is useless
since the learning algorithm is indifferent to its
inclusion.

2. Assume ~w∗ 6= argmin~w D(~w, ~x)
This is the situation where the current solution
could be different if that example ~x were incorpo-
rated into training. The magnitude of the differ-
ence depends on the magnitude of the deviation
of D(~w∗, ~x) from its optimal value, min~wD(~w, ~x).

We now study the second case in more detail. Let ~̂w

be the weight vector that minimizes D(~w, ~x), i.e. ~̂w =

argmin~w D(~w, ~x). Then, as the difference ‖~w∗ − ~̂w‖
increases it becomes less likely that ~w∗ is optimal for
Equation 5. In other words, the current solution ~w∗ is
in most need of updating in order to compensate for
the loss on the new pairs. Let us write ~̂w in terms of
~w∗ as follows:

~̂w = ~w∗ − ∆w

Minimizing D(~w, ~x) requires working with the hinge
loss, the direct optimization of which is difficult due
to the discontinuity of the derivative. However, it
can still be solved using a gradient-descent-type algo-
rithm1. Recall the objective function to be minimized:

min
~w

D(~w, ~x) = min
~w

Jy
∑

j=1

[1 − zj 〈~w, ~xj − ~x〉]+ (6)

The derivative of the above equation with respect to
~w at a single point ~xj , ∆~wj , is:

∆~wj =

{

0 if zj 〈~w, ~xj − ~x〉 ≥ 1

−zj(~xj − ~x) if zj 〈~w, ~xj − ~x〉 < 1
(7)

1For a detailed discussion on solving SVM rank learning
using gradient descent, see (Cao et al., 2006).

Algorithm 1 RankBoost

Input: initial data distribution D1 over X × X

for t = 1 to T do

Train a weak learner on Dt

Obtain the weak ranking ht : X 7→ R

Choose a weight αt ∈ R for ht

Dt+1(~x
1, ~x2) = Dt(~x

1,~x2)exp(−αt(ht(~x
1)−ht(~x

2)))
Zt

end for

We substitute ~w in Equation 7 for the current weight
vector ~w∗ to estimate how the solution of Equation 6
deviates from it, i.e. ‖~w∗ − ~̂w‖ = ‖∆~w‖. We can
now write the magnitude of the total derivative as a
function of ~x and the rank label y as follows:

g(~x, y) = ‖∆~w‖ =
∑

j

‖∆~wj‖ (8)

=

Jy
∑

j=1

{

0 if zj 〈~w
∗, ~xj − ~x〉 ≥ 1

‖ − zj(~xj − ~x)‖ if zj 〈~w
∗, ~xj − ~x〉 < 1

g(~x, y) estimates how likely the current hypothesis is
to be updated to minimize the loss introduced as a
result of the addition of the example ~x with the rank
label y. Thus, we use this function to estimate the
ability of each unlabeled candidate example to change
the current learner if incorporated into training. Since
the true labels of the candidate examples are unknown,
we use the current learner to estimate the true label
probabilities. Then, we can take the expectation of
g(~x, y) by taking the weighted sum over the current
posterior P̂ (y | ~x) for all y ∈ Y . Among all the un-
labeled examples, we choose the one with the highest
value for that expectation:

~x∗ = argmax
~x∈U

∑

y∈Y

P̂ (y | ~x)g(~x, y)

= argmax
~x∈U

{

P̂ (y = 1 | ~x)g(~x, y = 1) + (9)

P̂ (y = −1 | ~x)g(~x, y = −1)

}

3.5. RankBoost Learning

RankBoost is a boosting algorithm designed for rank-
ing problems. Like all algorithms in boosting fam-
ily, RankBoost learns a weak learner on each round,
and maintains a distribution Dt over the ranked pairs,
X ×X, to emphasize the pairs whose relative order is
the hardest to learn. An outline of the algorithm is
given as Algorithm 1. Zt is a normalization constant,
and the final ranking is a weighted sum of the weak
rankings H(~x) =

∑T
t=1 αtht(~x). For more details and

theoretical discussion see (Freund et al., 2003).



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

3.6. Active Sampling for RankBoost

This section introduces a similar method for active
sampling for the RankBoost algorithm (Freund et al.,
2003). Consider a candidate point ~x ∈ U and assume
it is merged into the training set with rank label y ∈ Y .
Unlike RankSVM, RankBoost algorithm does not di-
rectly operate with an optimization function. But the
ranking loss with respect to the distribution at time t

can be written as:

∑

~x1,~x2

Dt(~x
1, ~x2)I(H(~x2) ≥ H(~x1)) (10)

where I is defined to be 1 if the predicate holds and 0
otherwise. Hence, this is a sum over misranked pairs,
assuming ~x1 ≻ ~x2. The distribution at time T + 1 can
be written as:

DT+1(~x
1, ~x2) = D1(~x

1, ~x2)
exp(H(~x2) − H(~x1))

∏

t Zt

(11)
The initial distribution term D1 can be dropped with-
out loss of generality, assuming it is uniform (which is
reasonable given the fact that we do not have prior in-
formation about the data). Similarly to RankSVM, we
would like to estimate how much the current ranking
function would change if the point ~x were in the train-
ing set. We estimate this deviation by the difference
in the ranking loss after enlarging the current labeled
set with each example ~x ∈ U . The ranking loss on the
enlarged set with respect to the distribution DT+1 is:

∑

~x1,~x2

exp(H(~x2) − H(~x1))
∏

t Zt

I(H(~x2) ≥ H(~x1))+

∑

~xj ,~x

exp(H(~xj) − H(~x))
∏

t Zt

I(H(~xj) ≥ H(~x)) (12)

Note that the rank label y of ~x is assumed to be pos-
itive (relevant) with ~x ≻ ~xj in this case. We have a
similar calculation for the case where y is assumed to
be negative (non-relevant). We adopt the distribution
DT+1 because 1) it can easily be written in terms of
the final ranking function, 2) it contains information
about which pairs remain the hardest to determine af-
ter the iterative weight updates. Then, the difference
in the ranking loss between the current and the aug-
mented set simply becomes:

∆L(~x, y = 1) =
∑

~xj ,~x

exp(H(~xj) − H(~x))
∏

t Zt

I(H(~xj) ≥ H(~x))

(13)
This difference indicates how much the current rank-
ing function needs to be modified to compensate for

the loss incurred by including this example. Note that
I(x ≥ 0) ≤ ex for ∀x ∈ R (Freund et al., 2003). There-
fore, the upper bound on ∆L can be written as:

∆L(~x, y = 1) ≤
∑

~xj ,~x

exp(2(H(~xj) − H(~x)))
∏

t Zt

(14)

∆L(~x, y = −1) can be similarly bounded, e.g.

∆L(~x, y = −1) ≤
∑

~x,~xm

exp(2(H(~x)−H(~xm)))
Q

t
Zt

. Now, the

loss difference can be estimated by taking the expec-
tation over the possible rank labels of ~x with respect
to the current ranker’s posterior, P̂ (y | ~x):

EP̂ (∆L(~x)) = P̂ (y = 1 | ~x)∆L(~x, y = 1)+

P̂ (y = −1 | ~x)∆L(~x, y = −1) (15)

Note the similarity with Equation 9 in the SVM
case. Finally, we select the instance ~x that has
the highest expected loss differential, e.g. ~x∗ =
argmax~x EP̂ (∆L(~x)). For notational clarity, we take
the maximum over the upper bound in Equation 14 as
follows:

~x∗ = argmax
~x∈U

{

P̂ (y = 1 | ~x)(
∑

~xj ,~x

exp(2(H(~xj)−H(~x))))

+ P̂ (y = −1 | ~x)(
∑

~x,~xm

exp(2(H(~x) − H(~xm))))

}

(16)

For simplicity, we leave out the normalization constant
∏

t Zt since we are interested in the relative expecta-
tion rather than the absolute expectation.

3.7. Final Selection

The sample selection in both RankSVM and Rank-
Boost requires estimating a posterior label distribu-
tion. We adopt a sigmoid function to estimate that
posterior in the SVM case, as suggested by (Platt,
1999):

P̂ (y | ~x) =
1

1 + exp(−y ∗ f(~x) + C)

where f(~x) is the real-valued score of the ranking al-
gorithm, and C is a constant for calibrating the esti-
mate. C is tuned on a separate corpus not used for
evaluation in this paper. The final ranking in Rank-
Boost is a sum of weak learners with the corresponding
weights. When the weights are too small (or too large),
the posterior gets close to the extreme (either 0 or 1)
regardless of the example. Hence, we normalize the
RankBoost output dividing by the maximum possible



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

1 5 10 15 20 25

# rounds

0.1

0.15

0.2

0.25

0.3

M
A

P

DiffLoss

Margin

Random

RankSVM

1 5 10 15 20 25

# rounds

0.1

0.15

0.2

0.25

M
A

P

DiffLoss

Margin

Random

RankBoost

1 5 10 15 20 25

# rounds

0.1

0.2

0.3

0.4

N
D

C
G

@
10

DiffLoss

Margin

Random

1 5 10 15 20 25

# rounds

0.15

0.2

0.25

0.3

0.35

N
D

C
G

@
10

DiffLoss

Margin

Random

Figure 1. Comparison of different active learners on TREC 2003. The horizontal line indicates the performance when the
entire training data is used. Only ∼ 15% of the training data is actively labeled in total by each method.

rank score without changing the rank order:

P̂ (y | ~x) =
1

1 + exp(−y ∗ H(~x)
P

T
t=1 αt

+ C)

Note max~xH(~x) = max~x

∑T
t=1 αtht(~x) =

∑T
t=1 αt

since the weak learner ht(~x) in RankBoost is a {0,1}-
valued function defined on the ordering information
provided by the corresponding feature (Freund et al.,
2003).

4. Evaluation

4.1. Data and Settings

We used two datasets in the experiments: TREC 2003
and 2004 topic distillation tasks in LETOR (Liu et al.,
2007). The topic distillation task in TREC is very sim-
ilar to web search where a page is considered relevant
to a query if it is an entry page of some web site rele-
vant to the query. The relevance judgments on the web
pages with respect to the queries are binary. There are
44 features, e.g. content and hyperlink features, each
of which is extracted from each document-query pair
and normalized into [0, 1]. There are 50 and 75 queries
with 1% and 0.6% relevant documents in TREC03
and TREC04, respectively. The total number of docu-
ments per query is ∼ 1000 for both datasets. We used

the standard train/test splits over 5 folds in LETOR.
For each fold, we randomly picked 16 documents in-
cluding exactly one relevant document per query for
initial labeling. The remaining training data is consid-
ered as the unlabeled set. We compared our method
with the margin-based sampling of (Brinker, 2004; Yu,
2005) and random sampling baselines. Each method
selects 5 documents per query for labeling at each
round, e.g. our method selects the top 5 documents
according to the criteria in Equation 9 and 16. Then,
the ranking function is re-trained, and evaluated on
the test set. This process is repeated for 25 iterations
which corresponds to labeling only ∼ 15% of the entire
training data. The reported results are averaged over
5 folds.

We adopted two standard, widely used performance
metrics for evaluation, namely the Mean Average
Precision (MAP) and the Normalized Discounted
Cumulative Gain (NDCG) (Järvelin & Kekäläinen,
2002). For a single query, average precision is de-
fined as the average of the precision as computed
at each rank for all relevant documents: AP =

P

N
n=1(P (r)∗rel(r))

# relevant documents for this query where r is the rank, N

is the number of documents retrieved, rel() is a bi-
nary function on the relevance of a given rank, and
P (r) = # relevant docs in top r results

r
is the precision at



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

1 5 10 15 20 25

# rounds

0.25

0.3

0.35

0.4

M
A

P

DiffLoss

Margin

Random

RankSVM

1 5 10 15 20 25

# rounds

0.25

0.3

0.35

0.4

M
A

P

DiffLoss

Margin

Random

RankBoost

1 5 10 15 20 25

# rounds

0.3

0.35

0.4

0.45

0.5

N
D

C
G

@
10

DiffLoss

Margin

Random

1 5 10 15 20 25

# rounds

0.3

0.35

0.4

0.45

0.5

N
D

C
G

@
10

DiffLoss

Margin

Random

Figure 2. Comparison of different active learners on TREC 2004. The horizontal line indicates the performance when the
entire training data is used. Only ∼ 15% of the training data is actively labeled in total by each method.

the rank cut-off r. MAP is obtained by averaging the
AP values for all queries. NDCG is cumulative and dis-
counted since the overall utility of a list is measured
by the sum of the gain of each relevant document, but
the gain is discounted as a function of rank position.
The NDCG value of a rank list at position n is given

as follows: NDCG@n = Zn

∑n
j=1

2r(j)
−1

log(1+j) where r(j)

is the rank of the jth document in the list, and Zn is
the normalization constant so that a perfect ranking
yields an NDCG score of 1.

4.2. Results

Figure 1 and 2 plot the performance of the pro-
posed method (denoted by DiffLoss), and as compara-
tive baselines, the margin-based sampling and random
sampling strategies on TREC 2003 and 2004 datasets.
DiffLoss has a clear advantage over margin-based and
random sampling in all cases with respect to differ-
ent evaluation metrics. The differences over the en-
tire operating range are also statistically significant
(p < 0.0001) according to a two-sided paired t-test at
95% confidence level. DiffLoss especially achieves 30%
relative improvement over the margin-based sampling
for RankSVM on TREC 2003 dataset.

The horizontal line in each figure indicates the perfor-

mance if all the training data was used, which we call
the “optimal” performance. The performance of Dif-
fLoss for RankBoost is comparable to the “optimal” on
TREC 2003 and 2004 datasets. In case of RankSVM,
DiffLoss is close to the “optimal” on TREC 2003, and
outperforms it on TREC 2004 dataset. More precisely,
DiffLoss using RankSVM reaches the optimal perfor-
mance (even surpassing it on TREC 2004) after 10
rounds of labeling on average (labeling 5 documents
per query at each round). DiffLoss using RankBoost,
on the other hand, reaches 95% and 90% of the optimal
performance on MAP and NDCG@10, respectively on
TREC 2004 dataset after 10 rounds. This suggests
that carefully chosen samples might lead to a higher
level of accuracy than blindly using large amounts of
training data. This is an important development over
traditional supervised rank learning since it not only
reduces the expensive labeling effort, but also may lead
to greater generalization power. As follow-up work, we
intend to explore methods that will automatically tell
the sampling algorithm when to stop so that maximum
gain with minimum cost is obtained, as well as explor-
ing the underlying criteria for measuring the quality
of actively selected examples.

We conducted another set of experiments to test the
hypothesis that selecting a diverse set of samples might



Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning

lead to better results. We adopted the maximal
marginal relevance principle of (Carbonell & Gold-
stein, 1998), originally proposed for text summariza-
tion. The idea is to select samples for labeling such
that they have both the maximum potential to change
the current ranking function and are maximally dis-
similar to each other. See (Carbonell & Goldstein,
1998) for more details. However, incorporating this di-
versity principle into our selection criteria only slightly
improved our results at the very beginning of the learn-
ing curve, but the improvement vanished afterwards.
Thus, we do not report these results here in this paper.

5. Conclusion

We proposed two novel active sampling methods based
on SVM rank learning and RankBoost. Our frame-
work relies on the estimated risk of the ranking func-
tion on the labeled set after adding a new instance with
all possible labels. The samples with the largest ex-
pected risk(loss) differential are selected to maximize
the degree of learning at the fastest rate. Empirical
results on two standard test collections indicate that
our method significantly reduces the required number
of labeled examples to learn an accurate ranking func-
tion. Possible extensions of this work include a study
of the risk minimization in terms of direct optimization
of ranking performance metrics, such as MAP, NDCG,
precision@k, etc. and self-regulating algorithms that
can decide when to terminate.

Acknowledgments

This material is based in part upon work supported
by the Defense Advanced Projects Research Agency
(DARPA) under Contract No. FA8750-07-D-0185.

References

Amini, M., Usunier, N., Laviolette, F., Lacasse, A., &
Gallinari, P. (2006). A selective sampling strategy
for label ranking. ECML ’06 (pp. 18–29).

Brinker, K. (2004). Active learning of label ranking
functions. ICML ’04 (pp. 17–24).

Burges, C., & Crisp, D. (2000). Uniqueness of the svm
solution. NIPS ’00 (pp. 223–229).

Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., & Hon,
H.-W. (2006). Adapting ranking svm to document
retrieval. Proceedings of the international ACM SI-
GIR Conference on Research and Development in
information retrieval (SIGIR’06) (pp. 186–193).

Carbonell, J., & Goldstein, J. (1998). The use of mmr,

diversity-based reranking for reordering documents
and producing summaries. SIGIR ’98 (pp. 335–336).

Cauwenberghs, G., & Poggio, T. (2000). Incremental
and decremental support vector machine learning.
NIPS ’00 (pp. 409–415).

Donmez, P., Carbonell, J., & Bennett, P. (2007). Dual
strategy active learning. Proceedings of the Euro-
pean Conference on Machine Learning (pp. 116–
127).

Freund, Y., Iyer, R., Schapire, R., & Singer, Y. (2003).
An efficient boosting algorithm for combining pref-
erences. Journal of Machine Learning Research, 4,
933–969.

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-
based evaluation of ir techniques. ACM Transaction
on Information Systems, 20(4), 422–446.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (KDD’02).

Liu, T., Xu, J., Qin, T., Xiong, W., Wang, T., & Li,
H. (2007). Letor: Benchmark dataset for research
on learning to rank for information retrieval. SIGIR
’07 Workshop: Learning to Rank for IR.

Mitchell, T. (1982). Generalization as search. Journal
of Artificial Intelligence, 18, 203–226.

Nguyen, H., & Smeulders, A. (2004). Active learning
with pre-clustering. ICML ’04 (pp. 623–630).

Platt, J. (1999). Probabilistic outputs for support vec-
tor machines and comparisons to regularized likeli-
hood methods. Advances in Large Margin Classi-
fiers, 61–74.

Roy, N., & McCallum, A. (2001). Toward optimal
active learning through sampling estimation of error
reduction. ICML ’01 (pp. 441–448).

Tong, S., & Koller, D. (2000). Support vector ma-
chine active learning with applications to text clas-
sification. Proceedings of International Conference
on Machine Learning (pp. 999–1006).

Xu, Z., Yu, K., Tresp, V., Xu, X., & Wang, J. (2003).
Representative sampling for text classification using
support vector machines. ECIR ’03.

Yu, H. (2005). Svm selective sampling for ranking with
application to data retrieval. SIGKDD ’05 (pp. 354–
363).


