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Abstract

In this paper we show how common speech
recognition training criteria such as the Mini-
mum Phone Error criterion or the Maximum Mu-
tual Information criterion can be extended to in-
corporate a margin term. Different margin-based
training algorithms have been proposed to refine
existing training algorithms for general machine
learning problems. However, for speech recogni-
tion, some special problems have to be addressed
and all approaches proposed either lack practical
applicability or the inclusion of a margin term
enforces significant changes to the underlying
model, e.g. the optimization algorithm, the loss
function, or the parameterization of the model. In
our approach, the conventional training criteria
are modified to incorporate a margin term. This
allows us to do large-margin training in speech
recognition using the same efficient algorithms
for accumulation and optimization and to use
the same software as for conventional discrimi-
native training. We show that the proposed cri-
teria are equivalent to Support Vector Machines
with suitable smooth loss functions, approximat-
ing the non-smooth hinge loss function or the
hard error (e.g. phone error). Experimental re-
sults are given for two different tasks: the rather
simple digit string recognition task Sietill which
severely suffers from overfitting and the large vo-
cabulary European Parliament Plenary Sessions
English task which is supposed to be dominated
by the risk and the generalization does not seem
to be such an issue.
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1. Introduction

A central issue in machine learning is the robust estima-
tion of the model parameters A with good generalization
ability, based on a finite number of observations. An inter-
esting result from information theory is the PAC bound on
the expected risk (Vapnik, 1995). The VC dimension plays
an important role in this inequality and is a direct measure
for the generalization ability. This bound is general in the
sense that it does neither depend on the underlying proba-
bility distribution nor on the specific risk function. Further-
more, the bound implies that in general, the consideration
of the empirical risk alone is suboptimal (Vapnik, 1995),
see Tab. 1. Assuming that the features are in a sphere, the
VC dimension of gap-tolerant classifiers is bounded above
by an expression which is inversely proportional to the mar-
gin, leading to large-margin classifiers (Jebara, 2002).

These theoretical results are the main motivation for Sup-
port Vector Machines (SVMs) (Vapnik, 1995), M-SVMs
(Weston & Watkins, 1999), or Hidden Markov SVMs (Al-
tun et al., 2003) which have been successfully used for
many applications in pattern recognition. The direct appli-
cation of SVMs in Automatic Speech Recognition (ASR)
has not been successful so far. This might be because
they are not sufficiently flexible regarding: 1) the choice of
the loss function, conventional criteria in ASR are Maxi-
mum Mutual Information (MMI), Minimum Classification
Error (MCE), or Minimum Phone Error (MPE) which is
probably the criterion of choice in ASR; 2) they are un-
able to cope with the immense amount of data used to
train state-of-the-art ASR systems, which are commonly
trained on more than 100 hours of speech (>30,000,000
observation vectors). Another problem might be the com-
binatorial number of classes (number of possible word se-
quences). Stimulated by the success of SVMs, different
margin-based training algorithms have been proposed for
ASR, e.g. (Yu et al., 2007; Yin & Jiang, 2007; Sha &
Saul, 2007; Li et al., 2007). Although the reported results
for these approaches are very promising, the approaches
have some shortcomings in particular for large-scale appli-
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Table 1. Relative importance of loss and margin terms under dif-
ferent conditions.
Loss vs.

infinite data o
many training errors = <

Margin
sparse data
few training errors

cations. The approach proposed in (Yu et al., 2007) comes
closest to ours but uses MCE on N-best lists without reg-
ularization. In most state-of-the-art large-scale ASR sys-
tems, however, MPE in combination with strong regular-
ization, i.e., i-smoothing has been established to be the cri-
terion of choice (Povey & Woodland, 2002). In (Yin &
Jiang, 2007; Sha & Saul, 2007; Li et al., 2007) not only the
margin term is introduced, but the approaches use differ-
ent optimization algorithms, different loss functions, or dif-
ferent model parameterizations which makes it difficult to
evaluate the effect of the margin term in these approaches.
Furthermore, none of these papers reports experimental re-
sults for competitive large vocabulary systems whose be-
havior in terms of generalization ability and relative im-
provements of performance often is different to systems
using suboptimal models or for ”simple”” small vocabulary
tasks (e.g. TIDIGITS and TIMIT). A large amount of train-
ing data and a relatively large number of training errors are
typical of such large vocabulary systems. From this ob-
servation, we expect that the margin term has only little
impact on the performance of such systems, cf. Tab. 1.
In this work, we pursue a similar approach as in (Zhang
etal., 2003) where the standard M-SVM with the hinge loss
function is approximated by modified logistic regression.
To the best of our knowledge, this approach, is computa-
tionally unfeasible in ASR because of the pairwise treat-
ment of the correct and all the competing word sequences.
To avoid the exponential complexity, our approximations
are based on the Hidden Markov SVM proposed in (Altun
et al., 2003). Formally similar results can be found in (Je-
bara, 2002), which are derived from probabilistic reason-
ing. Using the smoothed segment error of MCE in com-
bination with N—best lists and without regularization, the
margin-based MCE criterion proposed in (Yu et al., 2007)
is recovered as a special instance of our approach.

The remainder of this paper is organized as follows: Sec. 2
reviews SVMs in a notation suitable for our discussion.
Approximations to the SVMs with different loss functions,
resembling the MMI and MPE criterion are proposed in
Sec. 3 and extended to ASR in Sec. 4. Experimental results
using these modified criteria are presented for the Sietill
and the European Parliament Plenary Sessions (EPPS) En-
glish ASR tasks, cf. Sec.6. The results of the latter task
give an idea of the importance of the margin in a state-of-
the-art large vocabulary system. Finally, Sec. 5 shows that
the transducer-based implementation of MMI and MPE dif-
fers merely in the choice of the semiring. This section may
be skipped at the first reading.

2. Support Vector Machines (SVMs)

According to (Altun et al., 2003), the optimization problem
of SVMs for C classes, N observation pairs (X, Cy), and
feature functions fi(X, ¢) can be formulated as follows

N
A= argmAin{%nAn2 + %Z 1(Cn; A, .,dnc>} 0y
with dpe = X 4(fi(Xn, Cn) — fi(Xn, €)), or more compactly
in vector notation dnc = AT (f(Xn, Cn) — f(Xn, €©)). The em-
pirical constant J > 0 is used to balance the margin and the
loss terms. The typical loss function of SVMs is the hinge
loss function

| O (Co; -, Ghc) = max {max{—dn + 1,01 (2)

This effectively reduces the multiclass problem to a two-
class problem (“correct” vs. “recognized”). Ideally, the loss
function is the margin error

I (error)(Cn; dnl, el dnc) = E[Cn|Cn], (3)

which in the simplest case counts the errors of the observa-
tions, 1 — 6(Cy, Cy). For ASR, however, we choose string-
based error measures like the phone error. In this loss func-
tion, €, is in fact a function of (Cp; Ony, . . ., dnc) and denotes
the recognized class (with margin)

6 = {arg Mingge, {Ane} £ AC# Cq i dpe < 1 @

Cn otherwise.

Due to the definition of the loss function and in contrast
to (Altun et al., 2003), this formulation of SVM does not
require the introduction of slack variables £5 subject to
Onc > &5+ 1 and & > O for all ¢ # €y and n. The re-
sulting optimization problem is non-smooth, but it is only
used for theoretical purposes whereas the experiments are
carried out with smoothed loss functions as it is common in
ASR. In contrast to the multiclass SVM proposed by (We-
ston & Watkins, 1999), this definition allows for efficient
calculation of the sum over the classes in ASR (cf. Sec. 5).

In (Taskar et al., 2003), the size of the margin is set to
be proportional to the length of the sequence, e.g. the
number of correct symbols. For ASR, due to the addi-
tional alignment problem, this is extended such that the
margin between two sequences is set to the associated se-
quence/string accuracy. Note that this extension is reason-
able because it guarantees consistency with the above SVM
in case of i.i.d. sequences, see Sec. 4 for further details.

Finally, the task of testing consists of finding the class with
the highest score

&(X) = arg max {/le(X, C)}, 3)

which should not be confused with €, in Eq. (4).
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3. SVMswith Smooth L oss Functions

This section provides smooth approximations to the SVM
in Eq. (1) for different loss functions. More precisely,
the loss function is replaced with a smoothed loss func-
tion without breaking the large margin nature of the orig-
inal SVM. These approximations are identical to modi-
fied formulations of the well-known training criteria MMI
and MPE for Hidden Conditional Random Fields (HCRFs),
which are introduced in the next two subsections. Anal-
ogously, a similar result can be derived for (lattice-based)
MCE. In contrast to (most) other margin-based approaches,
these approximations have the advantage that the effect of
the margin can be evaluated directly without changing the
parameterization of the model, the loss function, or the op-
timization algorithm.

Keep in mind that the modifications concern only the train-
ing, i.e., the calculation of the probabilities in the search
remains unchanged:

exp(AT f(x, c))
Y exp(ATf(x.¢))’

The resulting decision rule is equivalent to the decision rule
in Eq. (5) for SVMs because monotone transformations of
the discriminant function do not change the decision rule.

pA(CIX) =

In the next two subsections, we define modified criteria
based on the conventional MMI and MPE criteria and show
the relationship with SVMs.

3.1. Modified Maximum Mutual Information (MMI)

In ASR, MMI commonly refers to the maximum likelihood
(ML) for the class posteriors. We define a modified MMI
criterion for log-linear HCRFs !

1
(MMI) _ 2
F, (AN = §IIAI|

IS exp(y (17 f(Xn, Cn) — 1))
N nZ:; 5 log (Zcexp()f (A7 f(xn, ©) — 6(C, cn))))' ©

See Fig. 1 for a comparison of the hinge loss function,
MMLI, and modified MMI. The approximation level y is an
additional parameter to control the smoothness of the crite-
rion. The regularization constant is proportional to % The
major difference to the standard MMI formulation (includ-
ing L-norm regularization) is the additional margin param-
eter which is non-zero only for the correct class C,. This
margin term can be interpreted as an additional observation
dependent prior, weakening the true prior (Jebara, 2002).

It can be shown that the objective function ?‘;MM')(A) con-
verges pointwise to the SVM optimization problem using

The first order features in (Zhang et al., 2003) are a special
case of the more general feature functions used here.

5 - -
hinge margin error ——
4l MMI - e MPE e
modified MM s modified MPE
03
8
=2
1
0

Figure 1. Left: comparison of hinge loss, MMI, and modified
MMI, y = 1. Right: comparison of margin error loss, MPE, and
modified MPE, y = 3. In either case C = 2, and d = dy,.

the hinge loss function in Eq. (2) for y — oo, similar
to (Zhang et al., 2003). In other words, 7™ (A) is a
smooth approximation to an SVM with hinge loss function,
which can be optimized with standard gradient-based opti-
mization techniques. The proof mainly consists of building
the limit of the logarithm in Eq. (6):

_log( exp(y (A7 f(Xn, Cn) = 1)) )
Y 2. exp(y (AT f(Xq, ©) — 6(C, Cn)))

! log{l + Z exp(y (=Onc + 1))]

Y C#Cn

yooo [MaXege, {—Onc+ 1} ifIC#Cp:de < 1
-
0 otherwise.

This function can be identified with the hinge loss function
in Eq. (2).

We feel that the weak point about the hinge loss in pattern
recognition is that it is not the measure used to evaluate the
recognition systems eventually. This means that there is
some guarantee regarding the generalization for the hinge
loss, but not the recognition error. Furthermore, it is often
unclear how these two quantities are related.

3.2. Modified Minimum Phone Error (MPE)

In contrast to the hinge loss, the recognition error is
bounded as illustrated in Fig. 1. Hence, a single observa-
tion cannot dominate the objective function. In particular,
do not mix up a weighted margin with a weighted error.

We shall show that the modified MPE-like objective func-
tion representing a smoothed margin error with L,-norm
regularization,

1
FMPON) = SIAIP
N
exp(y (A7 f (%, €) — 6(C, Cn)))
Eldlcy
2 Z e exp(y (17 F (%, ©) — (¢, o))

n=1

+

Zla

converges to the above SVM optimization problem with a
hard and weighted loss function E[:|-] as in Eq. (3), e.g. the
phone error. The proof is analogous to the proof for MMI.
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The main step is to show that the “posterior probabilities”
in ?‘Y(MPE) (A) converge to a Kronecker delta such that only
a single term contributes to the sum of the empirical risk

exp(y (A7 f (X, ©) — 6(C, Cn)))
2o exp(y (AT £(Xn, ©) — 6(C’, Cn)))

1 . _
— { 1+ZC/¢Cn(ez(p((jy(—(ljr;§,+1)) ifc= Cn,
eXp(y(=Onc+ .
T4 %0 20y XP(y(—Gng +1)) otherwise

ifdc#cCy:dc <1

yoe 6(C, arg mingc, {Anc})
if e, > 1

5(C, Cn)
= 5(c, &)

Note that now we have pointwise convergence almost
surely (i.e., everywhere except for points on the deci-
sion boundary dn;, = 1 where the loss function is not
continuous). As before, €, denotes the recognized class
with margin defined in Eq. (4). In summary, we have
FMPE(A) 'S LA + 2 £N | El€nlca] which is identical
to the SVM optimization problem using the loss function
in Eq. (3).

3.3. Optimization

In general, the resulting optimization problems are no
longer convex and thus, the optimization might get stuck
in local optima. We believe that this problem is inherent
in ASR, e.g. due to the time alignment from HMMs. Al-
though it is possible to make the objective function convex
by keeping the alignment fixed, the best results on large-
scale tasks that are reported in the literature have been ob-
tained by using non-convex objective functions. Finally,
the problem of local optima is alleviated by combining the
suggested approach with stochastic annealing techniques
where the approximation level acts as the temperature.

In fact, the optimization strategy suggested in (Zhang et al.,
2003) can be adopted, i.e., find the optimum for a given ap-
proximation level and carry out this step iteratively for in-
creasingly finer levels. The optimization can be done with
general optimization algorithms, e.g. RProp. The idea of
incrementally regulated discriminative margins suggested
by (Yu et al., 2007) is along the same lines.

In this work, the approximation level and the margin are
chosen beforehand and then kept fixed during the complete
optimization. This single step optimization scheme has the
advantage that the loss function remains unchanged and
that thus, the criterion differs only in the margin term. This
approach is reasonable as long as the changes in the initial
model are small, e.g. if the discriminative training is initial-
ized with a good ML baseline. This is the typical situation
in ASR. Further details and specifics of ASR are discussed
in the next section.

4. Automatic Speech Recognition (ASR)

The smooth variants of SVMs introduced in Sec. 3.1
and 3.2 can directly be incorporated into the ASR frame-
work. In this case, the HMM state sequences SI correspond
to the classes C. Similar to (Taskar et al., 2003) and (Sha
& Saul, 2007), we would like the margin to scale with the
length of the speech segments (cf. discussion in Sec. 2). In
ASR, a reasonable choice is to set the margin of a sentence
to the number of correct phones. More precisely, the sim-
ple accuracy 6(C, Cy) used to represent the margin so far is
replaced with the phone accuracy. These approximations
directly combine learning theory, HCRFs, and risk-based
training of HMMs. Note that Gaussian HMMs (GHMMs)
are HCRFs (possibly) with parameter constraints (Heigold
et al., 2007).

Typically, MPE is used in combination with the more re-
fined Gaussian regularization centered around A (e.g. the
maximum likelihood estimate of the generative model),
which is comparable with the i-smoothing for GHMMs
(Povey & Woodland, 2002). This regularization is com-
bined with the L,-norm regularization from the SVM

JoMIAIR + 37MIA = AQIP = I7IA = Agll* + const(A)
with J7' = J5' + 37" and A = H#JIA{) Thus, the Gaus-
T

0
sian regularization with a properly scaled center A (scal-
ing does not change the classification in the maximum ap-
proximation) covers the weaker L,-norm regularization.

Similar to (Heigold et al., 2007), we use n-th order features,
e.g. first order features are defined to be ft(sldi)(XT, S]T) =
0(S, S)X%d- Zeroth and higher order features are defined in
a similar fashion. This choice of feature function has the
advantage that HCRFs and GHMMs are directly related.

The relationship between SVMs and common training cri-
teria like MMI and MPE allows us to justify some im-
portant heuristics typically employed in discriminatively
trained ASR systems to achieve good performance: the ap-
proximation level y corresponds to the scaling of the prob-
abilities, i-smoothing is the (refined) regularization term,
and the weak unigram language model might be consid-
ered an approximation of the margin concept as explained
in Sec. 3.1 ("weak prior”’). We believe that the frame-based
approach proposed to improve the generalization ability is
also an attempt to approximate the margin by replacing the
context priors (Heigold et al., 2007) by the global relative
frequencies.

To apply the existing efficient algorithms, it is important
that the margins of the different competing hypotheses can
be represented as a weighted transducer sharing the topol-
ogy with the common lattices, and thus can be integrated
into most state-of-the-art systems. This is not always pos-
sible in an efficient way for the exact accuracy. Therefore,
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approximate accuracies are used. For MPE, an intuitive
margin is the approximate phone accuracy (Povey & Wood-
land, 2002), which is basically the same quantity also used
for the loss function?. In this case, no additional quanti-
ties have to be calculated. The combined acoustic and lan-
guage model scores are then augmented with these margins
by composition. The subsequent steps of the accumulation
and estimation remain unchanged. Thus, it is not neces-
sary to modify our transducer-based implementation of the
(discriminative) training because the margin can be incor-
porated by simply configuring an additional composition.
The transducer-based implementation also has the advan-
tage that the quantities used for the MMI and MPE accumu-
lation can be represented in terms of generalized FB prob-
abilities calculated in different semirings. This approach
results in the same recursion formulae as used in (Povey &
Woodland, 2002), but leads to a unified implementation of
the different training criteria. The details on this issue are
worked out in the next section.

5. Covariance & Expectation Semiring

In this section, we present an abstraction and generalization
of the recursion formulae used for MMI and MPE (Povey &
Woodland, 2002). The efficient calculation of the gradient
of the objective function is an issue in ASR (and for HCRFs
as well) because of the combinatorial number of possible
word sequences. The proposed approach unifies these two
recursion formulae and extends the speech-specific recur-
sion formula for MPE to HCRFs. As mentioned above, this
abstraction is not essential for this work. However, this for-
malism might be a nice feature of any (probabilistic) trans-
ducer library. As an example, it might facilitate the devel-
opment of more refined training algorithms, e.g. it provides
an efficient solution to the unified criterion in (He et al.,
2008). The calculation of the gradient under consideration
(as probably several other problems in pattern recognition)
can be reduced to the calculation of the covariance of two
suitably defined random variables, as discussed at the end
of this section.

The expectation of the random variable X w.r.t. the proba-
bilistic transducer % is defined to be

EplX]:= ) Wplrlwlr]
neP

where W.[rr] denotes the weight of path 7 in the respective
transducer. The covariance of two (additive) random vari-
ables X and Y w.r.t. P is defined to be (with Ep[-] = E[-])

Covp(X,Y) := ZWP[F] (Wx[7] — E[X]) (Wy[n] - E[Y]).
ey

?Assume the distance E[wY,v}] between strings w) and v}.
Then, the accuracy of string v given string w!' is A[vMwN] =

N — E[w),v)'].

Here, we assume that #, X, and Y can be represented by
acyclic transducers which share the topology, i.e., differ
only in the weights. Using these assumptions, we shall
show that the covariance can be efficiently calculated by
simply exchanging the probability semiring by the expec-
tation semiring in the standard FB algorithm. So, the prob-
ability semiring can be used to compute the first order
statistics whereas the expectation semiring can be used to
compute the second order statistics. It is rather straight-
forward to define a covariance semiring to calculate third
order statistics etc.

We start with introducing the expectation semiring and
the abstract definitions which are needed to formulate the
propositions.

Expectation semiring. The expectation semiring (Eis-
ner, 2001) is a multiplex semiring with weights (p,V) €
R* xR, and

e (P1,V) ® (P2, V2) = (P1 + P2, V1 +V2);
o (P1, V1) ® (P2, V2) = (P1P2, P1V2 + Vi P2);
e 1=(1,0),0 = (0,0).

In addition, the inverse is defined to be inv(p,v) =
(p~!, —=p~2v). Observe that the first component corresponds
to the probability semiring whereas the second component
accounts for the additivity of the random variable. The
(partial) path weight of path 7 is the “product” of the cor-
responding arc weights Wp[a], Wp[r] = ® Wp[a].

aen

FB potentials. The forward potential aq at the state q of
the transducer % is the sum of the weights of all partial
paths 7 going from the initial state init to the state g

aq = @ Wep|[7].

r=(init,q)eP

These quantities are efficiently calculated by recursion

ag = @ ap ® Wplal.

a=(p.g)eP

Qinit = 1

The ”sum” is over all arcs a of the transducer # connecting
the state p with g. The backward potentials Sy are defined
similarly on the transposed .

Posteriors. The posterior transducer Q(P) associated
with the transducer # has the arc weights

W [a] := { & wrp[n]] ® inv{@ wp[n]) :

neP.acn neP

The weight of arc a = (p, g) can be expressed in terms of
the above defined forward and backward potentials

Wowlal = (ap ® Wpla] ®/3q) ® inv(Binit).-
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Here, we used the fact that Sjnit equals the “normalization
constant” in the case of a unique initial state init. To make
the analogy of the calculation of the expectation and the
covariance more clear, we first state the well-known propo-
sition based on the probability semiring.

Proposition 1. Assume an acyclic transducer # with prob-
ability semiring, and a weighted transducer X with log
semiring. $ and X share the topology. Then,

Ep[X] = ) wxlalwaep)[al.
acP
This proposition is then extended to the expectation semir-
ing. Note that for the p-component, we recover the previ-
ous proposition.

Proposition 2. Assume an acyclic transducer # with prob-
ability semiring, and transducers X and Y with log semi-
ring. #, X, Y share the topology. Defi ne the trans-
ducer Z with expectation semiring and assign the weights
wz[a] = (wp[a], wp[a]wx[a]) to the arcs. Then,

Covp(X, ) = > wylalwa ) [al[V].
acy
We conclude this section by showing how the calculation
of the gradient of the objective function fits into this frame-
work.

Gradient of objective function. To simplify the discus-
sion, we restrict our consideration to objective functions of
the type ¥(A) = f(Ep[A]) rather than using the unified
objective function in (He et al., 2008). Here, ¥ stands for
the word lattice with the joint probabilities pa(s], VM|x])
and A denotes some additive risk (e.g. phone error).
In addition, a non-linearity f can be applied to the ex-
pectation. Then, building the derivative of this objective
function leads to VF(A) = Covp(L, VlogP) with L :=
f/(Ep[A]A. Examples: A = phone accuracy, f(X) = X
(MPE); A = xgpk (characteristic function of spoken se-
quence, i.e., one for the spoken sequence and zero other-
wise), f(X) = logx (MMD); or A = ygk, f(X) =sigmoid
function (MCE).

6. Experimental Results

The presented approaches were evaluated on two different
tasks. First, we tested the proposed criterion on the German
digit string recognition task Sietill (Heigold et al., 2007),
which due to its small size allows for a thorough experi-
mental evaluation. Second, experiments were carried out
on the large vocabulary EPPS English task, which repre-
sents a realistic ASR task. The baseline MPE result was
part of our 2007 TC-STAR evaluation system, which per-
formed best in the restricted and public evaluation condi-
tions for both English and Spanish (L66f et al., 2007). For
completeness, we provide some description of the speech

Table 2. Corpus statistics.

Task Corpus | Data | #run. words | #frames
(h] (k] (k]

Sietill Train 5.5 43 1,980
Test 55 43 1,980

EPPS En | Train 92.0 661 33,120
Dev06 3.2 27 1,152

Eval06 3.2 30 1,152

Eval07 2.9 27 1,044

recognition systems. Non-experts, however, can skip these
technical parts, keeping in mind that highly competitive
systems are used for the discriminative training.

Our modified MMI criterion is identical with the recently
proposed boosted MMI (Povey et al., 2008). These re-
sults, however, should be interpreted with some care be-
cause in most experiments, the boosting factor is not the
only change. Probably, there is a single experiment which
is directly comparable with our results on the EPPS task,
i.e., which modifies only the boosting factor and which is
set upon a state-of-the-art baseline. Very much like our re-
sults on the EPPS task, this result supports the hypothesis
that the effect of the margin on such systems is marginal.

6.1. Sietill

The recognition system is based on gender-dependent
whole-word HMMSs. For each gender, 214 distinct states
plus one for silence are used. The vocabulary consists of
the 11 German digits (including the pronunciation variant
’zwo’). The observation vectors consist of 12 cepstral fea-
tures without derivatives. The gender-independent Linear
Discriminant Analysis (LDA) is applied to 5 consecutive
frames and projects the resulting feature vector to 25 di-
mensions (Heigold et al., 2007). The corpus statistics is
summarized in Tab. 2. The ML baseline system uses Gaus-
sian mixtures with globally pooled variances and serves as
initialization of the log-linear HMMs. The margin is rep-
resented by the approximate word accuracy and has been
chosen to be the point where the word error rate (WER)
on the training corpus begins to increase rapidly. The final
performance turned out to be rather insensitive to the ex-
act value. The optimization was carried out using RProp.
Fig. 2 shows the progress of the word error rate (WER)
vs. the iteration index on the test corpus. Margin-based
MMI was validated on log-linear mixture models of differ-
ent complexity (16 and 64 densities per HMM state with
first order features only) and on a purely log-linear model
with second and third order features (instead of using only
first order features). The discriminative training was initial-
ized with the respective ML baseline model except for the
experiments including third order features. These were ini-
tialized with the model from frame-based training (Heigold
et al., 2007). The discriminative results were all obtained
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Figure 2. Effect of margin: progress of word error rate (WER)
on Sietill test corpus, MMI (left) vs. modified MMI (right) (16
densities/mixture).

Table 3. Word error rates (WER) for Sietill test corpus.

Dns/Mix | Criterion | Margin || WER [%]
16 ML - 1.98
MMI - 1.88

word 1.72

64 ML - 1.81
MMI - 1.77

word 1.59

1+f2+3 Frame word 1.75
MMI - 1.68

word 1.53

using a regularization term. Tab. 3 summarizes the results.
The results clearly benefit from the additional margin term,
both regarding the performance and the robustness. This
might be because the training data are separable for the
given configurations. For the experiments using second
and third order features (’1+f243’) the training was ini-
tialized with the models from frame-based MMI training
which benefits from the margin only slightly (cf. Sec. 4).

6.2. EPPS English

This task contains recordings from the European Parlia-
ment Plenary Sessions (EPPS). The corpus statistics of the
different EPPS corpora can be found in Tab. 2. The acous-
tic front end comprises MFCC features augmented by a
voicing feature. 9 consecutive frames are concatenated and
the resulting vector is projected to 45 dimensions by means
of LDA. The MFCC features are warped using a fast vari-
ant of the Vocal Tract Length Normalization (VTLN). On
top of this, Speaker Adaptive Training (SAT) is applied.
The triphones are clustered using CART, resulting in 4,501
generalized triphone states. The HMM states are modeled
by Gaussian mixtures with globally pooled variances. The
ML baseline system is made up of approximately 900,000
densities. For recognition, a lexicon with 50,000 entries in
combination with a 4-gram language model was used (L66f
et al., 2007). The development (Dev06) and evaluation
(Eval06) data from the evaluation campaign 2006 as de-
scribed in Tab. 2 were used to tune the different parameters
(e.g. language model scale or the number of MPE itera-
tions). The evaluation data from the evaluation campaign
2007 (Eval07) were used only for testing.
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Table 4. Word error rates (WER) for EPPS English corpus, MPE
with different margins.

LM Margin WER [%]

(train) Dev06 ‘ Eval06 H Eval07

g - 13.4 10.1 11.5
word 13.4 10.2 11.3
phone 13.3 10.2 11.3

2¢g - 13.3 10.3 11.6
word 13.2 10.2 11.3
phone 13.2 10.2 11.3

Table 5. Word error rates (WER) for EPPS English corpus, inter-
dependence of weak language model and phone margin.

Crit. | Margin | LM WER [%]
(train) || Dev06 | Eval06 || Eval07
ML | - - 14.4 10.8 12.0
MPE | no 1g 13.4 10.1 11.5
2g 13.3 10.3 11.6
yes g 13.3 10.2 11.3
2¢g 13.2 10.2 11.3

The word-conditioned lattices used in MPE training were
generated with the VTLN/voicedness system in combina-
tion with a bigram language model. Since the lattices are
dominated by silence and noise arcs, the lattices were fil-
tered. The idea behind this filtering is to correct the poste-
riors for accumulation of discriminative statistics. For the
acoustic rescoring during discriminative training, the exact
match approach is used, i.e., the word boundary times are
kept fixed.

The margins are tuned on a small fraction of the training
corpus such that the margin-based approach in combination
with a bigram language model and the standard MPE setup
with a unigram language model have the same WER. Inde-
pendent control experiments imply that no further tuning of
the margin parameter is required. In the first experiment we
have tested the impact of different margins on the perfor-
mance, more specifically we have tested the approximate
word and phone accuracies according to (Povey & Wood-
land, 2002). Tab. 4 shows that the differences are marginal.
For convenience we decided to use the approximate phone
accuracy-based margin for the remaining experiments. In
Tab. 5 the interdependence of the weak unigram language
model and the margin was investigated. There is ongoing
work to clarify the interdependence of the language model
used for the optimization and the margin. Using the acous-
tic model from the standard MPE training, the same 4-gram
language model and only each tenth segment, the relative
improvement of WER is 5.6% on the training data. This
probably indicates that the generalization performance on
the test data (Eval07) is not optimal with a relative improve-
ment of 4.2% (and does not appear to be an issue on the de-
velopment data, i.e., Dev06 and Eval06). The experimental
results show the expected tendency, see Tab. 1.
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7. Conclusions

We proposed modified formulations of MMI and MPE to
include a margin term into the discriminative training of
models for ASR. Furthermore, we showed that these modi-
fied criteria can directly be used in existing state-of-the-art
ASR frameworks, since they can be represented as an addi-
tional transducer composition. The modified criteria are di-
rectly related to SVMs using a suitable loss function, which
allows us to justify some important heuristics used in the
discriminative training of acoustic models. The experimen-
tal results are consistent with our expectations. For the Ger-
man digit string recognition task Sietill, where overfitting
is achieved after a few iterations, the margin is essential for
the robust estimation of the model parameters and allows
to achieve significant improvements over the ML baseline.
In contrast, on the large vocabulary EPPS English task the
observed improvements are transferred well to the test data
and the effect under consideration is marginal. So far, we
have investigated the effect of the margin for the discrim-
inative re-estimation based on generatively estimated and
strongly tuned acoustic models. The benefits due to the
margin might be better visible, when the discriminative,
margin-based training builds on top of a suboptimal ML
baseline. However, models building on top of better base-
line models might still have a better absolute performance.
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