
Learning Dissimilarities by Ranking: From SDP to QP

Hua Ouyang houyang@cc.gatech.edu

College of Computing, Georgia Institute of Technology

Alex Gray agray@cc.gatech.edu

College of Computing, Georgia Institute of Technology

Abstract

We consider the problem of learning dis-
similarities between points via formulations
which preserve a specified ordering between
points rather than the numerical values of
the dissimilarities. Dissimilarity ranking (d-
ranking) learns from instances like “A is more
similar to B than C is to D” or “The dis-
tance between E and F is larger than that
between G and H”. Three formulations of d-
ranking problems are presented and new al-
gorithms are presented for two of them, one
by semidefinite programming (SDP) and one
by quadratic programming (QP). Among the
novel capabilities of these approaches are out-
of-sample prediction and scalability to large
problems.

1. Introduction

Ranking or sometimes referred as ordinal regression, is
a statistical learning problem which gained much at-
tention recently (Cohen et al., 1998; Herbrich et al.,
1999; Joachims, 2002). This problem learns from rel-
ative comparisons like “A ranks lower than B” or “C
ranks higher than D”. The goal is to learn an explicit
or implicit function which gives ranks over an sampling
space X. In most of these tasks, the sampled instances
to be ranked are vector-valued data in RD, while the
ranks are real numbers which can be either discrete or
continuous. If the problem is to learn a real valued
ranking function, it can be stated as: given a set S of
pairs (xi,xj) ∈ S (which indicates that the rank of xi

is lower than xj), learn a real valued f : X → R that
satisfies f(xm) < f(xn) if the rank of xm is lower than
xn.

In this paper we investigate a special ranking prob-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

lem: dissimilarity ranking (d-ranking). Unlike rank-
ing, this problem learns from instances like “A is more
similar to B than C is to D” or “The distance be-
tween E and F is larger than that between G and
H”. Note that the dissimilarities here are not neces-
sarily distances. Other than real vectors in conven-
tional ranking problems, the data to be ranked here
are dissimilates of pairwised data vectors. This prob-
lem can be stated as: learning an explicit or implicit
function which gives ranks over a space of dissimilar-
ities d (X,X) ∈ R. Based on different requirements of
applications, this learning problem can have various
formulations. We will present some of them in Section
2.

D-ranking can be regarded as a special instance of dis-
similarity learning (or metric learning). Different dis-
similarity learning methods have different goals. We
highlight some previous work as below.

• In metric learning methods (Hastie & Tibshirani,
1996; Xing et al., 2002), the purpose of learning a
proper Mahalanobis distance is to achieve better
class/cluster separations.

• In kernel learning methods (Lanckriet et al., 2004;
Micchelli & Pontil, 2005), learning a proper ker-
nel is equivalent to learning a good inner-product
function which introduces a dissimilarity in the
input space. The purpose is to maximize the per-
formance of a kernel-based learning machine.

• Multidimensional scaling (MDS) (Borg & Groe-
nen, 2005) and Isomap (Tenenbaum et al., 2000)
can also be regarded as learning an implicity func-
tion f : RD → RL. The purpose of learning
an embedding is to preserve distances in a low-
dimensional Euclidean space RL.

In our d-ranking problems, the purpose of learning a
proper dissimilarity is to preserve the ranks of dissim-
ilarities, not the absolute values of them (which is the
case in MDS and Isomap). For example, if we know

Learning Dissimilarities by Ranking: From SDP to QP

that “The distance between A and B is smaller than
that between C and D”, the problem can be formu-
lated as: find a dissimilarity function d, such that
d(A,B) < d(C,D).

Unlike conventional learning and ranking problems, d-
ranking hasn’t received intensive studies in previous
research. One of the most important related work
is the nonmetric multidimensional scaling (NMDS)
(Borg & Groenen, 2005). Given a symmetric prox-
imity (similarity or dissimilarity) matrix ∆ = [δmn],
NMDS tries to find a low dimensional embedding space
RL such that ∀xi,xj ,xk,xl ∈ RL, ‖xi − xj‖22 <
‖xk − xl‖22 ⇔ δij < δkl. NMDS was recently ex-
tended to the generalized NMDS (GNMDS) (Agarwal,
2007). GNMDS does not need to know the absolute
values of proximities δmn. Instead it only need a set
S of quadruples (i, j, k, l) ∈ S, which indicate that
δij < δkl.

Both NMDS and GNMDS learn an embedding space
instead of learning an explicit ranking function, thus
they are unable to handle out-of-sample problems.
Schultz et. al. gave a solution to these problems by
proposing to learn a distance metric from relative com-
parisons (Schultz & Joachims, 2003). They choose to
learn a Mahalanobis distance which can preserve ranks
of distances. Since the learned distance functions are
parameterized, they can be used to handle new sam-
ples. The proposed formulation was solved in a similar
manner as SVM. Nonetheless, the regularization term
was not well justified.

Many applications in biology, computer vision, web
search, social science etc. can be put into the frame-
work of d-ranking problems. Take document classifica-
tion as an instance. Without adequate domain knowl-
edge, it is hard to accurately determine the quantita-
tive dissimilarities between two documents. However,
comparing the dissimilarities between every three or
four documents can be easily done, either automat-
ically or manually. Generally speaking, d-ranking is
especially useful when the quantized dissimilarities are
not reliable.

In Section 2, we propose three formulations of d-
ranking problems. Section 3 gives the numerical so-
lutions for solving d-ranking by SDP. Section 4 shows
how to solve d-ranking by QP. The proposed methods
are evaluated in Section 5. Section 6 concludes the
paper.

2. Three Formulations of D-Ranking

D-ranking problems can have various formulations de-
pending on specific requirements or settings of appli-

cations. Next we will give three formulations.

Formulation 2.1. (F1) Inputs: a set S of ordered
quadruples (i, j, k, l) ∈ S, indicating that d(xi,xj) ≤
d(xk,xl), where d(·, ·) is a fixed but unknown dissim-
ilarity function; Outputs: coefficients of embedded
samples x

′
i,x

′
j ,x

′
k,x

′
l ∈ RL; Criteria: (i, j, k, l) ∈

S ⇔ ‖x′i − x
′
j‖22 ≤ ‖x′k − x

′
l‖22.

As proposed by Agarwal et. al. (Agarwal, 2007), in
F1 we neither assume any geometry of the input space,
nor assume any form of dissimilarities in it. We do
not need to know the coefficients of input samples.
Only ordering information is provided. Nonetheless
we assume a Euclidean metric in the embedding space,
which is often of low dimensions (e.g. L = 2, or 3). As
shown in Section 3, F1 can be formed as a problem of
semidefinite programming (SDP).

Formulation 2.2. (F2) Inputs: a set S of ordered
quadruples (i, j, k, l) ∈ S, indicating that d(xi,xj) ≤
d(xk,xl), where d(·, ·) is a fixed but unknown dissimi-
larity function; corresponding coefficients in the input
Euclidean space xi,xj ,xk,xl ∈ RD; Outputs: dissim-
ilarity functions d̂(·, ·) : RD × RD → R; Criteria:
(i, j, k, l) ∈ S ⇔ d̂(xi,xj) ≤ d̂(xk,xl).

Unlike learning an embedding space as in F1, F2
learns an explicit dissimilarity function d̂(·, ·) which
preserves the ranks of dissimilarities. We will show
in Section 4 that F2 can be handled in a very sim-
ilar manner as support vector machines, where the
quadratic programming (QP) problem can be solved
efficiently by specialized sequential optimization meth-
ods. If in some cases we need to find a low dimensional
Euclidean embedding of the input samples, we can
then use the classical multidimensional scaling (MDS)
to preserve the learned dissimilarities.

Formulation 2.3. (F3) Inputs: a set S of ordered
quadruples (i, j, k, l) ∈ S, indicating that d(xi,xj) ≤
d(xk,xl), where d(·, ·) is a fixed but unknown dissimi-
larity function; corresponding coefficients in the input
Euclidean space xi,xj ,xk,xl ∈ RD; Outputs: pro-
jection function f : RD → RL, x

′
i,x

′
j ,x

′
k,x

′
l ∈ RL;

Criteria: (i, j, k, l) ∈ S ⇔ ‖x′i − x
′
j‖22 ≤ ‖x′k − x

′
l‖22.

Although we formulate F3 as a function learning prob-
lem, currently we have not found any efficient method
to solve it. This formulation will remains as our future
work.

3. Solving F1 by SDP

F1 was studied by Agarwal et. al. (Agarwal, 2007).
The authors proposed GNMDS which can be solved as

Learning Dissimilarities by Ranking: From SDP to QP

a SDP, as shown in Eq.(1).

GNMDS:

min
∑

ijkl∈S
ξijkl + λtr(K),

s.t. (Kkk − 2Kkl + Kll)− (Kii − 2Kij + Kjj)
+ ξijkl ≥ 1,
∑

ab

Kab = 0, ξijkl ≥ 0, K º 0,

for all (i, j, k, l) ∈ S.

(1)

The main idea of GNMDS is to learn a positive
semidefinite Gram matrix K = XT X which can
be eigen-decomposed to recover the embedded sam-
ples. The relation between Euclidian distances and
the Gram matrix is used:

‖xi − xj‖22 = Kii − 2Kij + Kjj . (2)

Nonetheless, the constraints that contain order infor-
mation of dissimilarities are not sufficient to determine
a unique K, since any rotation, translation or scaling
can also satisfies these constraints. To reduce these
ambiguities, they use

∑
ab Kab = 0 to center all the

embedded samples at the origin.

It is preferable in many applications to find low di-
mensional embedding spaces, e.g. 2D or 3D Euclidean
space. Thus a low-rank K is desired. Unfortunately,
minimizing rank(K) subject to linear inequality con-
straints is NP-Hard (Vandenberghe & Boyd, 1996).
Thus the objective function is relaxed heuristically as
minimizing trace(K), which is a convex envelope of the
rank.

Figure 1 shows the result of GNMDS on a toy problem.
The inputs are 990 pairwise ranks of distances between
10 European cities. The outputs are the recovered
2D coefficients. It can be observed that the recovered
locations of the cities do not correspond to the true
locations. Actually only 789 out of 990 pairs of ranks
are preserved by the learned 2D embedding, i.e. 20.3%
error rate. Figure 2 shows the 10 sorted eigenvalues
of the Gram matrix K. Although the original space
is a 2D Euclidean space, the first 2 eigenvalues only
account for 49.4% of the total variation.

There are at least two reasons that account for the
poor performance of GNMDS. Firstly, there is no guar-
antee on the quality of the solution of the relaxed prob-
lem compared with the original problem. There may
exist some higher dimensional spaces which satisfy all
the constants while have smaller traces than lower di-
mensional spaces. Secondly, due to the introduction of

-600 -400 -200 0 200 400 600
-500

-400

-300

-200

-100

0

100

200

300

400

500

1

1

2

2

3
3

4

4 5 5

6

6

7

7

8

8

9
9

10

10

true locations

GNMDS

Figure 1. d-ranking toy problem: locations of ten Euro-
pean cities. Purple: true locations. Green: locations re-
covered by GNMDS. All the coefficients have been scaled
before plotting.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

E
ig
e
n
v
a
lu
e
s

Figure 2. 10 sorted eigenvalues of the Gram matrix K
learned by GNMDS.

slack variables ξijkl in the inequality constraints, the
learned embedding tends to push all the samples to
the same point. The first problem can be solved by
introducing better heuristics of the convex envelope of
the rank. The second problem can be solved by the
following slight modification of GNMDS:

Modified GNMDS:

min
∑

ijkl∈S
ξijkl + λtr(K),

s.t. (Kkk − 2Kkl + Kll)− (Kii − 2Kij + Kjj)
− ξijkl ≥ 1,
∑

ab

Kab = 0, ξijkl ≥ 0, K º 0,

for all (i, j, k, l) ∈ S.

(3)

The modified GNMDS just changes the slack variables
from +ξijkl to−ξijkl. This simple trick can ensure that
all the differences between distances k, l and i, j are
larger than 1, thus pulls the embedding samples apart.
Figure 3 shows toy problem solved by the modified
GNMDS. The recovered samples are closer to the true
locations than those in Figure 1. There are 850 out
of 990 pairs of ranks correctly preserved, i.e. 14.14%
error rate, which is 6% lower than GNMDS. Figure

Learning Dissimilarities by Ranking: From SDP to QP

-600 -400 -200 0 200 400 600
-500

-400

-300

-200

-100

0

100

200

300

400

500

1

1

2

2

3

3 4
4

5

5

6

6

7

7

8

8

9

9

10

10

true locations

modified GNMDS

Figure 3. d-ranking toy problem: locations of ten Euro-
pean cities. Purple: true locations. Green: locations re-
covered by modified GNMDS. All the coefficients have been
scaled before plotting.

4 shows the 10 eigenvalues of K learned by modified
GNMDS. The first 2 eigenvalues account to 69.8% of
the total variant, which is 20% higher than GNMDS.

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

E
ig
e
n
v
a
lu
e
s

Figure 4. 10 sorted eigenvalues of the Gram matrix K
learned by modified GNMDS.

4. Solving F2 by QP

As introduced in Section 2, instead of learning an em-
bedding as in F1, a dissimilarity function d(xi,xj) :
X×X→ R is learned in F2, such that all the training
ranks between d(·, ·) are preserved, and can generalize
to new samples. This is indeed a dissimilarity learning
problem.

Many previous metric learning methods (Hastie & Tib-
shirani, 1996; Goldberger et al., 2004; Kwok & Tsang,
2003) try to learn an alternative dissimilarity function
by replacing the Euclidean metric with an properly
learnt Mahalanobis metric, either globally or locally.

In this section we propose the d-ranking Vector Ma-
chine (d-ranking-VM) method. Unlike metric learn-
ing methods, d-ranking-VM is explicitly regularized.
Thus we can have a full control over the complexity of
d(xi,xj). D-ranking-VM utilizes the technique of hy-
perkernel learning (Ong et al., 2005) which was origi-
nally proposed for learning a proper kernel.

D-ranking-VM is formulated as the following optimiza-

tion problem:

d-ranking-VM (primal):

min
1
N

∑

ijkl∈S
ξijkl + λ‖d‖2H,

s.t. d (xk,xl)− d (xi,xj)− ξijkl ≥ 1,

ξijkl ≥ 0,

for all (i, j, k, l) ∈ S.

(4)

where N = |S|. H is a hyper-reproducing kernel
Hilbert space (hyper-RKHS) from which the function
d : X× X→ R is drawn.

Like the representer theorem in RKHS (Kimeldorf &
Wahba, 1971), there is also a representer theorem in
hyper-RHKS (see (Ong et al., 2005) or (Kondor & Je-
bara, 2006) for the theorem and proofs):

d(x) =
M∑

p=1

cpK(xp,x), (5)

where K is a semidefinite hyperkernel, x denotes a pair
of samples (xi,xj), and M is the number of distinct
dissimilarity pairs provided by the training rank data
S. We denote the set of dissimilarity pairs as D, and
M = |D|. Normally we have M > N (the discussion
of M and N is given in Section 5.1).

Substitute Eq.(5) into (4), we can change the primal
problem to the following form:

min
1
N

∑

p∈S
ξp + λCT KC,

s.t.
M∑

p=1

cpK(xp;xk,xl)−
M∑

p=1

cpK(xp;xi,xj)

− ξp ≥ 1,

ξp ≥ 0, for all p ∈ S,

(6)

where C ∈ RM is a vector with the ith element being
cp, and K ∈ RM×M is the hyper-kernel matrix.

The dual problem of (6) can be derived by using the
Lagrangian technique. The solution to this optimiza-
tion problem is given by the saddle point of the La-
grangian function:

L(C, ξp, αp, ζp) =
1
N

∑

p∈S
ξp + λCT KC −

N∑
p=1

ζpξp

+
N∑

p=1

αp

{
M∑

s=1

cs [K(xs;xi,xj)−K(xs;xi,xj)] + 1 + ξp

}
,

(7)

Learning Dissimilarities by Ranking: From SDP to QP

where ζp and αp are non-negative Lagrange multipli-
ers. The primal problem is convex, thus there exist a
strong duality between the primal and the dual. Uti-
lizing the KKT optimality condition, we have:

∂L

∂C
= 2λKC + K(P −Q)A = 0, (8)

and
∂L

∂ξp
=

1
N

+ λp − ζp = 0, (9)

where A ∈ RN is a vector with the pth element be-
ing αp. P,Q ∈ RM×N are two matrices with contain
the rank information. Each column px·(x = 1 . . . N)
of P and each column qx·(x = 1 . . . N) of Q only con-
tain one 1 and M − 1 0s. For example, if the rth
training quadruples in S is (i, j, k, l), which means that
d(xi,xj) < d(xk,xl), and if the pair (i, j) is the mth
element in D, while (k, l) is the nthe element in D,
then prm = 1 and qrn = 1.

From Eq.(8) and (9) we have:

C =
(Q− P)A

2λ
, (10)

and
αp = ζp − 1

N
(11)

Substitute Eq.(10) and (11) into (6), we arrive at the
following dual problem for d-ranking-VM:

d-ranking-VM (dual):

max
N∑

p=1

αp − AT (Q− P)T K(Q− P)A
4λ

,

s.t. αp ≥ 0,

for all (i, j, k, l) ∈ S.

(12)

This problem is a quadratic programming (QP) prob-
lem which shares a similar form as SVM. Thus the se-
quential optimization techniques of SVM can be read-
ily employed for d-ranking-VM. To perform testing,
we can use the learnt dissimilarity function in Eq.(5)
and make pairwise comparisons.

An important problem for kernel learning methods is
the selection of proper kernels. This problem also ex-
ists in hyperkernel learning methods. Here we pro-
pose some examples of hyperkernels, which are hyper-
extensions of Gaussian RBF kernels and polynomial
kernels. The construction of these hyperkernels are
based on the following proposition.

Proposition 4.1. Let ka(·, ·) and kb(·, ·) be posi-
tive definite kernels, then ∀x1,x

′
1,x2,x

′
2 ∈ X, and

∀α, β > 0,
(
ka(x1,x2)

)α(
kb(x

′
1,x

′
2)

)β or αka(x1,x2)+
βkb(x

′
1,x

′
2) can give a hyperkernel k.

Proof. See appendix.

Example 4.2. (Gaussian symmetric product hy-
perkernel) Let ka and kb be the same Gaussian RBF

kernel k(x,x
′
) = exp

(− ‖x−x
′‖2

2σ2

)
, and let α = β = 1,

the Gaussian symmetric product hyperkernel is given
by:

k
(
(x1,x

′
1), (x2,x

′
2)

)
= k(x1,x

′
1)k(x2,x

′
2)

= exp
(
− ‖x1 − x

′
1‖2 + ‖x2 − x

′
2‖2

2σ2

) (13)

Example 4.3. (Gaussian symmetric sum hyper-
kernel) Under the same conditions as Example 4.2,
we can construct the Gaussian symmetric sum hyper-
kernel as:

k
(
(x1,x

′
1), (x2,x

′
2)

)
= k(x1,x

′
1) + k(x2,x

′
2)

= exp
(
− ‖x1 − x

′
1‖2

2σ2

)
+ exp

(
− ‖x2 − x

′
2‖2

2σ2

)

(14)

Example 4.4. (polynomial symmetric product
hyperkernel) Let ka and kb be the same polynomial
kernel k(x,x

′
) =

(〈x,x
′〉+ q

)p, and let α = β = 1, we
can construct the polynomial symmetric product hyper-
kernel as:

k
(
(x1,x

′
1), (x2,x

′
2)

)
=

(〈x1,x
′
1〉+ q

)p(〈x2,x
′
2〉+ q

)p

(15)

Example 4.5. (polynomial symmetric sum hy-
perkernel) Under the same conditions as Example
4.4, we can construct the polynomial symmetric sum
hyperkernel as:

k
(
(x1,x

′
1), (x2,x

′
2)

)
=

(〈x1,x
′
1〉+ q

)p +
(〈x2,x

′
2〉+ q

)p

(16)

5. Experiments

The proposed d-ranking methods in Section 3 and Sec-
tion 4 are evaluated by several experiments.

5.1. Obtaining Ranks of Pairs from Data

To test our methods, we need to obtain pairwise dis-
tance ranks. This can be done in many ways. Gen-
erally speaking, for a problem of n data samples, the
total number of available distance pairs are M = C2

n =
n(n−1)

2 (if we take d(xi,xj) and d(xj ,xi) as the same

Learning Dissimilarities by Ranking: From SDP to QP

distance). The total number of pairwise distance ranks
are N = C2

M = M(M−1)
2 = n4

8 − n3

4 − n2

8 + n
4 (if we

take d(xi,xj) < d(xk,xl) and d(xk,xl) > d(xi,xj) as
the same rank pair). Table 1 gives some examples of
the relation between n and N . When n grows, the

Table 1. Some examples of N v.s. n.

n 2 3 4 10 20 50 100 1000
N 0 3 15 990 17955 749700 12248775 1.2475e+11

number of rank constraints will increase dramatically.
Even solving a problem of n > 100 will be impossible
for some optimization solvers.

Here we reduce N by considering order transitivities,
i.e. if A > B and B > C, then the rank pair A > C can
be ignored (automatically satisfied) in the optimiza-
tion constraints. The method is very simple. Firstly
we sort the M distances decreasingly. Then we take
the adjacent two distances to form one distance rank
pair. By doing this, N can be reduced to n2

2 − n
2 − 1.

This is the maximum number of N which carries full
rank information of all the distances. Of course in
some applications, the rank information is not be fully
given, and N < n2

2 − n
2 − 1.

We test our method on three data sets: 1) 2D locations
of 109 largest cities in the continental US; 2) 100 im-
ages of handwritten digits “3” and “5” from the USPS
database, each of size 16× 16; 3) 126 face images of 4
people from the UMist database, each of size 112×92.

For GNMDS and modified GNMDS methods, all ranks
of distance pairs are fed to a SDP solver, and the re-
covered 2D embeddings are plotted. We used SeDuMi
(Strum, 1999) to get the results given in the follow-
ing subsection. For d-ranking-VM, LibSVM (Chang
& Lin, 2001) is employed as our QP solver. It is im-
plemented by employing the sequential minimal opti-
mization (SMO) technique. The learned dissimilarities
are used as a “pseudo-distances”, and are fed to the
classical MDS. The recovered 2D embeddings are then
plotted.

5.2. Results of US Cities

In this data set, n = 109 and N = 5885. Every loca-
tion of the cities is given by a 2D coefficient. Figure
5 shows the true locations. Figure 6 shows the results
given by GNMDS.

It can be observed that GNMDS cannot correctly re-
cover the embedding based on distance ranks. Most of
the embedded samples are pushed to a line. 50.3% of

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-1500

-1000

-500

0

500

1000

1500

Figure 5. Locations of 109 largest cities in the continental
United States.

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-400

-300

-200

-100

0

100

200

Figure 6. Recovered locations of 109 US cities given by GN-
MDS.

the distances ranks are preserved, which are the results
of randomness. This gives an evidence to the analysis
in Section 3. Figure 7 shows the result given by the
modified GNMDS. The recovered embedding roughly
reflects the geometry of the cities. 74.5% of the dis-
tances ranks have been preserved. Since the distance
information is not provided, there is no hope to match
the true locations exactly.

Figure 8 shows the results given by d-ranking-VM,
where λ = 10, and the Gaussian symmetric product
hyperkernel is used, with σ = 15. 97.9% of the dis-
tances ranks are preserved.

Table 2 shows the runtime of the above experiments.

Table 2. Runtime comparison for the three d-ranking
methods.

Method Runtime(minutes)
GNMDS 124
modified GNMDS 71
d-ranking-VM 4.5

Learning Dissimilarities by Ranking: From SDP to QP

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

Figure 7. Recovered locations of 109 US cities given by the
modified GNMDS.

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
-1500

-1000

-500

0

500

1000

1500

Figure 8. Recovered locations of 109 US cities given by the
d-ranking-VM, using Gaussian symmetric product hyper-
kernel.

5.3. Results of USPS Handwritten Digits

In this data set, n = 100 and N = 4949. The dimen-
sion every data sample is 16 × 16 = 256. Figure 9
shows the recovered 2D results given by RnakD-VM.

5.4. Results of UMist Human Faces

In this data set, n = 126 and N = 7874. The dimen-
sion every data sample is 112× 92 = 10304. Figure 10
shows the recovered 2D results given by RnakD-VM.

6. Discussions and Conclusions

We have presented three d-ranking formulations, and
give numerical solutions for two of them, namely solv-
ing d-ranking by SDP and solving d-ranking by QP.
Each of them has its advantages and shortcomings.
We list some pros and cons from different perspectives:

• Pros for d-ranking by SDP (GNMDS and the

Figure 9. Recovered locations of USPS handwritten digits
“3” and “5” given by d-ranking-VM.

Figure 10. Recovered locations of UMist human faces given
by d-ranking-VM.

modified version): It can recover low dimensional
embedding directly. Only ordering information is
needed. There is no need to know the values of
sample coefficients.

• Cons for d-ranking by SDP (GNMDS and the
modified version): Solving SDP is hard, especially
for large scale problems. Even sophistries SDP
solver can only solve N < 103 problems with the
number of constraints less than 105. It cannot be
used to predict unseen samples.

• Pros for d-ranking by QP (d-ranking-VM): Solv-
ing QP in our case is much easier than SDP, since
it can be converted to a similar form as SVM. Us-
ing sequential methods (SMO), can solve N > 105

problems. The learn dissimilarity function can be
used to predict unseen samples.

• Cons for d-ranking by QP (d-ranking-VM): It can-

Learning Dissimilarities by Ranking: From SDP to QP

not recover low-dimensional embedding explicitly.
One needs to use MDS or other embedding meth-
ods after learning the dissimilarities. Learning
dissimilarity measure needs to know the coeffi-
cients of original samples. Like kernel methods,
how to choose a good hyperkernel is crucial in
solving a specific problem.

To our knowledge, this is the first work which brings
out-of-sample prediction capability and large-scale
scalability to d-ranking problems. Note that the tech-
nique of d-ranking-VM can also be employed in solv-
ing distances preserving problems. We will investigate
the regularization properties and evaluate the perfor-
mances of different hyperkernels in the following re-
search. Finding a numerical solution for formulation
F3 will also be our future work.

7. Appendix: Proof of Proposition 4.1

We need to prove that k is a kernel on X2.

Denote
⊗

as the Kronecker product of two matrices
A ∈ Rm×n and B ∈ Rp×q:

A
⊗

B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 , (17)

and define
⊕

as:

A
⊕

B =




a111+ B · · · a1n1+ B
...

. . .
...

am11+ B · · · amn1+ B


 , (18)

where 1 is a matrix of all ones.

Denote the kernel matrix of ka(x1,x2) as Ka, and that
of kb(x

′
1,x

′
2) as Kb. Denote the hyperkernel matrix of

k as K.

It is easy to verify that we can construct K =
Ka

⊗
Kb. Since Ka and Kb are positive definite, their

eigenvalues µa and µb are positive. Thus the eigenval-
ues of K: vij = αβµaiµbj are also positive. A symmet-
ric matrix K with positive eigenvalues is positive def-
inite. Thus k =

(
ka(x1,x2)

)α(
kb(x

′
1,x

′
2)

)β is a valid
hyperkernel.

We can also verify that αKa

⊕
βKb = αKa

⊗
1 +

β1
⊗

Kb. Since Ka, Kb and 1 are all positive semidef-
inite and α, β > 0, K = αKa

⊕
βKb is positive

semidefinite. Thus k = αka(x1,x2) + βkb(x
′
1,x

′
2) is

a valid hyperkernel.

References

Agarwal, S. (2007). Generalized non-metric multidimen-
sional scaling. AISTATS 07.

Borg, I., & Groenen, P. J. (2005). Modern multidimen-
sional scaling: Theory and applications. New York:
Springer.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for
support vector machines. Software available at
http : //www.csie.ntu.edu.tw/ ∼ cjlin/libsvm.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1998). Learn-
ing to order things. NIPS.

Goldberger, J., Roweis, S., Hinton, G., & Salakhutdinov,
R. (2004). Neighbourhood Components Analysis. NIPS.

Hastie, T., & Tibshirani, R. (1996). Discriminant adaptive
nearest neighbor classification. IEEE Trans. PAMI, 18,
607–616.

Herbrich, R., Graepel, T., & Obermayer, K. (1999). Large
margin rank boundaries for ordinal regression. Advances
in Large Margin Classifiers, 115–132.

Joachims, T. (2002). Optimizing search engines using click-
through data. Proc. of SIGKDD ’02.

Kimeldorf, G., & Wahba, G. (1971). Some Results on
Tchebycheffian Spline Functions. Journal of Mathemat-
ical Analysis and Applications, 33, 82–75.

Kondor, R., & Jebara, T. (2006). Gaussian and Wishart
Hyperkernels. NIPS.

Kwok, J. T., & Tsang, I. W. (2003). Learning with Ideal-
ized Kernels. ICML.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., &
Jordan, M. I. (2004). Learning the Kernel Matrix with
Semidenite Programming. Journal of Machine Learning
Research, 5, 27–72.

Micchelli, C. A., & Pontil, M. (2005). Learning the Kernel
Function via Regularization. Journal of Machine Learn-
ing Research, 6, 1099–1125.

Ong, C. S., Smola, A. J., & Williamson, R. C. (2005).
Learning the Kernel with Hyperkernels. Journal of Ma-
chine Learning Research, 6, 1043–1071.

Schultz, M., & Joachims, T. (2003). Learning a Distance
Metric from Relative Comparisons. NIPS.

Strum, J. F. (1999). Using SeDuMi 1.02, A Matlab tool-
box for optimization over symmetric cones. Optimization
Methods and Software, 11.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000).
A Global Geometric Framework for Nonlinear Dimen-
sionality Reduction. Science, 290, 2319–2323.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite Pro-
gramming. SIAM Review, 38, 49–95.

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2002).
Distance Metric Learning with Application to Clustering
with Side-Information. NIPS.

