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Abstract
We consider the least-square linear regression
problem with regularization by theℓ1-norm, a
problem usually referred to as the Lasso. In this
paper, we present a detailed asymptotic analy-
sis of model consistency of the Lasso. For var-
ious decays of the regularization parameter, we
compute asymptotic equivalents of the probabil-
ity of correct model selection (i.e., variable selec-
tion). For a specific rate decay, we show that the
Lasso selects all the variables that should enter
the model with probability tending to one expo-
nentially fast, while it selects all other variables
with strictly positive probability. We show that
this property implies that if we run the Lasso for
several bootstrapped replications of a given sam-
ple, then intersecting the supports of the Lasso
bootstrap estimates leads to consistent model se-
lection. This novel variable selection algorithm,
referred to as the Bolasso, is compared favorably
to other linear regression methods on synthetic
data and datasets from the UCI machine learning
repository.

1. Introduction

Regularization by theℓ1-norm has attracted a lot of inter-
est in recent years in machine learning, statistics and signal
processing. In the context of least-square linear regression,
the problem is usually referred to as theLasso(Tibshirani,
1994). Much of the early effort has been dedicated to al-
gorithms to solve the optimization problem efficiently. In
particular, theLars algorithm of Efron et al. (2004) allows
to find the entire regularization path (i.e., the set of solu-
tions for all values of the regularization parameters) at the
cost of a single matrix inversion.

Moreover, a well-known justification of the regularization
by theℓ1-norm is that it leads tosparsesolutions, i.e., load-
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ing vectors with many zeros, and thus performs model se-
lection. Recent works (Zhao & Yu, 2006; Yuan & Lin,
2007; Zou, 2006; Wainwright, 2006) have looked precisely
at the model consistency of the Lasso, i.e., if we know
that the data were generated from a sparse loading vector,
does the Lasso actually recover the sparsity pattern when
the number of observed data points grows? In the case of
a fixed number of covariates, the Lasso does recover the
sparsity pattern if and only if a certain simple condition on
the generating covariance matrices is verified (Yuan & Lin,
2007). In particular, in low correlation settings, the Lasso
is indeed consistent. However, in presence of strong corre-
lations between relevant variables and irrelevant variables,
the Lasso cannot be consistent, shedding light on potential
problems of such procedures for variable selection. Adap-
tive versions where data-dependent weights are added to
theℓ1-norm then allow to keep the consistency in all situa-
tions (Zou, 2006).

In this paper, we first derive a detailed asymptotic analysis
of sparsity pattern selection of the Lasso estimation pro-
cedure, that extends previous analysis (Zhao & Yu, 2006;
Yuan & Lin, 2007; Zou, 2006), by focusing on a spe-
cific decay of the regularization parameter. Namely, we
show that when the decay is proportional ton−1/2, where
n is the number of observations, then the Lasso will se-
lect all the variables that should enter the model (therel-
evantvariables) with probability tending to one exponen-
tially fast with n, while it selects all other variables (the
irrelevant variables) with strictly positive probability. If
several datasets generated from the same distribution were
available, then the latter property would suggest to con-
sider the intersection of the supports of the Lasso estimates
for each dataset: all relevant variables would always be se-
lected for all datasets, while irrelevant variables would en-
ter the models randomly, and intersecting the supports from
sufficiently many different datasets would simply eliminate
them. However, in practice, only one dataset is given; but
resampling methods such as thebootstrapare exactly dedi-
cated to mimic the availability of several datasets by resam-
pling from the same unique dataset (Efron & Tibshirani,
1998). In this paper, we show that when using the bootstrap
and intersecting the supports, we actually get a consistent
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model estimate,without the consistency condition required
by the regular Lasso. We refer to this new procedure as
the Bolasso(bootstrap-enhancedleastabsolute shrinkage
operator). Finally, our Bolasso framework could be seen
as a voting scheme applied to the supports of the boot-
strap Lasso estimates; however, our procedure may rather
be considered as a consensus combination scheme, as we
keep the (largest) subset of variables on whichall regres-
sors agree in terms of variable selection, which is in our
case provably consistent and also allows to get rid of a po-
tential additional hyperparameter.

The paper is organized as follows: in Section 2, we present
the asymptotic analysis of model selection for the Lasso;
in Section 3, we describe the Bolasso framework, while in
Section 4, we illustrate our results on synthetic data, where
the true sparse generating model is known, and data from
the UCI machine learning repository. Sketches of proofs
can be found in Appendix A.

Notations For a vectorv ∈ R
p, we denote‖v‖2 =

(v⊤v)1/2 its ℓ2-norm, ‖v‖∞ = maxi∈{1,...,p} |vi| its ℓ∞-
norm and‖v‖1 =

∑p
i=1 |vi| its ℓ1-norm. Fora ∈ R,

sign(a) denotes the sign ofa, defined assign(a) = 1 if
a > 0, −1 if a < 0, and0 if a = 0. For a vectorv ∈ R

p,
sign(v) ∈ R

p denotes the the vector of signs of elements
of v.

Moreover, given a vectorv ∈ R
p and a subsetI of

{1, . . . , p}, vI denotes the vector inRCard(I) of elements of
v indexed byI. Similarly, for a matrixA ∈ R

p×p, AI,J de-
notes the submatrix ofA composed of elements ofA whose
rows are inI and columns are inJ .

2. Asymptotic Analysis of Model Selection for
the Lasso

In this section, we describe existing and new asymptotic
results regarding the model selection capabilities of the
Lasso.

2.1. Assumptions

We consider the problem of predicting a responseY ∈ R

from covariatesX = (X1, . . . ,Xp)
⊤ ∈ R

p. The only
assumptions that we make on the joint distributionPXY of
(X,Y ) are the following:

(A1) The cumulant generating functionsE exp(s‖X‖2
2)

andE exp(sY 2) are finite for somes > 0.

(A2) The joint matrix of second order momentsQ =
EXX⊤ ∈ R

p×p is invertible.

(A3) E(Y |X) = X⊤w andvar(Y |X) = σ2 a.s. for some
w ∈ R

p andσ ∈ R
∗
+.

We let denoteJ = {j,wj 6= 0} the sparsity pattern ofw,
s = sign(w) the sign pattern ofw, andε = Y − X⊤w

the additive noise.1 Note that our assumption regarding cu-
mulant generating functions is satisfied whenX andε have
compact supports, and also when the densities ofX andε
have light tails.

We considerindependent and identically distributed(i.i.d.)
data(xi, yi) ∈ R

p × R, i = 1, . . . , n, sampled fromPXY ;
the data are given in the form of matricesY ∈ R

n and
X ∈ R

n×p.

Note that the i.i.d. assumption, together with (A1-3), are
the simplest assumptions for studying the asymptotic be-
havior of the Lasso; and it is of course of interest to allow
more general assumptions, in particular growing number of
variablesp, more general random variables, etc., which are
outside the scope of this paper—see, e.g., Meinshausen and
Yu (2008); Zhao and Yu (2006); Lounici (2008).

2.2. Lasso Estimation

We consider the square loss function12n

∑n
i=1(yi −

w⊤xi)
2 = 1

2n‖Y − Xw‖2
2 and the regularization by the

ℓ1-norm defined as‖w‖1 =
∑p

i=1 |wi|. That is, we look
at the following Lasso optimization problem (Tibshirani,
1994):

min
w∈Rp

1
2n‖Y − Xw‖2

2 + µn‖w‖1, (1)

whereµn > 0 is the regularization parameter. We denote
ŵ any global minimum of Eq. (1)—it may not be unique in
general, but will with probability tending to one exponen-
tially fast under assumption (A2).

2.3. Model Consistency - General Results

In this section, we detail the asymptotic behavior of the
Lasso estimatêw, both in terms of the difference in norm
with the population valuew (i.e., regular consistency) and
of the sign patternsign(ŵ), for all asymptotic behaviors
of the regularization parameterµn. Note that information
about the sign pattern includes information about thesup-
port, i.e., the indicesi for which ŵi is different from zero;
moreover, whenŵ is consistent, consistency of the sign
pattern is in fact equivalent to the consistency of the sup-
port.

We now consider five mutually exclusive possible situa-
tions which explain various portions of the regularization
path (we assume (A1-3)); many of these results appear else-
where (Yuan & Lin, 2007; Zhao & Yu, 2006; Fu & Knight,
2000; Zou, 2006; Bach, 2008; Lounici, 2008) but some of
the finer results presented below are new (see Section 2.4).

1Throughout this paper, we use boldface fonts for population
quantities.
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1. If µn tends to infinity, thenŵ = 0 with probability
tending to one.

2. If µn tends to a finite strictly positive constantµ0, then
ŵ converges in probability to the unique global mini-
mum of 1

2 (w − w)⊤Q(w − w) + µ0‖w‖1. Thus, the
estimateŵ never converges in probability tow, while
the sign pattern tends to the one of the previous global
minimum, which may or may not be the same as the
one ofw.2

3. If µn tends to zero slower thann−1/2, then ŵ con-
verges in probability tow (regular consistency) and
the sign pattern converges to the sign pattern of the
global minimum of12v⊤Qv +v⊤

J
sign(wJ)+‖vJc‖1.

This sign pattern is equal to the population sign vector
s = sign(w) if and only if the following consistency
condition is satisfied:

‖QJcJQ
−1
JJ

sign(wJ)‖∞ 6 1. (2)

Thus, if Eq. (2) is satisfied, the probability of correct
sign estimation is tending to one, and to zero other-
wise (Yuan & Lin, 2007).

4. If µn = µ0n
−1/2 for µ0 ∈ (0,∞), then the sign pat-

tern ofŵ agrees onJ with the one ofw with probabil-
ity tending to one, while for all sign patterns consistent
on J with the one ofw, the probability of obtaining
this pattern is tending to a limit in(0, 1) (in particular
strictly positive); that is, all patterns consistent onJ

are possible with positive probability. See Section 2.4
for more details.

5. If µn tends to zero faster thann−1/2, thenŵ is consis-
tent (i.e., converges in probability tow) but the sup-
port of ŵ is equal to{1, . . . , p} with probability tend-
ing to one (the signs of variables inJc may be negative
or positive). That is, theℓ1-norm has no sparsifying
effect.

Among the five previous regimes, the only ones with con-
sistent estimates (in norm) and a sparsity-inducing effect
are µn tending to zero andµnn1/2 tending to a limit
µ0 ∈ (0,∞] (i.e., potentially infinite). Whenµ0 = +∞,
then we can only hope for model consistent estimates if the
consistency condition in Eq. (2) is satisfied. This some-
what disappointing result for the Lasso has led to various
improvements on the Lasso to ensure model consistency
even when Eq. (2) is not satisfied (Yuan & Lin, 2007; Zou,
2006). Those are based on adaptive weights based on the
non regularized least-square estimate. We propose in Sec-
tion 3 an alternative way which is based on resampling.

2Here and in the third regime, we do not take into account the
pathological cases where the sign pattern of the limit in unstable,
i.e., the limit is exactly at a hinge point of the regularization path.

In this paper, we now consider the specific case where
µn = µ0n

−1/2 for µ0 ∈ (0,∞), where we derive new
asymptotic results. Indeed, in this situation, we get the cor-
rect signs of the relevant variables (those inJ) with proba-
bility tending to one, but we also get all possible sign pat-
terns consistent with this, i.e., all other variables (those not
in J) may be non zero with asymptotically strictly posi-
tive probability. However, if we were to repeat the Lasso
estimation for many datasets obtained from the same dis-
tribution, we would obtain for eachµ0, a set of active vari-
ables, all of which includeJ with probability tending to
one, but potentially containing all other subsets. By inter-
secting those, we would get exactlyJ.

However, this requires multiple copies of the samples,
which are not usually available. Instead, we consider boot-
strapped samples which exactly mimic the behavior of hav-
ing multiple copies. See Section 3 for more details.

2.4. Model Consistency with Exact Root-n
Regularization Decay

In this section we present detailed new results regarding
the pattern consistency forµn tending to zero exactly at
raten−1/2 (see proofs in Appendix A):

Proposition 1 Assume (A1-3) and µn = µ0n
−1/2, with

µ0 > 0. Then for any sign patterns ∈ {−1, 0, 1}p such
that sJ = sign(wJ), P(sign(ŵ) = s) tends to a limit
ρ(s, µ0) ∈ (0, 1), and we have:

P(sign(ŵ) = s) − ρ(s, µ0) = O(n−1/2 log n).

Proposition 2 Assume (A1-3) and µn = µ0n
−1/2, with

µ0 > 0. Then, for any patterns ∈ {−1, 0, 1}p such that
sJ 6= sign(wJ), there exist a constantA(µ0) > 0 such that

log P(sign(ŵ) = s) 6 −nA(µ0) + O(n−1/2).

The last two propositions state that we get all relevant vari-
ables with probability tending to oneexponentially fast,
while we get exactly get all other patterns with probabil-
ity tending to a limitstrictly between zero and one. Note
that the results that we give in this paper are valid forfi-
nite n, i.e., we can derive actual bounds on probability of
sign pattern selections with known constants that explictly
depend onw, Q and the joint distributionPXY .

3. Bolasso: Bootstrapped Lasso

Given then i.i.d. observations(xi, yi) ∈ R
d × R, i =

1, . . . , n, put together into matricesX ∈ R
n×p and

Y ∈ R
n, we considerm bootstrapreplications of then

data points (Efron & Tibshirani, 1998); that is, fork =
1, . . . ,m, we consider aghost sample(xk

i , yk
i ) ∈ R

p × R,

i = 1, . . . , n, given by matricesX
k
∈ R

n×p andY
k
∈ R

n.
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Then pairs(xk
i , yk

i ), i = 1, . . . , n, are sampled uniformly
at randomwith replacementfrom the n original pairs in
(X,Y ). The sampling of thenm pairs of observations is
independent. In other words, we defined the distribution
of the ghost sample(X

∗
, Y

∗
) by samplingn points with

replacement from(X,Y ), and, given(X,Y ), them ghost
samples are independently sampled i.i.d. from the distribu-
tion of (X

∗
, Y

∗
).

The asymptotic analysis from Section 2 suggests to esti-
mate the supportsJk = {j, ŵk

j 6= 0} of the Lasso esti-
matesŵk for the bootstrap samples,k = 1, . . . ,m, and
to intersect them to define the Bolasso model estimate of
the support:J =

⋂m
k=1 Jk. OnceJ is selected, we es-

timatew by the unregularized least-square fit restricted to
variables inJ . The detailed algorithm is given in Algo-
rithm 1. The algorithm has only one extra parameter (the
number of bootstrap samplesm). Following Proposition 3,
log(m) should be chosen growing withn asymptotically
slower thann. In simulations, we always usem = 128
(except in Figure 3, where we study the influence ofm).

Algorithm 1 Bolasso

Input: data(X,Y ) ∈ R
n×(p+1)

number of bootstrap replicatesm
regularization parameterµ

for k = 1 to m do
Generate bootstrap samples(X

k
, Y

k
) ∈ R

n×(p+1)

Compute Lasso estimatêwk from (X
k
, Y

k
)

Compute supportJk = {j, ŵk
j 6= 0}

end for
ComputeJ =

⋂m
k=1 Jk

ComputeŵJ from (XJ , Y )

Note that in practice, the Bolasso estimate can be computed
simultaneously for a large number of regularization param-
eters because of the efficiency of the Lars algorithm (which
we use in simulations), that allows to find the entire regular-
ization path for the Lasso at the (empirical) cost of a single
matrix inversion (Efron et al., 2004). Thus the computa-
tional complexity of the Bolasso isO(m(p3 + p2n)).

The following proposition (proved in Appendix A) shows
that the previous algorithm leads to consistent model selec-
tion.

Proposition 3 Assume (A1-3) and µn = µ0n
−1/2, with

µ0 > 0. Then, for allm > 1, the probability that the
Bolasso does not exactly select the correct model, i.e.,
P(J 6= J), has the following upper bound:

P(J 6= J) 6 mA1e
−A2n + A3

log(n)
n1/2

+ A4
log(m)

m ,

whereA1, A2, A3, A4 are strictly positive constants.

Therefore, iflog(m) tends to infinity slower thann when
n tends to infinity, the Bolasso asymptotically selects with
overwhelming probability the correct active variable, and
by regular consistency of the restricted least-square esti-
mate, the correct sign pattern as well. Note that the previ-
ous bound is true whether the condition in Eq. (2) is sat-
isfied or not, but could be improved on if we suppose that
Eq. (2) is satisfied. See Section 4.1 for a detailed compari-
son with the Lasso on synthetic examples.

4. Simulations

In this section, we illustrate the consistency results obtained
in this paper with a few simple simulations on synthetic
examples and some medium scale datasets from the UCI
machine learning repository (Asuncion & Newman, 2007).

4.1. Synthetic examples

For a given dimensionp, we sampledX ∈ R
p from a nor-

mal distribution with zero mean and covariance matrix gen-
erated as follows: (a) sample ap×p matrixG with indepen-
dent standard normal distributions, (b) formQ = GG⊤,
(c) scaleQ to unit diagonal. We then selected the first
Card(J) = r variables and sampled non zero loading vec-
tors as follows: (a) sample each loading signs in{−1, 1}
uniformly at random and (b) rescale those by a scaling
which is uniform at random between13 and 1 (to ensure
minj∈J |wj | > 1/3). Finally, we chose a constant noise
levelσ equal to0.1 times(E(w⊤X)2)1/2, and the additive
noiseε is normally distributed with zero mean and variance
σ2. Note that the joint distribution on(X,Y ) thus defined
satisfies with probability one (with respect to the sampling
of the covariance matrix) assumptions (A1-3).

In Figure 1, we sampled two distributionsPXY with p =
16 andr = 8 relevant variables, one for which the consis-
tency condition in Eq. (2) is satisfied (left), one for which
it was not satisfied (right). For a fixed number of sample
n = 1000, we generated 256 replications and computed the
empirical frequencies of selecting any given variable for
the Lasso as the regularization parameterµ varies. Those
plots show the various asymptotic regimes of the Lasso de-
tailed in Section 2. In particular, on the right plot, although
no µ leads to perfect selection (i.e., exactly variables with
indices less thanr = 8 are selected), there is a range where
all relevant variables are always selected, while all others
are selected with probability within(0, 1).

In Figure 2, we plot the results under the same condi-
tions for the Bolasso (with a fixed number of bootstrap
replicationsm = 128). We can see that in the Lasso-
consistent case (left), the Bolasso widens the consistency
region, while in the Lasso-inconsistent case (right), the Bo-
lasso “creates” a consistency region.
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Figure 1.Lasso: log-odd ratios of the probabilities of selection
of each variable (white = large probabilities, black = small prob-
abilities) vs. regularization parameter. Consistency condition in
Eq. (2) satisfied (left) and not satisfied (right).
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Figure 2.Bolasso: log-odd ratios of the probabilities of selection
of each variable (white = large probabilities, black = small prob-
abilities) vs. regularization parameter. Consistency condition in
Eq. (2) satisfied (left) and not satisfied (right).

In Figure 3, we selected the same two distributions and
compared the probability of exactly selecting the correct
support pattern, for the Lasso, and for the Bolasso with
varying numbers of bootstrap replications (those probabili-
ties are computed by averaging over 256 experiments with
the same distribution). In Figure 3, we can see that in the
Lasso-inconsistent case (right), the Bolasso indeed allows
to fix the unability of the Lasso to find the correct pattern.
Moreover, increasingm looks always beneficial; note that
although it seems to contradict the asymptotic analysis in
Section 3 (which imposes an upper bound for consistency),
this is due to the fact that not selecting (at least) the relevant
variables has very low probability and is not observed with
only 256 replications.

Finally, in Figure 4, we compare various variable selection
procedures for linear regression, to the Bolasso, with two
distributions wherep = 64, r = 8 and varyingn. For all
the methods we consider, there is a natural way to select ex-
actly r variables with no free parameters (for the Bolasso,
we select the most stable pattern withr elements, i.e., the
pattern which corresponds to most values ofµ). We can
see that the Bolasso outperforms all other variable selec-
tion methods, even in settings where the number of samples
becomes of the order of the number of variables, which re-
quires additional theoretical analysis, subject of ongoing
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Figure 3.Bolasso (red, dashed) and Lasso (black, plain): prob-
ability of correct sign estimation vs. regularization parame-
ter. Consistency condition in Eq. (2) satisfied (left) and not
satisfied (right). The number of bootstrap replicationsm is in
{2, 4, 8, 16, 32, 64, 128, 256}.
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Figure 4.Comparison of several variable selection methods:
Lasso (black circles), Bolasso (green crosses), forward greedy
(magenta diamonds), thresholded LS estimate (red stars), adap-
tive Lasso (blue pluses). Consistency condition in Eq. (2) satis-
fied (left) and not satisfied (right). The averaged (over 32 replica-
tions) variable selection error is computed as the square distance
between sparsity pattern indicator vectors.

research. Note in particular that we compare with bagging
of least-square regressions (Breiman, 1996a) followed by
a thresholding of the loading vector, which is another sim-
ple way of using bootstrap samples: the Bolasso provides
a more efficient way to use the extra information, not for
usual stabilization purposes (Breiman, 1996b), but directly
for model selection. Note finally, that the bagging of Lasso
estimates requires an additional parameter and is thus not
tested.

4.2. UCI datasets

The previous simulations have shown that the Bolasso is
succesful at performing model selection in synthetic exam-
ples. We now apply it to several linear regression prob-
lems and compare it to alternative methods for linear re-
gression, namely, ridge regression, Lasso, bagging of Lasso
estimates (Breiman, 1996a), and a soft version of the Bo-
lasso (referred to as Bolasso-S), where instead of intersect-
ing the supports for each bootstrap replications, we select
those which are present in at least90% of the bootstrap
replications. In Table 1, we consider data randomly gener-
ated as in Section 4.1 (withp = 32, r = 8, n = 64), where
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the true model is known to be composed of a sparse loading
vector, while in Table 2, we consider regression datasets
from the UCI machine learning repository, for which we
have no indication regarding the sparsity of the best lin-
ear predictor. For all of those, we perform 10 replications
of 10-fold cross validation and for all methods (which all
have one free regularization parameter), we select the best
regularization parameter on the 100 folds and plot the mean
squarepredictionerror and its standard deviation.

Note that when the generating model is actually sparse (Ta-
ble 1), the Bolasso outperforms all other models, while in
other cases (Table 2) the Bolasso is sometimes too strict
in intersecting models, i.e., the softened version works bet-
ter and is more competitive with other methods. Studying
the effects of this softened scheme (which is more simi-
lar to usual voting schemes), in particular in terms of the
potential trade-off between good model selection and low
prediction error, and under conditions wherep is large, is
the subject of ongoing work.

5. Conclusion

We have presented a detailed analysis of the variable se-
lection properties of a boostrapped version of the Lasso.
The model estimation procedure, referred to as the Bo-
lasso, is provably consistent under general assumptions.
This work brings to light that poor variable selection re-
sults of the Lasso may be easily enhanced thanks to a
simple parameter-free resampling procedure. Our contri-
bution also suggests that the use of bootstrap samples by
L. Breiman in Bagging/Arcing/Random Forests (Breiman,
1998) may have been so far slightly overlooked and consid-
ered a minor feature, while using boostrap samples may ac-
tually be a key computational feature in such algorithms for
good model selection performances, and eventually good
prediction performances on real datasets.

The current work could be extended in various ways: first,
we have focused on a fixed total number of variables, and
allowing the numbers of variables to grow is important in
theory and in practice (Meinshausen & Yu, 2008). Second,
the same technique can be applied to similar settings than
least-square regression with theℓ1-norm, namely regular-
ization by blockℓ1-norms (Bach, 2008) and other losses
such as general convex classification losses. Finally, theo-
retical and practical connections could be made with other
work on resampling methods and boosting (Bühlmann,
2006).

A. Proof of Model Consistency Results

In this appendix, we give sketches of proofs for the asymp-
totic results presented in Section 2 and Section 3. The
proofs rely on the well-known property of the Lasso op-

Table 1.Comparison of least-square estimation meth-
ods, data generated as described in Section 4.1, with
κ = ‖QJcJQ

−1

JJ
sJ‖∞ (cf. Eq. (2)). Performance is mea-

sured through mean squared prediction error (multiplied by
100).

κ 0.93 1.20 1.42 1.28
Ridge 8.8 ± 4.5 4.9 ± 2.5 7.3 ± 3.9 8.1 ± 8.6
Lasso 7.6 ± 3.8 4.4 ± 2.3 4.7 ± 2.5 5.1 ± 6.5
Bolasso 5.4 ± 3.0 3.4 ± 2.4 3.4 ± 1.7 3.7 ± 10.2
Bagging 7.8 ± 4.7 4.6 ± 3.0 5.4 ± 4.1 5.8 ± 8.4
Bolasso-S5.7 ± 3.8 3.0 ± 2.3 3.1 ± 2.8 3.2 ± 8.2

Table 2.Comparison of least-square estimation methods, UCI
regression datasets. Performance is measured through mean
squared prediction error (multiplied by 100).

Autompg Imports Machine Housing
Ridge 18.6±4.9 7.7±4.8 5.8±18.6 28.0±5.9
Lasso 18.6±4.9 7.8±5.2 5.8±19.8 28.0±5.7
Bolasso 18.1±4.7 20.7±9.8 4.6±21.4 26.9±2.5
Bagging 18.6±5.0 8.0±5.2 6.0±18.9 28.1±6.6
Bolasso-S17.9±5.0 8.2±4.9 4.6±19.9 26.8±6.4

timization problems, namely that if the sign pattern of the
solution is known, then we can get the solution in closed
form.

A.1. Optimality Conditions

We let denoteε = Y − Xw ∈ R
n, Q = X

⊤
X/n ∈ R

p×p

andq = X
⊤

ε/n ∈ R
p. First, we can equivalently rewrite

Eq. (1) as:

min
w∈Rp

1
2 (w−w)⊤Q(w−w)−q⊤(w−w)+µn‖w‖1. (3)

The optimality conditions for Eq. (3) can be written in
terms of the sign patterns = s(w) = sign(w) and the
sparsity patternJ = J(w) = {j, wj 6= 0} (Yuan & Lin,
2007):

‖(QJcJQ−1
JJQJJ − QJcJ)wJ + (QJcJQ−1

JJqJ − qJc)

+µnQJcJQ−1
JJsJ ‖∞ 6 µn, (4)

sign(Q−1
JJQJJwJ + Q−1

JJqJ − µnQ−1
JJsJ) = sJ . (5)

In this paper, we focus on regularization parametersµn of
the formµn = µ0n

−1/2. The main idea behind the results
is to consider that(Q, q) are distributed according to their
limiting distributions, obtained from the law of large num-
bers and the central limit theorem, i.e.,Q converges toQ
a.s. andn1/2q is asymptotically normally distributed with
mean zero and covariance matrixσ2Q. When assuming
this, Propositions 1 and 2 are straightforward. The main
effort is to make sure that we can safely replace(Q, q) by
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their limiting distributions. The following lemmas give suf-
ficient conditions for correct estimation of the signs of vari-
ables inJ and for selecting a given patterns (note that all
constants could be expressed in terms ofQ andw, details
are omitted here):

Lemma 1 Assume (A2) and ‖Q − Q‖2 6 λmin(Q)/2.
Thensign(ŵJ) 6= sign(wJ) implies‖Q−1/2q‖2 > C1 −
µnC2, whereC1, C2 > 0.

Lemma 2 Assume (A2) and lets ∈ {−1, 0, 1}p such that
sJ = sign(wJ). LetJ = {j, sj 6= 0} ⊃ J. Assume

‖Q − Q‖2 6 min {η1, λmin(Q)/2} , (6)

‖Q−1/2q‖2 6 min{η2, C1 − µnC4}, (7)

‖QJcJQ−1
JJqJ − qJc − µnQJcJQ−1

JJsJ‖∞ 6 µn

−C5η1µn − C6η1η2, (8)

∀i ∈ J\J, si

[

Q−1
JJ (qJ−µnsJ)

]

i
>µnC7η1+C8η1η2, (9)

with C4, C5, C6, C7, C8 are positive constants. Then
sign(ŵ) = sign(w).

Those two lemmas are useful because they relate optimality
of certain sign patterns to quantities from which we can
derive concentration inequalities.

A.2. Concentration Inequalities

Throughout the proofs, we need to provide upper bounds
on the following quantitiesP(‖Q−1/2q‖2 > α) and
P(‖Q − Q‖2 > η). We obtain, following standard argu-
ments (Boucheron et al., 2004): ifα < C9 andη < C10

(whereC9, C10 > 0 are constants),

P(‖Q−1/2q‖2 > α) 6 4p exp
(

− nα2

2pC9

)

.

P(‖Q − Q‖2 > η) 6 4p2 exp
(

− nη2

2p2C10

)

.

We also consider multivariateBerry-Esseen inequalities
(Bentkus, 2003); the probabilityP(n1/2q ∈ C) can be esti-
mated asP(t ∈ C) wheret is normal with mean zero and
covariance matrixσ2Q. The error|P(n1/2q ∈ C) − P(t ∈
C)| is thenuniformly (for all convex setsC) upperbounded
by:

400p1/4n−1/2λmin(Q)−3/2
E|ε|3‖X‖3

2 = C11n
−1/2.

A.3. Proof of Proposition 1

By Lemma 2, for anyA andn large enough, the probability
that the sign is different froms is upperbounded by

P

(

‖Q−1/2q‖2 > A(log n)1/2

n1/2

)

+P

(

‖Q − Q‖2 > A(log n)1/2

n1/2

)

+P {t /∈ C(s, µ0(1 − α))} + 2C11n
−1/2,

whereC(s, β) is the set oft such that (a)‖QJcJQ−1
JJ tJ −

tJc − βQJcJQ−1
JJsJ‖∞ 6 β and (b) for all i ∈

J\J, si

[

Q−1
JJ (tJ − βsJ )

]

i
> 0. Note that with

α = O((log n)n−1/2), which tends to zero, we have:
P {t /∈ C(s, µ0(1 − α))} 6 P {t /∈ C(s, µ0)} + O(α). All
terms (ifA is large enough) are thusO((log n)n−1/2).

This shows thatP(sign(ŵ) = sign(w)) > ρ(s, µ0) +
O((log n)n−1/2) where ρ(s, µ0) = P {t ∈ C(s, µ0)} ∈
(0, 1)–the probability is strictly between 0 and 1 because
the set and its complement have non empty interiors and
the normal distribution has a positive definite covariance
matrix σ2Q. The other inequality can be proved similarly.
Note that the constant inO((log n)n−1/2) depends onµ0

but by carefully considering this dependence onµ0, we can
make the inequality uniform inµ0 as long asµ0 tends to
zero or infinity at most at a logarithmic speed (i.e.,µn de-
viates fromn−1/2 by at most a logarithmic factor). Also,
it would be interesting to consider uniform bounds on por-
tions of the regularization path.

A.4. Proof of Proposition 2

From Lemma 1, the probability of not selecting any of the
variables inJ is upperbounded by

P(‖Q−1/2q‖2 >C1−µnC2)+P(‖Q−Q‖2 >λmin(Q)/2),

which is straightforwardly upper bounded (using Sec-
tion A.2) by a term of the required form.

A.5. Proof of Proposition 3

In order to simplify the proof, we made the simplifying
assumption that the random variablesX andε have com-
pact supports. Extending the proofs to take into account the
looser condition that‖X‖2 andε2 have non uniformly infi-
nite cumulant generating functions (i.e., assumption (A1))
can be done with minor changes. The probability that
⋂m

k=1 Jk is different fromJ is upper bounded by the sum
of the following probabilities:

(a) Probability of missing at least one variable in J in
any of the m replications: by Lemma 1, the probability
that for thek-th replication, one index inJ is not selected,
is upper bounded by

P(‖Q−1/2q∗‖2 > C1/2) + P(‖Q−Q∗‖2 > λmin(Q)/2),

where q∗ corresponds to the ghost sample; as common
in theoretical analysis of the bootstrap, we relateq∗ to q
as follows: P(‖Q−1/2q∗‖2 > C1/2) 6 P(‖Q−1/2(q∗ −
q)‖2 > C1/4)+P(‖Q−1/2q‖2 > C1/4) (and similarly for
P(‖Q−Q∗‖2 > λmin(Q)/2)). Because we have assumed
thatX andε have compact supports, the bootstrapped vari-
ables have also compact support and we can use concentra-
tion inequalities (given the original variablesX, and also
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after expectation with respect toX). Thus the probability
for one bootstrap replication is upperbounded byBe−Cn

whereB andC are strictly positive constants. Thus the
overall contribution of this part is less thanmBe−Cn.

(b) Probability of not selecting exactly J in all replica-
tions: note that this is not tight at all since on top of the
relevant variables which are selected with overwhelming
probability, different additional variables may be selected
for different replications and cancel out when intersecting.

Our goal is thus to boundE
{

P(J∗ 6= J|X)m
}

. By
Lemma 2, we have thatP(J∗ 6= J|X) is upper bounded
by

P

(

‖Q−1/2q∗‖2 > A(log n)1/2

n1/2
|X

)

+P

(

‖Q − Q∗‖2 >
A(log n)1/2

n1/2
|X

)

+P(t∗ /∈ C(µ0)|X) + 2C11n
−1/2 + O( log n

n1/2
),

where now, givenX,Y , t∗ is normally distributed with
meann1/2q and covariance matrix1n

∑n
i=1 ε2

i xix
⊤
i .

As in (a), the first two terms and the last two ones are uni-
formly O( log n

n1/2
) (if A is large enough). We then have to

consider the remaining term. We haveC(µ0) = {t∗ ∈
R

p, ‖QJcJQ
−1
JJ

t∗
J
− t∗

Jc − µ0QJcJQ
−1
JJ

sJ‖∞ 6 µ0}. By
Hoeffding’s inequality, we can replace the covariance ma-
trix that depends onX andY by σ2Q, at costO(n−1/2).
We thus have to boundP(n1/2q + y /∈ C(µ0)|q) for y
normally distributed andC(µ0) a fixed compact set. Be-
cause the set is compact, there exist constantsA,B > 0
such that, if‖n1/2q‖2 6 α for α large enough, then
P(n1/2q + y /∈ C(µ0)|q) 6 1 − Ae−Bα2

. Thus, by trunca-
tion, we obtain a bound of the form:

E
{

P(J∗ 6= J|X)m
}

6(1−Ae−Bα2

+F
log n

n1/2
)m+Ce−Bα2

6 exp(−mAe−Bα2

+ mF
log n

n1/2
) + Ce−Bα2

,

where we have used Hoeffding’s inequality to upper bound
P(‖n1/2q‖2 > α). By minimizing in closed form with
respect toe−Bα2

, i.e., withe−Bα2

= F log n
An1/2

+ log(mA/C)
mA ,

we obtain the desired inequality.
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I would like to thank Zäıd Harchaoui and Jean-Yves Au-
dibert for fruitful discussions related to this work. This
work was supported by a French grant from the Agence
Nationale de la Recherche (MGA Project).

References

Asuncion, A., & Newman, D. (2007). UCI machine learn-
ing repository.

Bach, F. R. (2008). Consistency of the group Lasso and
multiple kernel learning.J. Mac. Learn. Res., to appear.

Bentkus, V. (2003). On the dependence of the Berry–
Esseen bound on dimension.Journal of Statistical Plan-
ning and Inference, 113, 385–402.

Boucheron, S., Lugosi, G., & Bousquet, O. (2004). Con-
centration inequalities.Advanced Lectures on Machine
Learning. Springer.

Breiman, L. (1996a). Bagging predictors.Machine Learn-
ing, 24, 123–140.

Breiman, L. (1996b). Heuristics of instability and stabiliza-
tion in model selection.Ann. Stat., 24, 2350–2383.

Breiman, L. (1998). Arcing classifier.Ann. Stat., 26, 801–
849.
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