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Abstract

We consider the least-square linear regression
problem with regularization by thé -norm, a
problem usually referred to as the Lasso. In this
paper, we present a detailed asymptotic analy-
sis of model consistency of the Lasso. For var-
ious decays of the regularization parameter, we
compute asymptotic equivalents of the probabil-
ity of correct model selection (i.e., variable selec-
tion). For a specific rate decay, we show that the
Lasso selects all the variables that should enter
the model with probability tending to one expo-
nentially fast, while it selects all other variables
with strictly positive probability. We show that
this property implies that if we run the Lasso for
several bootstrapped replications of a given sam-
ple, then intersecting the supports of the Lasso
bootstrap estimates leads to consistent model se-
lection. This novel variable selection algorithm,
referred to as the Bolasso, is compared favorably
to other linear regression methods on synthetic
data and datasets from the UCI machine learning
repository.

1. Introduction

ing vectors with many zeros, and thus performs model se-
lection. Recent works (Zhao & Yu, 2006; Yuan & Lin,
2007; Zou, 2006; Wainwright, 2006) have looked precisely
at the model consistency of the Lasso, i.e., if we know
that the data were generated from a sparse loading vector,
does the Lasso actually recover the sparsity pattern when
the number of observed data points grows? In the case of
a fixed number of covariates, the Lasso does recover the
sparsity pattern if and only if a certain simple condition on
the generating covariance matrices is verified (Yuan & Lin,
2007). In particular, in low correlation settings, the Lass

is indeed consistent. However, in presence of strong corre-
lations between relevant variables and irrelevant vaesbl
the Lasso cannot be consistent, shedding light on potential
problems of such procedures for variable selection. Adap-
tive versions where data-dependent weights are added to
the¢1-norm then allow to keep the consistency in all situa-
tions (Zou, 2006).

In this paper, we first derive a detailed asymptotic analysis
of sparsity pattern selection of the Lasso estimation pro-
cedure, that extends previous analysis (Zhao & Yu, 2006;
Yuan & Lin, 2007; Zou, 2006), by focusing on a spe-
cific decay of the regularization parameter. Namely, we
show that when the decay is proportionabio!/2, where

n is the number of observations, then the Lasso will se-
lect all the variables that should enter the model (tle
evantvariables) with probability tending to one exponen-

Regularization by thé,-norm has attracted a lot of inter-
est in recent years in machine learning, statistics andasign

processing. In the context of least-square linear regrassi several datasets generated from the same distribution were

tlhgeggfrobl\l/lemrlls L;stﬁally r?fer;fed tt?] as él)nassc;(Tépsh;r?jn;, Iavailable, then the latter property would suggest to con-
! ). Much of the early efiort has been dedicated 10 ali; o e jntersection of the supports of the Lasso estignate
gorithms to solve the optimization problem efficiently. In

. _ for each dataset: all relevant variables would always be se-
particular, theLars algorithm of Efron et al. (2004) allows lected for all datasets, while irrelevant variables woutd e
to find the entire regularization path (i.e., the set of solu '

) for all val fh larizati h'terthe models randomly, and intersecting the supports from
gggfoggzin\é?eurizgixti:\/;ergilég”zat'on parameters) at t sufficiently many .differen't datasets would simp!y e!im'mat

: them. However, in practice, only one dataset is given; but
Moreover, a well-known justification of the regularization resampling methods such as theotstrapare exactly dedi-
by the/;-norm is that it leads teparsesolutions, i.e., load- cated to mimic the availability of several datasets by resam
- pling from the same unique dataset (Efron & Tibshirani,
Appearing inProceedings of the5*" International Conference 1998). In this paper, we show that when using the bootstrap

on Machine LearningHelsinki, Finland, 2008. Copyright 2008 . : .
by the author(s)/owner(s). and intersecting the supports, we actually get a consistent

tially fast with n, while it selects all other variables (the
irrelevant variables) with strictly positive probability. If
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model estimatewithoutthe consistency condition required
by the regular Lasso. We refer to this new procedure a ; | <
the Bolasso(bootstrap-enhancetbastabsolute shrinkage S = Sign(w) the sign pattern ofv, ande = Y — X 'w

operator). Finally, our Bolasso framework could be Seenthe additive noisé.Note that our assumption regarding cu-

as a voting scheme applied to the supports of the bootr_nulantgenerating functions is satisfied wh€rande have

strap Lasso estimates; however, our procedure may rath&PMPact supports, and also when the densitie¥ @inde

be considered as a consensus combination scheme, as (Wae light tails.
keep the (largest) subset of variables on whadlhregres-  We consideindependent and identically distributéid.d.)

We let denote] = {j,w; # 0} the sparsity pattern o,

sors agree in terms of variable selection, which is in ourdata(z;, ;) € R? x R, = 1,...,n, sampled fromPyy;
case provably consistent and also allows to get rid of a pothe data are given in the form of matric&s € R" and
tential additional hyperparameter. X € RxP,

The paper is organized as follows: in Section 2, we presentjote that the i.i.d. assumption, together with1(3), are

the asymptotic analysis of model selection for the Lassothe simplest assumptions for studying the asymptotic be-
in Section 3, we describe the Bolasso framework, while inhavior of the Lasso; and it is of course of interest to allow
Section 4, we illustrate our results on synthetic data, @her more general assumptions, in particular growing number of
the true sparse generating model is known, and data fromariablesp, more general random variables, etc., which are
the UCI machine learning repository. Sketches of proofsoutside the scope of this paper—see, e.g., Meinshausen and
can be found in Appendix A. Yu (2008); Zhao and Yu (2006); Lounici (2008).

Notations For a vectorv € RP, we denote||v|s = 22 | asso Estimation

(vT0)1/2 its Ly-norm, [|v]|ec = max;e(r, . py Vi itS loo- i i N

norm andjv]; = %, || its £,-norm. Fora ¢ R, ~We consider the square loss functio 35", (y: —
sign(a) denotes the sign of, defined asign(a) = 1if w':)*> = 5-|Y — Xw]|3 and the regularization by the
a>0,—1if a <0,and0if a = 0. For a vectow € R?,  ¢1-norm defined agwl||; = Y7, [w;|. Thatis, we look

sign(v) € RP denotes the the vector of signs of elementsat the following Lasso optimization problem (Tibshirani,
of v. 1994)

1y Y 2
Moreover, given a vectow € RP and a subsef of e 2 llY = X[z + pnwll1, @

{1,...,p}, v; denotes the vector iRC>*4()) of elements of
vindexed byl. Similarly, for a matrixA € RP*?, A; ; de-

notes the submatrix of composed of elements dfwhose
rows are in/ and columns are id.

wherep,, > 0 is the regularization parameter. We denote
w any global minimum of Eq. (1)—it may not be unique in

general, but will with probability tending to one exponen-
tially fast under assumptioA@).

2. Asymptotic Analysis of Model Selection for

2.3. Model Consistency - General Results
the Lasso

. _ _ o _In this section, we detail the asymptotic behavior of the
In this section, we describe existing and new asymptotiq_asso estimatey, both in terms of the difference in norm
results regarding the model selection capabilities of theith the population valuev (i.e., regular consistency) and

Lasso. of the sign patternsign (@), for all asymptotic behaviors
of the regularization parameter,. Note that information
2.1. Assumptions about the sign pattern includes information aboutghp-

port, i.e., the indiceg for which w; is different from zero;
moreover, wheno is consistent, consistency of the sign
pattern is in fact equivalent to the consistency of the sup-
port.

We consider the problem of predicting a respohse R
from covariatesX = (Xi,...,X,)" € RP. The only
assumptions that we make on the joint distributi®gy of
(X,Y) are the following:
i . ) We now consider five mutually exclusive possible situa-

(A1) The cumular;t generating function8exp(s[[X1[2)  tions which explain various portions of the regularization

andE exp(sY™") are finite for some > 0. path (we assume\(1-3)); many of these results appear else-
where (Yuan & Lin, 2007; Zhao & Yu, 2006; Fu & Knight,
2000; Zou, 2006; Bach, 2008; Lounici, 2008) but some of
the finer results presented below are new (see Section 2.4).

(A2) The joint matrix of second order momen@Q =
EXX'T € RP*Pis invertible.

(A3) E(Y[X) = X Tw andvar(Y|X) = o* a.s. for some Throughout this paper, we use boldface fonts for population
w € RP ando € R quantities.
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1. If u, tends to infinity, thenv = 0 with probability  In this paper, we now consider the specific case where
tending to one. pn = pon~ Y% for puo € (0,00), where we derive new
asymptotic results. Indeed, in this situation, we get thre co

rect signs of the relevant variables (thosd)rwith proba-

bility tending to one, but we also get all possible sign pat-
mum of %A(w -w) ' Qw— W) + piollwl[1. Thus, the ternys consisqcent with this, i.e., all gther vgriables (Eh?:]stp
estimated never converges in probability o, while i, 3y ay e non zero with asymptotically strictly posi-
the sign pattern tends to the one of the previous globafy e hrohability. However, if we were to repeat the Lasso
minimum, which may or may not be the same as theggtimation for many datasets obtained from the same dis-
one ofw. tribution, we would obtain for eachy, a set of active vari-

3. If 4, tends to zero slower than—1/2, thenw con-  ables, all of which includel with probability tending to
verges in probability tow (regular consistency) and ©On€, but potentially containing all other subsets. By inter
the sign pattern converges to the sign pattern of thesecting those, we would get exacly
global minimum ofjv " Qu +vj sign(wy) + [lus<[li-  However, this requires multiple copies of the samples,
This sign pattern is equal to the population sign vectoryhich are not usually available. Instead, we consider boot-
s = sign(w) if and only if the following consistency  strapped samples which exactly mimic the behavior of hav-
condition is satisfied: ing multiple copies. See Section 3 for more details.

—1 -

[QaeaQyy sign(wa)llc < 1. ) 2.4. Model Consistency with Exact Root-n
Thus, if Eq. (2) is satisfied, the probability of correct ~ Regularization Decay
sign estimation is tending to one, and to zero other-
wise (Yuan & Lin, 2007).

2. If u,, tends to a finite strictly positive constang, then
w converges in probability to the unique global mini-

In this section we present detailed new results regarding
the pattern consistency for, tending to zero exactly at
4.1 jn = pon—/2 for g € (0, 00), then the sign pat- raten™'/* (see proofs in Appendix A):
tern ofw agrees od with the one ofw with probabil-
ity tending to one, while for all sign patterns consistent
on J with the one ofw, the probability of obtaining
this pattern is tending to a limit if0, 1) (in particular
strictly positive); that is, all patterns consistent &n
are possible with positive probability. See Section 2.4 P(sign () = s) — p(s, o) = O(n*1/2 logn).
for more details.

Proposition 1 Assume A1-3) and u,, = pon~ /2, with
1o > 0. Then for any sign pattera € {—1,0,1}? such
that s; = sign(wy), P(sign(w) = s) tends to a limit
p(s, o) € (0,1), and we have:

Proposition 2 Assume A1-3) and p,, = pon~'/?, with
1o > 0. Then, for any patters € {—1,0, 1}? such that
sy # sign(wy), there exist a constamt(19) > 0 such that

5. If u,, tends to zero faster tharr /2, then is consis-
tent (i.e., converges in probability &) but the sup-
port of w is equal tof1, . . ., p} with probability tend-

ing to one (the signs of variablesJdii may be negative log P(sign(w) = s) < —nA(uo) + O(n~/?).
or positive). That is, thé;-norm has no sparsifying
effect. The last two propositions state that we get all relevantvari

ables with probability tending to onexponentially fast
Among the five previous regimes, the only ones with con-while we get exactly get all other patterns with probabil-
sistent estimates (in norm) and a sparsity-inducing effecity tending to a limitstrictly between zero and one. Note
are u, tending to zero andu,n'/? tending to a limit that the results that we give in this paper are validffor
1o € (0,00] (i.e., potentially infinite). Wheny = +oo, nite n, i.e., we can derive actual bounds on probability of
then we can only hope for model consistent estimates if theign pattern selections with known constants that exgplictl
consistency condition in Eq. (2) is satisfied. This some-depend orw, Q and the joint distributiorPyy .
what disappointing result for the Lasso has led to various
improvements on t_he Lassq tp ensure model consistencg_ Bolasso: Bootstrapped L asso
even when Eq. (2) is not satisfied (Yuan & Lin, 2007; Zou,
2006). Those are based on adaptive weights based on ti@&ven then i.i.d. observationgz;,y;) € R? x R, i =
non regularized least-square estimate. We propose in Sets...,n, put together into matricesX € R™*? and
tion 3 an alternative way which is based on resampling. Y <€ R", we considenn bootstrapreplications of then

" ?Here and in the third regime, we do not take into account thedata points (Efron & Tibshirani, 1998); that is, fér =
i i ime, wi i u ; ko, k p
pathological cases where the sign pattern of the limit in unstable,l’ -, m, We consider ghost sampléz;, y;) € R” x R,

. . —k —k
i.e., the limit is exactly at a hinge point of the regularization path.z = 1, ..., n, given by matricesY € R"*? andY < R".
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Then pairs(z¥ y¥),i = 1,... n, are sampled uniformly  Therefore, iflog(m) tends to infinity slower tham when

at randomwith replacemenfrom the n original pairs in  n tends to infinity, the Bolasso asymptotically selects with

(X,Y). The sampling of thevm pairs of observations is overwhelming probability the correct active variable, and

independent. In other words, we defined the distributionby regular consistency of the restricted least-square esti
of the ghost sampl(af*,Y*) by samplingn points with  mate, the correct sign pattern as well. Note that the previ-
replacement froniX,Y), and, given(X,Y), them ghost  ous bound is true whether the condition in Eq. (2) is sat-
samples are independently sampled i.i.d. from the distribuisfied or not, but could be improved on if we suppose that
tion of (Y*, 7*). Eq. (2) is satisfied. See Section 4.1 for a detailed compari-

The asymptotic analysis from Section 2 suggests to esti?" with the Lasso on synthetic examples.

mate the supportd, = {j, wf # 0} of the Lasso esti- _ )
matesd* for the bootstrap sampleg, = 1,...,m, and 4 Simulations
o intersect them ton‘? efine the Bola_sso model estimate of, g section, we illustrate the consistency resultsiokt

the support:J = (1~ J’?' Once J is seIecFed, WE €S in this paper with a few simple simulations on synthetic
tlmgtew by the unregula_rlzed Ieas't—squ'are.flt re;tncted toexamples and some medium scale datasets from the UCI
variables inJ. The detailed algorithm is given in Algo-

machine learning repository (Asuncion & Newman, 2007).
rithm 1. The algorithm has only one extra parameter (the grep Y )

number of bootstrap samples). Following Proposition 3,
log(m) should be chosen growing with asymptotically
slower thann. In simulations, we always use = 128  For a given dimensiop, we sampled¥ € R? from a nor-

4.1. Synthetic examples

(except in Figure 3, where we study the influencergf mal distribution with zero mean and covariance matrix gen-
erated as follows: (a) samplea p matrix G with indepen-
Algorithm 1 Bolasso dent standard normal distributions, (b) fo@ = GG T,
Input: data(X,Y) € R**@+D) (c) scaleQ to unit diagonal. We then selected the first

Card(J) = r variables and sampled non zero loading vec-
regularization parameter tors as follows: (a) sample each loading signgnl, 1}
for k — 1 tom do uniformly at random and (b) rescale those by a scaling
Generate bootstrap samp(e)?ik,Yk) c R7X(p+1) which is uniform at random betweeh and1 (to ensure
minjey [w;| > 1/3). Finally, we chose a constant noise
level o equal to0.1 times(E(w " X)?)!/2, and the additive
noises is normally distributed with zero mean and variance
end for N o2, Note that the joint distribution ofiX, Y') thus defined
Compute{ =M= e _ satisfies with probability one (with respect to the sampling
Computew, from (X, Y) of the covariance matrix) assumptiomsl¢3).

number of bootstrap replicates

Compute Lasso estimaté® from (Yk,Yk)
Compute supporf;, = {j, @} # 0}

_ ) _ In Figure 1, we sampled two distributiorfd¢y with p =
Note that in practice, the Bolasso estimate can be computeg}; o4, — s relevant variables. one for which the consis-

simultaneously for a large number of regularization paramyg ey condition in Eq. (2) is satisfied (left), one for which
eters because of the efficiency of the Lars algorithm (whichy a5 not satisfied (right). For a fixed number of sample
we use in simulations), that allows to fl_n.d the entire regular n = 1000, we generated 256 replications and computed the
|zat|c_)n _path fpr the Lasso at the (empirical) cost of aSIngleempirical frequencies of selecting any given variable for
matrix inversion (Efron et al., 2004). Thus the computa-ihe | 5550 as the regularization parameterries. Those
tional complexity of the Bolasso i8(m(p” + p*n)). plots show the various asymptotic regimes of the Lasso de-
The following proposition (proved in Appendix A) shows tailed in Section 2. In particular, on the right plot, altiybu

that the previous algorithm leads to consistent model seled10 1 leads to perfect selection (i.e., exactly variables with
tion. indices less than = 8 are selected), there is a range where

all relevant variables are always selected, while all ather
Proposition 3 Assume A1-3) and u,, = pon~ /2, with  are selected with probability withif0, 1).
uo > 0. Then, for allm > 1, the probability that the
Bolasso does not exactly select the correct model, i.e
P(J # J), has the following upper bound:

In Figure 2, we plot the results under the same condi-
tions for the Bolasso (with a fixed number of bootstrap
replicationsm = 128). We can see that in the Lasso-
consistent case (left), the Bolasso widens the consistency
region, while in the Lasso-inconsistent case (right), tbe B
lasso “creates” a consistency region.

P(J # J) < mAje= 4o 4580 4 4, lostm)

ni/2

whereA;, Ay, Az, A4 are strictly positive constants.
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Figure 1.l asso: log-odd ratios of the probabilities of selection Figure 3.Bolasso (red, dashed) and Lasso (black, plain): prob-

of each variable (white = large probabilities, black = small prob- ability of correct sign estimation vs. regularization parame-

abilities) vs. regularization parameter. Consistency condition inter. Consistency condition in Eq. (2) satisfied (left) and not

Eq. (2) satisfied (left) and not satisfied (right). satisfied (right). The number of bootstrap replicationsis in
{2,4,8,16,32,64,128,256}.
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Figure 2.Bolasso: log-odd ratios of the probabilities of selection  £iqre 4 Comparison of several variable selection methods:

of each variable (white = large probabilities, black = small prob-| 5550 (black circles), Bolasso (green crosses), forward greedy

abilities) vS. _regulanzatlon parar_ngter. (_30n3|stency condition iNimagenta diamonds), thresholded LS estimate (red stars), adap-

Eq. (2) satisfied (left) and not satisfied (right). tive Lasso (blue pluses). Consistency condition in Eq. (2) satis-
fied (left) and not satisfied (right). The averaged (over 32 replica-
tions) variable selection error is computed as the square distance

In Figure 3, we selected the same two distributions andetween sparsity pattern indicator vectors.

compared the probability of exactly selecting the correct

support pattern, for the Lasso, and for the Bolasso with

varying numbers of bootstrap replications (those probabil research. Note in particular that we compare with bagging

ties are computed by averaging over 256 experiments witl®f least-square regressions (Breiman, 1996a) followed by

the same distribution). In Figure 3, we can see that in thé thresholding of the loading vector, which is another sim-

Lasso-inconsistent case (right), the Bolasso indeed allowPle way of using bootstrap samples: the Bolasso provides

to fix the unability of the Lasso to find the correct pattern. & more efficient way to use the extra information, not for

Moreover, increasing. looks always beneficial; note that usual stabilization purposes (Breiman, 1996b), but dyect

although it seems to contradict the asymptotic analysis ifor model selection. Note finally, that the bagging of Lasso

Section 3 (which imposes an upper bound for consistency)gstimates requires an additional parameter and is thus not

this is due to the fact that not selecting (at least) the eglev  tested.

variables has very low probability and is not observed with

only 256 replications. 4.2. UCI datasets

Finally, in Figure 4, we compare various variable selectionThe previous simulations have shown that the Bolasso is
procedures for linear regression, to the Bolasso, with twasuccesful at performing model selection in synthetic exam-
distributions wherep = 64, » = 8 and varyingn. For all  ples. We now apply it to several linear regression prob-
the methods we consider, there is a natural way to select exems and compare it to alternative methods for linear re-
actly r variables with no free parameters (for the Bolasso,gression, namely, ridge regression, Lasso, bagging ofd_ass
we select the most stable pattern witlelements, i.e., the estimates (Breiman, 1996a), and a soft version of the Bo-
pattern which corresponds to most values:df We can  lasso (referred to as Bolasso-S), where instead of intersec
see that the Bolasso outperforms all other variable seledng the supports for each bootstrap replications, we select
tion methods, even in settings where the number of samplethose which are present in at led#t% of the bootstrap
becomes of the order of the number of variables, which refeplications. In Table 1, we consider data randomly gener-
quires additional theoretical analysis, subject of ongoin ated as in Section 4.1 (with= 32, » = 8, n = 64), where
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the true model is known to be composed of a sparse loadin
vector, while in Table 2, we consider regression dataset
from the UCI machine learning repository, for which we

%ds,

gable 1.Comparison

of

least-square
data generated as described

R X - T HQJCJQ}JISJHOO (cf. Eg. (2)). Performance is mea-
have no indication regarding the sparsity of the best lin-g,req through mean squared prediction error (multiplied by

estimation
in Section 4.1, with

ear predictor. For all of those, we perform 10 replications00).

of 10-fold cross validation and for all methods (which all [~ 0.93 1.20 1.42 1.28
have one free regularization parameter), we select the begjqge S8+145|49+2573+39/81+86
regularization parameter on the 100 folds and plotthe meal) asso | 7.6 3.8 | 44+23 47425151 +6.5
squarepredictionerror and its standard deviation. Bolasso | 5.4+3.0134+24134+1.7]37+102
Note that when the generating model is actually sparse (TaBagging | 7.8 £4.7 | 4.6 £3.0 | 5.4 £ 4.1 | 5.8 £8.4
ble 1), the Bolasso outperforms all other models, while inB0lasso-$5.7+3.8 | 3.0£2.3 |3.1£2.8|3.2£8.2

other cases (Table 2) the Bolasso is sometimes too strict

in intersecting models, i.e., the softened version works be

ter and is more competitive with other methods. Studying

the effects of this softened scheme (which is more simi

regression datasets.
‘squared prediction error (multiplied by 100).

Table 2.Comparison of least-square estimation methods, UCI
Performance is measured through mean

lar to usual voting schemes), in particular in terms of th

X ; N Autompg | Imports | Machine | Housing
thesubjectofo’ngoingwork : Lasso 18.64+4.9 | 7.845.2 |5.8419.8 | 28.045.7
' Bolasso | 18.1+4.7 | 20.749.8 | 4.6+£21.4 | 26.9+2.5

. Bagging | 18.6+5.0 | 8.0+£5.2 | 6.0+£18.9 | 28.14+6.6

5. Conclusion Bolasso-$17.9+5.0 | 8.2+4.9 | 4.6+£19.9 | 26.8+6.4

meth-

We have presented a detailed analysis of the variable se-

lection properties of a boostrapped version of the Lassoyi;ation problems, namely that if the sign pattern of the
The model estimation procedure, referred to as the Box

) X _~-solution is known, then we can get the solution in closed
lasso, is provably consistent under general assumptiong, .,

This work brings to light that poor variable selection re-

sults of the Lasso may be easily enhanced thanks to 24 Optimality Conditions
simple parameter-free resampling procedure. Our contri-
bution also suggests that the use of bootstrap samples ke et denote =V — Xw € R*, Q = YTY/H c RPxP

L. Breiman in Bagging/Arcing/Random Forests (Brelman,andq _ YTé/n c RP. First, we can equivalently rewrite

1998) may have been so far slightly overlooked and consid: .

: : . Eqg. (1) as:
ered a minor feature, while using boostrap samples may ac-
tually be a key computational feature in such algorithms for min L(w—w)TQw—w)—q" (w—w)+ pn|jw|. (3)
good model selection performances, and eventually goodwekr 2 "

rediction performances on real datasets. - . . .
P P The optimality conditions for Eqg. (3) can be written in

The current work could be extended in various ways: firstterms of the sign pattera = s(w) = sign(w) and the
we have focused on a fixed total number of variables, andparsity pattern/ = J(w) = {j, w; # 0} (Yuan & Lin,
allowing the numbers of variables to grow is important in 2007):

theory and in practice (Meinshausen & Yu, 2008). Second,

the same technique can be applied to similar settings than H(QJcJQ;}QJJ —Qey)wy + (QJCJQ;}qJ —qye)
least-square regression with thenorm, namely regular- +MnQJcJQ}}SJ loo < pins  (4)
ization by block¢;-norms (Bach, 2008) and other losses Sign(Q 71 Qsaws + Q7 ay — Q7 tss) = 55, (5)
such as general convex classification losses. Finally-theo > 8"\ @7 % IIWI T 47 = Kl g y87) = 57
retical and practical connections could be made with othey, (s paper, we focus on regularization parameterf
work on resampling methods and boostingufBnann, the formu,, = pon—"/2. The main idea behind the results

2006). is to consider thatQ, ¢) are distributed according to their
limiting distributions, obtained from the law of large num-
bers and the central limit theorem, i.€,converges taQ

, _ _ a.s. andh!/?q is asymptotically normally distributed with
In this appendix, we give sketches of proofs for the asympy,aan zero and covariance matri®Q. When assuming

totic results presented in Section 2 and Section 3. Th?his, Propositions 1 and 2 are straightforward. The main
proofs rely on the well-known property of the Lasso 0p- o¢qrt is to make sure that we can safely replé€e q) by

A. Proof of M odel Consistency Results
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their limiting distributions. The following lemmas givefsu
ficient conditions for correct estimation of the signs ofivar
ables inJ and for selecting a given pattesn(note that all
constants could be expressed in term&Qofndw, details
are omitted here):

Lemmal AssumeA2) and ||Q — Q|2 < Amin(Q)/2.
Thensign(wy) # sign(wy) implies|Q~/2q|l, > C; —
1, Co, WhereCy, Cy > 0.

Lemma2 AssumeA?2) and lets € {—1,0,1}? such that
sy = sign(wy). LetJ = {j,s; # 0} D J. Assume

1Q — Qll2 < min {n1, \nin(Q)/2} , (6)
1Q™"2q|l2 < min{n2, C1 — p1,Ca}, (7)

1QsesQ7 747 — @re — 1n Qe Q7 500 < fin
—Csnipin, — Ceminz,  (8)

Vie \J, i [Q75(qs—pnss)], = pnCrm+Csmn, (9)
with Cy, Cs, Cg, C7,Cy are positive constants. Then
sign(w) = sign(w).

whereC(s, 3) is the set ot such that (a)|Q.-sQ7jt; —
tre — BQresQ7755lle < B and (b) for alli €
I\, s [Q7(ts—Bss)], = 0. Note that with
a = O((logn)n~'/?), which tends to zero, we have:
B{t ¢ Cls, po(1— )} < P{t ¢ C(s, o)} + O(a). Al
terms (if A is large enough) are thu3((log n)n~—1/?).

This shows thaP(sign(w) = sign(w)) = p(s, o) +
O((logn)n=1/2) where p(s, 10) = P{t € C(s, o)} €

(0, 1)—the probability is strictly between 0 and 1 because
the set and its complement have non empty interiors and
the normal distribution has a positive definite covariance
matrix 02Q. The other inequality can be proved similarly.
Note that the constant i@((logn)n~'/?) depends o

but by carefully considering this dependencegnwe can
make the inequality uniform i as long as:, tends to
zero or infinity at most at a logarithmic speed (i.e., de-
viates fromn—1/2 by at most a logarithmic factor). Also,

it would be interesting to consider uniform bounds on por-
tions of the regularization path.

A.4. Proof of Proposition 2

Those two lemmas are useful because they relate optimalityrom Lemma 1, the probability of not selecting any of the
of certain sign patterns to quantities from which we canvariables inJ is upperbounded by

derive concentration inequalities.

A.2. Concentration Inequalities

P(1Q " 2glla > C1 =1 Ca) +P(|Q Q12 > Amin (Q) /2),

which is straightforwardly upper bounded (using Sec-
tion A.2) by a term of the required form.

Throughout the proofs, we need to provide upper bounds

on the following quantitiesP(|Q~'/%¢|. > «) and
P(|Q — Q|2 > n). We obtain, following standard argu-
ments (Boucheron et al., 2004): df < Cy andn < Cqg
(whereCy, Co > 0 are constants),

2
P(IQ /]2 > a) < dpexp (325 )

n 2
P(IQ = Qll2 > n) < 4p* exp (— 5 )

We also consider multivariatBerry-Esseen inequalities
(Bentkus, 2003); the probabilif§(n'/?q € C) can be esti-
mated afP(t € C) wheret is normal with mean zero and
covariance matrix>Q. The error|P(n'/%2q € C) — P(t €
C)| is thenuniformly (for all convex set€’) upperbounded
by:

400p 402 Xin (Q) 73 2E|eP|| X ||3 = Cran~ /2.

A.3. Proof of Proposition 1

By Lemma 2, for anyd andn large enough, the probability
that the sign is different from is upperbounded by

ogn)'/? oen)/?
P(1Q /2l > 20%27) + P(IQ — Q]2 > 218 77)

ni/2
+P{t ¢ C(s,po(l — )} + 20n 2,

A.5. Proof of Proposition 3

In order to simplify the proof, we made the simplifying
assumption that the random variabl&sands have com-
pact supports. Extending the proofs to take into account the
looser condition that X || ande? have non uniformly infi-
nite cumulant generating functions (i.e., assumptiéa)y

can be done with minor changes. The probability that
Ny, J is different fromJ is upper bounded by the sum
of the following probabilities:

(a) Probability of missing at least one variablein J in
any of them replications. by Lemma 1, the probability
that for thek-th replication, one index id is not selected,
is upper bounded by

P(1Q"2¢*]|l2 > C1/2) + P(IQ — Q*l2 > Auin(Q)/2),

where ¢* corresponds to the ghost sample; as common
in theoretical analysis of the bootstrap, we relateto ¢

as follows: P(|Q~1/2¢*||> > C1/2) < P(||Q~Y3(¢* —

Q)2 > C1/4) +P(||Q~/2¢||2 > C1/4) (and similarly for
P(|Q — @*|l2 > Amin(Q)/2)). Because we have assumed
that X ande have compact supports, the bootstrapped vari-
ables have also compact support and we can use concentra-
tion inequalities (given the original variables, and also
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after expectation with respect #). Thus the probability References
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