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Abstract

Multi-view learning has become a hot topic
during the past few years. In this paper,
we first characterize the sample complexity
of multi-view active learning. Under the α-
expansion assumption, we get an exponen-
tial improvement in the sample complexity
from usual Õ( 1

ε ) to Õ(log 1
ε ), requiring nei-

ther strong assumption on data distribution
such as the data is distributed uniformly over
the unit sphere in Rd nor strong assumption
on hypothesis class such as linear separators
through the origin. We also give an upper
bound of the error rate when the α-expansion
assumption does not hold. Then, we analyze
the combination of multi-view active learn-
ing and semi-supervised learning and get a
further improvement in the sample complex-
ity. Finally, we study the empirical behav-
ior of the two paradigms, which verifies that
the combination of multi-view active learning
and semi-supervised learning is efficient.

1. Introduction

Learning from labeled data is well-established in ma-
chine learning, but labeling the training data is time
consuming, sometimes may be very expensive since
it may need human efforts. In many machine learn-
ing applications, unlabeled data can often be obtained
abundantly and cheaply, so there has recently been
substantive interest in using large amount of unlabeled
data together with labeled data to achieve better learn-
ing performance.

There are two popular paradigms for using unla-
beled data to complement labeled data. One is semi-
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supervised learning. Some approaches use a genera-
tive model for the classifier and employ EM to model
the label estimation or parameter estimation process
(Dempster et al., 1977; Miller & Uyar, 1997; Nigam
et al., 2000); some approaches use the unlabeled data
to regularize the learning process in various ways, e.g.,
defining a graph on the data set and then enforcing
the label smoothness over the graph as a regularization
term (Belkin et al., 2001; Zhu et al., 2003; Zhou et al.,
2005); some approaches use the multi-view setting to
train learners and then let the learners to label unla-
beled examples (Blum & Mitchell, 1998; Goldman &
Zhou, 2000; Zhou & Li, 2005). The multi-view setting
is first formalized by Blum and Mitchell (1998), where
there are several disjoint subsets of features (each sub-
set is called as a view), each of which is sufficient for
learning the target concept. For example, the web
page classification task has two views, i.e., the text ap-
pearing on the page itself and the anchor text attached
to hyper-links pointing to this page (Blum & Mitchell,
1998); the speech recognition task also has two views,
i.e., sound and lip motion (de Sa & Ballard, 1998).

Another important paradigm for using unlabeled data
to complement labeled data, which is the focus of this
paper, is active learning (Cohn et al., 1994; Freund
et al., 1997; Tong & Koller, 2001; Melville & Mooney,
2004). In active learning, the learners actively ask the
user to label the most informative examples and hope
to learn a good classifier with as few labeled examples
as possible.

There have been many theoretical analyses on the sam-
ple complexity of single-view active learning. For some
simple learning tasks the sample complexity of active
learning can be O(log 1

ε ) which is exponentially im-
proved in contrast to O( 1

ε ) of passive learning taking
into account the desired accuracy bound ε. Unfortu-
nately, such an exponential improvement is not always
achievable in active learning. Dasgupta (2006) illus-
trated that if the hypothesis class H is linear separa-
tors in R2 and if the data distribution is some density
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supported on the perimeter of the unit circle, there are
some target hypotheses in H for which Ω(1

ε ) labels are
needed to find a classifier with error rate less than ε, no
matter what active learning approach is used. Under
the strong assumptions that the hypothesis class is lin-
ear separators through the origin, that the data is dis-
tributed uniformly over the unit sphere in Rd, and that
the learning task is a realizable case (i.e., there exists a
hypothesis perfectly separating the data), the sample
complexity of active learning is Õ(d log 1

ε ) taking into
account the desired accuracy bound ε (Freund et al.,
1997; Dasgupta et al., 2005) 1. For some known data
distribution D and specific hypothesis class, Dasgupta
(2006) gave the coarse sample complexity bounds for
realizable active learning. The study of sample com-
plexity of active learning for realizable case without
strong assumptions on the data distribution and the
hypothesis class remains an open problem.

All the above results were obtained under the single-
view setting. The first algorithm for active learning
in multi-view setting is co-testing (Muslea et al., 2000;
Muslea et al., 2006). It focuses on the set of con-
tention points (i.e., unlabeled examples on which dif-
ferent views predict different labels) and asks the user
to label some of them. This is somewhat related to
Query-by-Committee (Freund et al., 1997) since co-
testing also uses more than one learners to identify
the most informative unlabeled examples to query, but
the typical Query-by-Committee works under a single-
view setting while co-testing exploits the multi-views
explicitly. It was reported that co-testing outperforms
existing active learners on a variety of real-world do-
mains such as wrapper induction, Web page classifica-
tion, advertisement removal and discourse tree pars-
ing. To the best of our knowledge, however, there
is no theoretical result on the sample complexity of
multi-view active learning.

In this paper, we first theoretically analyze the sample
complexity of multi-view active learning under the α-
expansion assumption which is first mentioned by Bal-
can et al. (2005) and prove that the sample complex-
ity of multi-view active learning can be exponentially
improved to Õ(log 1

ε ). A clear advantage is that we
do not use strong assumptions which were employed
in most previous studies, such as the hypothesis class
is linear separators through the origin and the data
is distributed uniformly over the unit sphere in Rd.
In case the α-expansion assumption does not hold, we
give an upper bound of the error rate. Second, we ana-
lyze the combination of multi-view active learning and

1The eO notation is used to hide factors log log( 1
ε
), log(d)

and log( 1
δ
)

semi-supervised learning and get an further improve-
ment in the sample complexity. Finally, we study the
empirical behavior of the two paradigms, which ver-
ifies that the combination of multi-view active learn-
ing and semi-supervised learning is more efficient than
pure multi-view active learning.

The rest of this paper is organized as follows. After in-
troducing some preliminaries in Section 2, we analyze
the sample complexity of multi-view active learning in
Section 3. Then we analyze the sample complexity
of the combination of multi-view active learning and
semi-supervised learning in Section 4 and study the
empirical behavior in Section 5. Finally we conclude
the paper in Section 6.

2. Preliminaries

In the multi-view setting, an example x is described
with several different disjoint sets of features. With-
out loss of generality, in this paper we only consider
the two-view setting for the sake of simplicity. Suppose
that the example space X = X1×X2 is with some un-
known distribution D, X1 and X2 are the two views,
and Y = {−1, 1} is the label space. Let c = (c1, c2)
be the underlying target concept, where c1 and c2 are
the underlying target concepts in the two views, re-
spectively. Suppose that the example space is consis-
tent, that is, there is no such example x = (x1, x2)
that c1(x1) 6= c2(x2) in X. Let H1 and H2 be the
hypothesis class in each view, respectively. For any
hj ∈ Hj and x = (x1, x2) we say xj ∈ hj if and only if
hj(xj) = cj(xj) (j = 1, 2). In this way any hypothesis
in Hj can be thought of as a subset of Xj .

In each round of iterative multi-view active learning,
the learners ask the user to label some unlabeled ex-
amples and add them into the labeled training data.
These newly labeled examples provide more informa-
tion about the data distribution. In this paper, we
consider the co-testing-like Paradigm 1 described in
Table 1. In Paradigm 1, the learners ask the user to
label some contention points to refine the classifiers. If
the confident set of each view is expanding by consider-
ing the other view together, Paradigm 1 may succeed.
Intuitively, we can use the α-expansion assumption to
analyze the process.

Suppose S1 ⊆ X1 and S2 ⊆ X2 denote the examples
that are correctly classified in each view, respectively.
Let Pr(S1∧S2) denote the probability mass on exam-
ples that are correctly classified in both views, while
Pr(S1⊕S2) denotes the probability mass on examples
that are correctly classified only in one view (i.e., ex-
amples disagreed by the two classifiers). Now we give
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Input:

Unlabeled data set U = {x1, x2, · · · , }, where each example xt is given as a pair (xt
1, x

t
2)

Process:

Ask the user to label m0 unlabeled examples drawn randomly from D to compose the labeled data set L
Iterate i = 0, 1, · · · , s

Train two classifiers hi
1 and hi

2 consistent with L in each view, respectively;

Apply hi
1 and hi

2 to the unlabeled data set U and find out the contention points set Qi;

Ask the user to label mi+1 unlabeled examples drawn randomly from Qi, then add them into L and

delete them from U .

Output:

hfinal = combine(hs
1, h

s
2)

Table 1. Paradigm 1: Multi-view active learning

our definition on α-expansion.

Definition 1 D is α-expansion if for any S1 ⊆ X1,
S2 ⊆ X2, we have

Pr(S1 ⊕ S2) ≥ α min[Pr(S1 ∧ S2), P r(S1 ∧ S2)].

We say that D is α-expanding with respect to hypothe-
sis class H1×H2 if the above holds for all S1 ∈ H1∩X1,
S2 ∈ H2∩X2 (here we denote by Hj∩Xj the set {h∩Xj

: h ∈ Hj} for j = 1, 2).

Note that Definition 1 on α-expansion is almost the
same as that in Balcan et al. (2005). To guarantee
the success of iterative co-training, they made several
assumptions such as that the learning algorithm used
in each view is confident about being positive and is
able to learn from positive examples only, and that
the distribution D+ over positive examples is expand-
ing. There are many concept classes, however, are not
learnable from positive examples only. Apparently, all
problems which satisfy the definition of Balcan et al.
(2005) also satisfy our definition.

We will make use of the following lemma when deriving
our sample complexity bound (Anthony & Bartlett,
1999).

Lemma 1 Let H be a set of functions from X to
{−1, 1} with finite VC-dimension V ≥ 1. Let P
be an arbitrary, but fixed probability distribution over
X × {−1, 1}. For any ε, δ > 0, if we draw a sample
from P of size N(ε, δ) = 1

ε (4V log( 1
ε ) + 2 log( 2

δ )), then
with probability 1 − δ, all hypotheses with error ≥ ε
are inconsistent with the data.

3. Sample Complexity of Multi-View
Active Learning

There are many strategies to combine the classifiers
in Paradigm 1, for example, weighted voting, majority

voting or winner-take-all (Muslea et al., 2006). In this
paper, we use the following simple combination scheme
for binary classification:

hi
com(x) =

{
hi

1(x1) if hi
1(x1) = hi

2(x2)
random guess if hi

1(x1) 6= hi
2(x2)

(1)

Assuming that the data distribution D is α-expanding
with respect to hypothesis class H1×H2, we will ana-
lyze how many labels the user should label to achieve
classifiers with error rate no larger than ε. We consider
the iterative process and let Si

1 ⊆ X1 and Si
2 ⊆ X2

where Si
1 and Si

2 corresponds to the classifiers hi
1 ∈ H1

and hi
2 ∈ H2 in the i-th round, respectively. The ini-

tial m0 unlabeled examples are randomly picked from
D and labeled by the user according to the target con-
cept c. Suppose m0 is sufficient for learning two clas-
sifiers h0

1 and h0
2 whose error rates are at most 1/4

(i.e., Pr(S0
1) ≥ 1 − 1/4 and Pr(S0

2) ≥ 1 − 1/4), and
thus Pr(S0

1 ∧ S0
2) ≥ 1/2. The α-expansion condition

suggests

Pr(S0
1 ⊕ S0

2) ≥ αPr(S0
1 ∧ S0

2).

In each round of Paradigm 1, the learners ask the user
to label some unlabeled examples according to the tar-
get concept c and add them into the labeled data set.
Then the two classifiers are refined. Some example x
in X might be predicted with different labels between
the i-th and (i + 1)-th round. Intuitively, in order to
get the classifiers improved in Paradigm 1, the reduced
size of confident set should be no more than the size of
contention set. Moreover, considering that there is no
noise in the labeled data since all the labels are given
by the user according to the target concept, and that
the amount of labeled training examples are monoton-
ically increasing, the asymptotic performance of PAC
learners increase, we can assume that

Pr(Si+1
j | Si

1 ∧ Si
2) ≤

αPr(Si
1 ⊕ Si

2)
16Pr(Si

1 ∧ Si
2)

(j ∈ {1, 2}) (2)
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Intuitively, by multiplying the denominator at the
right-hand to the left-hand (16 is used for a faster
convergence; it can be 2 for an easier understanding),
Eq. 2 implies that the total reduced size of confident
sets on both views after using the newly labeled con-
tention points is no more than the size of contention
set. Apparently, all problems that satisfy the assump-
tion of Balcan et al. (2005) also satisfy Eq. 2. Now we
give our main theorem.

Theorem 1 For data distribution D α-expanding with
respect to hypothesis class H1×H2, let ε and δ denote
the final desired accuracy and confidence parameters.
If s = d log α

8ε

log 1
C

e and mi = 16
α (4V log( 16

α )+2 log( 8(s+1)
δ ))

(i = 0, 1, · · · , s), Paradigm 1 will generate a classifier
with error rate no more than ε with probability 1− δ.

Here, V = max[V C(H1), V C(H2)] where V C(H) de-
notes the VC-dimension of the hypothesis class H and
constant C = α/4+1/α

1+1/α .

Proof. In Paradigm 1, we use Eq. 1 to combine
the two classifiers, thus the error rate of the combined
classifier hi

com is

errorhi
com

= Pr(Si
1 ∧ Si

2) +
1
2
Pr(Si

1 ⊕ Si
2)

≤ Pr(Si
1 ∧ Si

2) + Pr(Si
1 ⊕ Si

2)

= Pr(Si
1 ∧ Si

2)

With m0 = 16
α (4V log( 16

α ) + 2 log( 8(s+1)
δ )), using

Lemma 1 we have Pr(S0
1) ≤ α

16 and Pr(S0
2) ≤ α

16

with probability 1 − δ
4(s+1) . Generally, we have that

an arbitrary Si
j (j = 1, 2) being consistent with the

examples in L has an error rate at most α
16 with prob-

ability 1 − δ
4(s+1) . So we have Pr(Si

1 ∧ Si
2) ≥ 1 − α

8

with probability 1− δ
2(s+1) . Without loss of generality,

consider 0 < α ≤ 1 and therefore 1− α
8 > 1

2 . Thus the
α-expansion condition suggests

Pr(Si
1 ⊕ Si

2) ≥ αPr(Si
1 ∧ Si

2). (3)

For i ≥ 1, the learners ask the user to label mi

unlabeled examples drawn randomly from Si−1
1 ⊕

Si−1
2 according to the target concept c and obtain

two new classifiers Si
1 and Si

2. Similarly, if mi =
16
α (4V log( 16

α )+2 log( 8(s+1)
δ )), using Lemma 1 we have

Pr(Si
j | Si−1

1 ⊕ Si−1
2 ) ≤ α

16
(j ∈ {1, 2})

with probability 1− δ
4(s+1) . So we get that

Pr(Si
1 ∧ Si

2 | Si−1
1 ⊕ Si−1

2 ) ≤ α

8

with probability 1− δ
2(s+1) . Considering Eq. 2 we have

Pr(Si
1 ∧ Si

2 | Si−1
1 ∧ Si−1

2 ) ≤ αPr(Si−1
1 ⊕ Si−1

2 )
8Pr(Si−1

1 ∧ Si−1
2 )

.

Since

Pr(Si
1 ∧ Si

2) = Pr(Si
1 ∧ Si

2 | Si−1
1 ∧ Si−1

2 )

·Pr(Si−1
1 ∧ Si−1

2 )

+Pr(Si
1 ∧ Si

2 | Si−1
1 ⊕ Si−1

2 )
·Pr(Si−1

1 ⊕ Si−1
2 )

+Pr(Si
1 ∧ Si

2 | Si−1
1 ∧ Si−1

2 )
·Pr(Si−1

1 ∧ Si−1
2 ),

we have

Pr(Si
1 ∧ Si

2) ≤
α

4
Pr(Si−1

1 ⊕ Si−1
2 ) + Pr(Si−1

1 ∧ Si−1
2 ) .

From Eq. 3 we can get that

Pr(Si−1
1 ∧ Si−1

2 ) ≤ Pr(Si−1
1 ⊕ Si−1

2 )/α .

Thus, considering

Pr(Si−1
1 ∧ Si−1

2 ) = Pr(Si−1
1 ⊕ Si−1

2 ) + Pr(Si−1
1 ∧ Si−1

2 ),

we have

Pr(Si
1 ∧ Si

2)

Pr(Si−1
1 ∧ Si−1

2 )

≤
α
4 Pr(Si−1

1 ⊕ Si−1
2 ) + Pr(Si−1

1 ∧ Si−1
2 )

Pr(Si−1
1 ⊕ Si−1

2 ) + Pr(Si−1
1 ∧ Si−1

2 )

≤
α
4 Pr(Si−1

1 ⊕ Si−1
2 ) + Pr(Si−1

1 ⊕ Si−1
2 )/α

Pr(Si−1
1 ⊕ Si−1

2 ) + Pr(Si−1
1 ⊕ Si−1

2 )/α

=
α/4 + 1/α

1 + 1/α
.

Now we get

Pr(Ss
1 ∧ Ss

2) ≤ (
α/4 + 1/α

1 + 1/α
)sPr(S0

1 ∧ S0
2)

≤ α

8
(
α/4 + 1/α

1 + 1/α
)s .

So when s = d log α
8ε

log 1
C

e where C is a constant and
α/4+1/α
1+1/α < 1, we have Pr(Ss

1 ∧ Ss
2) ≤ ε. In other

words, we get a classifier hs
com whose error rate is no

more than ε with probability 1− δ. ¤

From Theorem 1 we know that we only need to label∑s
i=0 mi = O(log 1

ε log(log 1
ε )) examples to get a clas-

sifier with error rate no more than ε with probability
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1−δ. Thus, we achieve an exponential improvement in
sample complexity from Õ( 1

ε ) to Õ(log 1
ε ) as in Das-

gupta et al. (2005) and Balcan et al. (2007). Note
that we have not assumed a specific data distribution
and a specific hypothesis class which were assumed in
the studies of Dasgupta et al. (2005) and Balcan et al.
(2007). From the proof of Theorem 1 we can also know
that the proportion α

16 in Eq. 2 can be relaxed to close
to α

2 . Such relaxation will not affect the exponential
improvement, but will reduce the convergence speed.

Further, considering that not every data distribution
D is α-expanding with respect to hypothesis class
H1 × H2, we will give a coarse upper bound of the
generalization error for Paradigm 1 for cases when the
α-expansion assumption does not hold.

Let Pr(Si
1⊕Si

2) = αiPr(Si
1 ∧Si

2) (i = 0, 1, · · ·). If the
α-expansion assumption does not hold in Paradigm 1,
for any ε > 0 and any integer N > 0, the size of the set
{αi: i > N ∧ αi < ε} is infinite. We set a parameter
εc > 0 as the stop condition. When Pr(Si

1 ⊕ Si
2) is

less than εc, we terminate the iteration in Paradigm 1.
Now we make the definition on expanded region with
respect to εc.

Definition 2 Let γεc
denote the expanded region with

respect to εc in Paradigm 1,

γεc = Pr(S0
1 ∧ S0

2)− Pr(Si
1 ∧ Si

2),

where i = min{i : Pr(Si
1 ⊕ Si

2) < εc ∧ i ≥ 1}.

After i rounds the region in which both classifiers
wrongly predict becomes smaller and smaller, from
Pr(S0

1∧S0
2) to Pr(Si

1∧Si
2). This expanded region can

be thought of as an approximation of Σi
k=1Pr(Sk

1⊕Sk
2).

Theorem 2 When the α-expansion assumption does
not hold, set εc > 0 to terminate Paradigm 1. The
error rate of hi

com can be smaller than h0
com for γεc

+
1
2 (Pr(S0

1 ⊕ S0
2)− εc).

Proof. Considering errorhi
com

= Pr(Si
1 ∧

Si
2) + 1

2Pr(Si
1 ⊕ Si

2) and Pr(Si
1 ⊕ Si

2) < εc, we
have that errorh0

com
− errorhi

com
is larger than

γεc
+ 1

2 (Pr(S0
1 ⊕ S0

2)− εc). ¤

Theorem 2 implies that Paradigm 1 could not boost
the performance to arbitrarily high and gives a coarse
upper bound of the error rate, when the α-expansion
assumption does not hold. The improvement de-
pends on the expanded region γ and the disagree-
ment between the initial two classifiers. The larger

the expanded region γ, the better the improvement of
Paradigm 1. Theorem 2 can also be applied to one-
shot co-training (Balcan et al., 2005).

4. Sample Complexity of Combination
of Multi-View Active Learning and
Semi-Supervised Learning

We can try to reduce the sample complexity further
by combining multi-view active learning with semi-
supervised learning. Previously this has been tried
in some applications and led to good results (Zhou
et al., 2006), yet to the best of our knowledge, there
is no theoretical analysis which supports such argu-
ment. For computational simplicity, we consider the
following case in this section. Suppose that the hy-
pothesis class Hj is the subset of mappings from Xj

to [−1, 1] and y = sign(c(x)), c = (c1, c2) is the under-
lying target concept, where c1 and c2 is the underlying
target concept in each view, respectively. Let d(f, g)
denote the probability that the two classifiers f ∈ Hj

and g ∈ Hj predict different labels on an example xj

drawn randomly from Xj , then

d(f, g) = Prxj∈Xj

(
sign

(
f(xj)

) 6= sign
(
g(xj)

))
.

Suppose that for any f, g ∈ Hj , there exists some
constant L1 > 0 to hold that |f(xj) − g(xj)| ≤
L1 · d(f, g) · ‖xj‖2, where ‖xj‖2 denotes the 2-norm
of xj . Without loss of generality, suppose that there
exists some constant L2 > 0 to hold that ‖xj‖2 ≤ L2

for xj ∈ Xj (j = 1, 2). Now we have the following the-
orem for Paradigm 2 which combines multi-view active
learning with semi-supervised learning.

Theorem 3 For data distribution D α-expanding with
respect to hypothesis class H1×H2, let ε and δ denote
the final desired accuracy and confidence parameters.
If s = d log α

8ε

log 1
C

e, m0 = 1
L (4V log( 1

L )+2 log( 8(s+1)
δ )) and

mi = 16
α (4V log( 16

α ) + 2 log( 8(s+1)
δ )) (i = 1, 2, · · · ,),

Paradigm 2 will generate a classifier with error rate
no more than ε with probability 1− δ.

Here, V = max[V C(H1), V C(H2)] where V C(H) de-
notes the VC-dimension of the hypothesis class H, con-
stant C = α/4+1/α

1+1/α and constant L = min[ α
16 , 1

16L1L2
].

Proof. In Paradigm 2, we also use Eq. 1 to com-
bine the two classifiers. With m0 = 1

L (4V log( 1
L ) +

2 log( 8(s+1)
δ )) where constant L = min[ α

16 , 1
16L1L2

], us-

ing Lemma 1 we have Pr(S0
1) ≤ 1

L and Pr(S0
2) ≤ 1

L

with probability 1− δ
4(s+1) . Generally, we have that an
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Input:

Unlabeled data set U = {x1, x2, · · · , }, where each example xt is given as a pair (xt
1, x

t
2)

Threshold thr

Process:

Ask the user to label m0 unlabeled examples drawn randomly from D to compose the labeled data set L
Iterate i = 0, 1, · · · , s

Set counter ni+1
1 to 0. If D is expanding, set counter ni+1

2 to +∞; Otherwise, set counter ni+1
2 to 0;

Train two classifiers hi
1 and hi

2 consistent with L in each view, respectively;

Apply hi
1 and hi

2 to the unlabeled data set U and find out the contention points set Qi;

for k = 1, · · · , mi+1

Draw an example xk = (xk
1 , xk

2) randomly from Qi;

if |hi
1(x

k
1)| > thr then yk = sign(hi

1(x
k
1));

else if |hi
2(x

k
2)| > thr then yk = sign(hi

2(x
k
2));

else ask the user to label xk and ni+1
1 = ni+1

1 + 1;

Add (xk, yk) into L and delete it from U and Qi.

end for

for w = 1, 2, · · ·
if ni+1

2 ≥ mi+1 − ni+1
1 break;

Draw an example xw = (xw
1 , xw

2 ) randomly from U −Qi;

if |hi
1(x

w
1 )| > thr then yw = sign(hi

1(x
w
1 ));

else if |hi
2(x

w
2 )| > thr then yw = sign(hi

2(x
w
2 ));

else ask the user to label xw and ni+1
2 = ni+1

2 + 1;

Add (xw, yw) into L and delete it from U .

end for

Output:

hfinal = combine(hs
1, h

s
2)

Table 2. Paradigm 2: Combination of multi-view active learning and semi-supervised learning

arbitrary Si
j (j = 1, 2) being consistent with the exam-

ples in L has an error rate at most 1
L with probability

1− δ
4(s+1) . So, for any example x = (x1, x2),

|hi
j(xj)− cj(xj)| ≤ L1 · L2 · d(hi

j , cj) ≤ 1
16

.

We can set the threshold thr in Paradigm 2 to 1
16 . If

|hi
j(xj)| > 1

16 , hi
j and cj make the same prediction on

xj . When s = d log α
8ε

log 1
C

e, from the proof of Theorem

1 we have Pr(Ss
1 ∧ Ss

2) ≤ ε. Thus we get a classifier
hs

com whose error rate is no more than ε with proba-
bility 1− δ using Paradigm 2. ¤

The sample complexity of Paradigm 2 is m0+
∑s

i=1 ni
1,

which is much smaller than that of Paradigm 1. From
Theorem 3 we know that the sample complexity can
be further reduced by combining multi-view active
learning with semi-supervised learning, however, it
needs a stronger assumption on the hypothesis class
H1 × H2. If this assumption holds, in contrast to
Paradigm 1, when α-expansion does not hold, we can
query

∑s
i=1(mi − ni

1) more examples on which both
classifiers have small margin, which can help to reduce

the size of the region S1 ∧ S2.

5. Empirical Study

In this section we empirically study the performance of
the Paradigms 1 and 2 on a real-world data set, i.e., the
course data set (Blum & Mitchell, 1998). This data set
has two views (pages view and links view) and contains
1,051 examples each corresponds to a web page, and
the task is to predict whether an unseen web page is
a course page or not. There are 230 positive examples
(roughly 22%). We randomly use 25% data as the test
set and use the remaining 75% data as the unlabeled
set U in Tables 1 and 2. Then, we randomly draw 10
positive and 30 negative examples from U to generate
the initial m0 labeled examples.

In practice, the thr in Paradigm 2 can be determined
by cross validation on labeled examples. Here in our
experiments, for the ease of comparison, we do not set
thr and instead, we fix the number of examples to be
queried in both Paradigms. Thus, we can study their
performance under the same number of queries. In
detail, in the i-th round, Paradigm 1 picks out two
contention points randomly to query; while Paradigm
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Figure 1. Comparison of the performances

2 picks out the example with the smallest absolute sum
of the two classifiers’ outputs from Qi and U −Qi re-
spectively to query, and picks out the example with
the largest absolute sum of the two classifiers’ out-
puts from Qi and U − Qi respectively to label as
sign

(
hi

1(x1) + hi
2(x2)

)
. That is, the two examples to

be queried in Paradigm 2 are arg minx∈Qi

(|hi
1(x1) +

hi
2(x2)

∣∣) and arg minx∈U−Qi

(|hi
1(x1) + hi

2(x2)
∣∣), while

the two examples Paradigm 2 labels for itself by
semi-supervised learning are arg maxx∈Qi

(|hi
1(x1) +

hi
2(x2)

∣∣) and arg maxx∈U−Qi

(|hi
1(x1) + hi

2(x2)
∣∣). We

use Random Sampling as the baseline and implement
the classifiers with SMO in WEKA (Witten & Frank,
2005). The experiments are repeated for 20 runs and
Figure 1 plots the average error rates of the three
methods against the number of examples that have
been queried.

It can be found from Figure 1 that with the same
number of queried examples, although there are some
fluctuation, the performance of Paradigm 1 is gener-
ally better than that of Random Sampling, while the
performance of Paradigm 2 is better than that of the
others. In particular, the advantage of Paradigm 2
becomes more prominent as the number of queries
increases. This is not difficult to understand since
with more labeled data the learners become stronger
and thus the labels obtained from the semi-supervised
learning process become more helpful.

Overall, the empirical study verifies that comparing
with pure active learning, the combination of multi-
view active learning and semi-supervised learning can
reduce the sample complexity.

6. Conclusion

In this paper, we first characterize the sample complex-
ity of multi-view active learning and get an exponential
improvement in the sample complexity from Õ( 1

ε ) to

Õ(log 1
ε ). The α-expansion assumption we employed

is weaker than assumptions taken by previous theoret-
ical studies on active learning, such as that the data is
distributed uniformly over the unit sphere in Rd and
that the hypothesis class is linear separators through
the origin. We also give an upper bound of the er-
ror rate for cases where the α-expansion assumption
does not hold. Then, we analyze the combination of
multi-view active learning with semi-supervised learn-
ing and get that such a combination can reduce the
sample complexity further, which is verified by an em-
pirical study. This provides an explanation to that
why the method described in (Zhou et al., 2006) can
lead to good results.

Our work is the first theoretical analysis on the sam-
ple complexity of realizable multi-view active learning.
Recently, non-realizable active learning, where there
does not exist a hypothesis perfectly separating the
data, starts to attract attention (Balcan et al., 2006;
Balcan et al., 2007; Dasgupta et al., 2008). Extending
our work to non-realizable multi-view active learning
is a future work.
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