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Abstract

We propose a new rule induction algorithm
for solving classification problems via prob-
ability estimation. The main advantage of
decision rules is their simplicity and good in-
terpretability. While the early approaches to
rule induction were based on sequential cov-
ering, we follow an approach in which a sin-
gle decision rule is treated as a base classi-
fier in an ensemble. The ensemble is built
by greedily minimizing the negative loglike-
lihood which results in estimating the class
conditional probability distribution. The in-
troduced approach is compared with other
decision rule induction algorithms such as
SLIPPER, LRI and RuleFit.

1. Introduction

Decision rule is a logical statement of the form: “if
condition then response”. It can be treated as a sim-
ple classifier that gives a constant response for the ob-
jects satisfying the condition part, and abstains from
the response for all the other objects. Induction of
decision rules has been widely considered in the early
machine learning approaches (Michalski, 1983; Cohen,
1995; Fürnkranz, 1996), and rough set approaches to
knowledge discovery (Stefanowski, 1998). The most
popular algorithms were based on a sequential cov-
ering procedure (also known as separate-and-conquer
approach). In this technique, a rule is learned which
covers a part of the training examples, then examples
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are removed from the training set and the process is
repeated until no examples remain.

Although it seems that decision (classification) trees
are much more popular in data mining and machine
learning applications, recently we are able to ob-
serve again a growing interest in decision rule mod-
els. As an example, let us mention such algorithms as
RuleFit (Friedman & Popescu, 2005), SLIPPER (Co-
hen & Singer, 1999), Lightweight Rule Induction
(LRI) (Weiss & Indurkhya, 2000). All these algorithms
follow a specific iterative approach to decision rule gen-
eration by treating each decision rule as a subsidiary
base classifier in the ensemble. This approach can be
seen as a generalization of the sequential covering, be-
cause it approximates the solution of the prediction
task by sequentially adding new rules to the ensem-
ble without adjusting those that have already been
added (RuleFit is an exception since it generates the
trees first and then transforms them to rules). Each
rule is fitted by concentrating on objects which were
hardest to classify correctly by rules already present in
the ensemble. All these algorithms can be explained
within the framework of boosting (Freund & Schapire,
1997; Mason et al., 1999; Friedman et al., 2000) or
forward stagewise additive modeling (FSAM) (Hastie
et al., 2003), a greedy procedure for minimizing a loss
function on the dataset.

The algorithm proposed in this paper, Maximum
Likelihood Rule Ensembles (MLRules), benefits from
the achievements in boosting machines (Freund &
Schapire, 1997; Mason et al., 1999; Friedman et al.,
2000; Friedman, 2001). Its main idea consists in rule
induction by greedily minimizing the negative loglike-
lihood (also known as logit loss in binary classification
case) to estimate the conditional class probability dis-
tribution. Minimization of such loss function with a
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tree being a base classifier has already been used in
LogitBoost (Friedman et al., 2000) and MART (Fried-
man, 2001), however, here we show a modified proce-
dure, adapted to the case when the decision rule is a
base classifier in the ensemble. In contrary to RuleFit
(where trees are generated first), rules are generated
directly; in contrary to SLIPPER and LRI, negative
loglikelihood loss is used. Moreover, our approach is
distinguished from other approaches to rule induction
by the fact of estimating the class probability distri-
bution instead of single classification and by using the
same single measure (value of the negative loglikeli-
hood) at all stages of the learning procedure: setting
the best cuts (conditions), stopping the rule’s growth
and determining the response (weight) of the rule. We
derive the algorithm for two optimization techniques,
depending on whether we expand the loss function to
the first order (fitting to the gradient) or to the second
order (Newton steps). We report experiments showing
the performance of MLRules and comparing them with
the competitive rule ensemble methods.

The paper is organized as follows. In Section 2,
the problems of classification is described. Section 3
presents a framework for learning rule ensembles. Sec-
tion 4 is devoted to the problem of a single rule gen-
eration. In Section 5 we discuss the issue of conver-
gence of the method, and we propose a modification
to the main algorithm. Section 6 contains experimen-
tal results. The last section concludes the paper and
outlines further research directions.

2. Problem Statement

In the classification problem, the aim is to predict the
unknown class label y ∈ {1, . . . ,K} of an object using
known values of the attributes x = (x1, x2, . . . , xm).
This is done by constructing a classification function
f(x) that predicts accurately the value of y. The ac-
curacy of a single prediction is measured in terms of
the loss function L(y, f(x)), while the overall accuracy
of the function f(x) is measured by the expected loss
(risk) over the data distribution P (x, y):

R(f) = E[L(y, f(x))].

Since P (x, y) is unknown, the risk-minimizing function
(Bayes classifier), f∗ = arg minf E[L(y, f(x))], is also
unknown. The learning procedure uses only a set of
training examples {(x1, y1), . . . , (xn, yn)} to construct
f to be a good approximation of f∗. Usually, it is
performed by minimization of the empirical risk:

Remp(f) =
1
n

n∑
i=1

L(yi, f(xi)), (1)

where function f is chosen from a restricted family
of functions. The most commonly used loss function
is 0-1 loss, L0-1(y, f(x)) = 1 − δy,f(x), where δij =
1 if i = j, otherwise δij = 0. If the correct class
is predicted, classification function is not penalized,
otherwise the unit penalty is imposed. Bayes classifier
has the following form:

f∗(x) = arg min
k∈{1,...,K}

Pr(y = k|x). (2)

The 0-1 loss has several drawbacks. Firstly, if we intro-
duce unequal costs of misclassification, f∗(x) does not
longer have the form (2). Moreover, 0-1 loss is insensi-
tive to the “confidence” of prediction: minimization of
0-1 loss results only in finding the most probable class,
without estimating its probability. On the contrary,
probability estimation provides us with the conditional
class distribution P (y|x), by which we can measure the
prediction confidence. Moreover, all we need to obtain
the Bayes classifier for any loss function is the condi-
tional probability distribution. Here we consider the
estimation of probabilities using the well-known max-
imum likelihood estimation (MLE) method. MLE can
be stated as the empirical risk minimization by tak-
ing the negative logarithm of the conditional likelihood
(negative log-likelihood) as the loss function:

` =
n∑
i=1

− logP (yi|xi). (3)

We model probabilities P (1|x), . . . , P (K|x) with a vec-
tor f(x) = (f1(x), . . . , fK(x)) using the multinomial
logistic transform:

P (y|x) =
efy(x)∑K
k=1 e

fk(x)
. (4)

Then (3) has the form:

`(f) =
n∑
i=1

log

(
K∑
k=1

efk(xi)

)
− fyi

(xi). (5)

This expression (with the exception that vector func-
tion f is used instead of scalar f) has the form of (1) if

we identify L(yi, f(xi)) = log
(∑K

k=1 e
fk(xi)

)
−fyi

(xi).
It is worth mentioning that the Bayes function f∗(x)
is obtained by the inverse of (4).

3. Rules Ensembles

In this section, we describe the scheme of learning rule
ensembles. Let Xj be the set of all possible values
of attribute j. Condition part of the rule consists of
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a conjunction of elementary expressions of the form
xj ∈ Sj , where xj is the value of object x on attribute
j and Sj is a subset of Xj , j ∈ {1, . . . ,m}. We assume
that in the case of ordered value sets, Sj has the form
of the interval [sj ,∞) or (−∞, sj ] for some sj ∈ Xj , so
that the elementary expressions take the form xj ≥ sj
or xj ≤ sj . For nominal attributes, we consider ele-
mentary expressions of the form xj = sj or xj 6= sj .
Let Φ be the set of elementary expressions constitut-
ing the condition part of the rule and let Φ(x) be an
indicator function equal to 1 if x satisfies the condition
part of the rule (all elementary expressions in the con-
dition part), otherwise Φ(x) = 0. We say that a rule
covers an object x, if Φ(x) = 1. The response of the
rule is a vector α ∈ RK assigned to the region defined
by Φ. Therefore, we define a decision rule as:

r(x) = αΦ(x). (6)

Notice that the decision rule takes only two values,
r(x) ∈ {α,0}, depending whether x satisfies the con-
dition part or not. In this paper, we assume the clas-
sification function is a linear combination of M rules:

f(x) =
M∑
m=1

rm(x). (7)

Using (4), we can obtain conditional probabilities from
(7). Moreover, from (4) it follows that P (y|x) is a
monotone function of fy(x). Therefore, from (2) we
have that object x is classified to the class with the
highest fk(x). Thus, combination (7) has very simple
interpretation as a voting procedure: rules vote for
each class k, and object x is classified to the class with
the highest vote.

The construction of an optimal rules ensemble mini-
mizing the negative loglikelihood (empirical risk) is a
hard optimization problem. That is why we follow here
a forward stagewise strategy (Hastie et al., 2003), i.e.
the rules are added one by one, greedily minimizing
the loss function:

rm = arg min
r
`(fm−1+r) = arg min

Φ,α
`(fm−1+Φα), (8)

where rm is a rule obtained in the m-th iteration and
fm−1 is the rule ensemble after m−1 iterations. It has
been shown (Hastie et al., 2003) that “shrinking” the
base classifier while adding it to the ensemble improves
the prediction accuracy. That is why we set:

fm(x) = fm−1(x) + ν · rm(x),

where ν ∈ (0, 1] is the shrinkage parameter, which con-
stitutes a trade-off between accuracy and interpretabil-
ity. Higher values (ν ∼ 1) produce smaller ensembles,
while low values (ν ∼ 0.1) produce larger but more
accurate ones.

4. Generation of a Single Rule

In this section, we describe how the algorithm gener-
ates single rules. In order to obtain a rule, one has to
solve (8). The optimization procedure is still compu-
tationally hard. Therefore, we restrict analysis to the
rules voting for only one class, so that the response
of the rule has the form α = αv, where v is a vector
with only one non-zero coordinate vk = 1, for some
k = 1, . . . ,K, and α is a positive real value.

We propose two heuristic procedures for solving (8).
The first, called gradient method (Mason et al., 1999),
approximates `(f + αvΦ) up to the first order with
respect to α:

`(f + αvΦ) ' `(f) + α`′(f ,vΦ), (9)

where

`′(f ,vΦ) =
∂`(f + αvΦ)

∂α

∣∣∣∣
α=0

. (10)

Since the first term in (9) is constant, minimization of
the loss for any positive α is equivalent to minimiza-
tion of the second term. Thus, if we define:

Lm(Φ) = min
v
−`′(f ,vΦ) (11)

(we remind, that there are only K possible vectors
v, so the arg min operation can be done by simply
checking all K possibilities), then Φm can be obtained
by minimizing Lm(Φ).

The second heuristic, Newton method, approximates
`(f + αvΦ) up to the second order:

`(f + αvΦ) ' `(f) + α`′(f ,vΦ) +
α2

2
`′′(f ,vΦ), (12)

where `′(f ,vΦ) is defined as before, and:

`′′(f ,vΦ) =
∂2`(f + αvΦ)

∂α2

∣∣∣∣
α=0

. (13)

Due to convexity of the loglikelihood, expression (12)
is minimized by the Newton step:

α = − `
′(f ,vΦ)
`′′(f ,vΦ)

. (14)

By substituting (14) into (12), and taking the square
root, we get:

Lm(Φ) = min
v
− `′(f ,vΦ)√

`′′(f ,vΦ)
, (15)

and we can obtain Φm by minimizing Lm(Φ).
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Algorithm 1 MLRules
input: set of n training examples {(yi,xi)}n1 ,

M – number of decision rules.
output: rule ensemble {rm(x)}M1 .

f0 := α0.
for m = 1 to M do

Φm(x) = arg minΦ Lm(Φ)
αm = −`′(f ,vΦ)/`′′(f ,vΦ)
rm(x) = αmΦm(x)
fm(x) = fm−1(x) + νrm(x)

end for

Expressions `′(f ,vΦ) and `′′(f ,v) have a very simple
form. Let v be such that vk = 1. Then:

`′(f ,vΦ) =
∑

Φ(xi)=1

pik − δk,yi , (16)

`′′(f ,vΦ) =
∑

Φ(xi)=1

pik(1− pik), (17)

where pik = P (k|xi) and δi,j = 1 iff i = j. To calculate
Lm(Φ), these expressions must be obtained for each k.

What we still need for finding Φm using both gradient
and Newton techniques, is a fast procedure for mini-
mizing Lm(Φ), regardless whether it is defined by (11)
or (15). We propose the following simple iterative pro-
cedure: at the beginning, Φm is empty (no elementary
expressions are specified) and we set Lm(Φ) = 0. In
each step, an elementary expression xj ∈ Sj is added
to Φm that minimizes Lm(Φ) (if it exists). Such ex-
pression is searched by sequentially testing the ele-
mentary expressions, attribute by attribute. For or-
dered attributes, each expression of the form xj ≥ sj
or xj ≤ sj is tested, for every sj ∈ Xj ; for nominal
attributes, we test each expression of the form xj = sj
or xj 6= sj , for every sj ∈ Xj . Adding new expressions
is repeated until Lm(Φ) cannot be decreased. We also
simultaneously obtain vm, i.e. the value of v for which
the minimum is reached in (11) or (15). Notice that
since Lm(Φ) = 0 at the beginning, Lm(Φ) must be
strictly negative at the end, otherwise no rule will be
generated. The procedure for finding optimal Φ is very
fast and proved to be efficient in computational exper-
iments. The ordered attributes can be sorted once be-
fore generating any rule. This procedure resembles the
way the decision trees are generated. Here, we look,
however, for only one path from the root to the leaf.
Moreover, let us notice that a minimal value of Lm(Φ)
is a natural stop criterion in building a single rule and
we do not use any other measures (e.g. impurity mea-
sures) for choosing the optimal cuts.

Having found Φm, we can obtain αm by solving the

following convex line-search problem:

αm = arg min
α
`(f + αvmΦm). (18)

To speed up the computations, we follow, however,
simpler procedure and obtain αm by the Newton step
(14). The whole procedure for constructing the rule
ensemble is presented as Algorithm 1. We call this pro-
cedure MLRules. Note that we start with f(x) equal
to α0, which is a “default rule” with fixed Φ(x) ≡ 1,
while v0 and α0 are obtained as usual. Since the re-
sponse always indicates the majority class, such a rule
serves as a default classification when no other rule
covers a given object.

In our implementation of the algorithm, we employed
the resampling technique (Friedman & Popescu, 2003),
which is known to improve both accuracy and compu-
tational complexity. To obtain less correlated rules,
we search for Φm, using (11) or (15), on a random
subsample (drawn without replacement) of the train-
ing set of size η < n. Then, however, the response αm
is obtained using all of the training objects (includ-
ing those objects, which have not been used to obtain
Φm). This usually decreases |αm|, so it plays the role
of a regularization method, and avoids overfitting the
rule to the training set.

5. Extensions

In this section, we shortly discuss the problem of con-
vergence and propose two simple extensions of the
main algorithm.

5.1. Convergence

The procedure of obtaining αm with the Newton step
does not always decrease the empirical risk and does
not guarantee the convergence of the algorithm. How-
ever, using a simple backtracking line-search is suffi-
cient for convergence: we start with αm obtained by
the Newton step. If `(f + αvΦ) < `(f), the procedure
stops; otherwise repeat αm := αm/2 until the above
condition is satisfied. This procedure ends after a fi-
nite number of steps, since from the definition of Lm,
either (11) or (15), it follows that Lm = 0 if and only
if `′(f ,vΦ) = 0, so if a rule is generated, Lm < 0 and
vΦ is a descent direction. Therefore, ` is decreased
in each iteration. Since ` is bounded from below, the
procedure converges, i.e.: limm→∞ `(fm) = `∞. In the
implementation of the algorithm we do not use such
a procedure since the algorithm is stopped after M
rounds anyway.

This raises the question, whether `∞ is the solution
with the minimum achievable value of negative log-
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likelihood in the class of rule ensembles F , i.e. if `∞ is
equal to `∗ = inff∈F `(f)? The answer is negative be-
cause a greedy procedure is used to find the condition
part of rule Φ. Then, even if a “descent direction” rule
exists, the procedure may fail to find it (although the
resampling strategy improves the procedure by ran-
domly perturbing the training set in each iteration,
which helps to avoid “local minima”). Nevertheless,
this questions seems not to be of practical importance
here, since we fix the maximal number of rules M .
This is due to the empirical evidences showing that
ensemble methods sometimes overfit on real-life data
when the size of the ensemble is too large. In the next
subsection, we describe another stopping condition, in-
dependent of the parameter M .

5.2. Avoiding overfitting

A decision rule has the form of m-dimensional rectan-
gle. It can be shown, that the class of m-dimensional
rectangles has Vapnik-Chervonenkis (VC) dimension
equal to 2m and the VC dimension does not depend
on the number of cuts. This is contrary to the tree
classifier, for which the VC dimension grows to infin-
ity with increasing number of cuts (nodes). Therefore,
in case of tree ensembles, one usually specifies some
constraints on tree complexity, e.g. maximal number
of nodes, while in case of a rule ensemble no such con-
straints are necessary.

The theoretical results (Schapire et al., 1998) suggest
that an ensemble with a simple base classifier (with low
VC dimension) and high prediction confidence (mar-
gin) on the dataset generalizes well, regardless of the
size of the ensemble. Nevertheless, we conducted the
computational experiments which show that the per-
formance of rule ensemble can deteriorate as the num-
ber of rules grows, especially for the problems with
high noise level. Similar phenomenon has been ob-
served for other boosting algorithms, in particular for
AdaBoost (Mason et al., 1999; Friedman et al., 2000;
Dietterich, 2000). Therefore, we propose a procedure
for stopping the ensemble growth, based on the simple
“holdout set” analysis.

Each rule is induced from the subsample of size η < n
without replacement. Thus, there are n − η objects
which do not take part in the induction procedure and
can be used as a holdout set to estimate the quality
of the induced rule. Since each rule votes for a sin-
gle class, we calculate a simple 0-1 error (accuracy) of
such a rule on the covered objects from the holdout
set. A rule is acceptable if the holdout error is bet-
ter (lower) than random guessing. Then, the stopping
condition has the following form: in any p subsequent

iterations at least q rules are not acceptable. Such
“averaging” over the iterations removes variations and
allows us to observe the longer-term behavior of rule
acceptability. We set p = 10 and q = 8, and those
values were obtained by noticing, that when the null
hypothesis states that rules are not worse than ran-
dom guessing, at least 8 unacceptable rules must be
obtained in 10 trials to reject the null hypothesis in
the binomial test with confidence level 0.05. Another
possibility for stopping the ensemble growth is running
the internal cross validation, but such procedure has
not been used in the experiment due to computational
complexity.

5.3. Ordinal classification

It is often the case that a meaningful order relation be-
tween class labels exists. For example, in recommender
systems, users are often asked to evaluate items on
five value (“stars”) scale. Such problems are often re-
ferred to as ordinal classification problems. Here we
show how the order relation can be taken into account
in MLRules. Without loss of generality, we assume
that the order between classes is concordant with the
order between class labels coded as natural numbers
Y = {1, . . . ,K}.

To capture the ordinal properties of Y , we only
take into account rules voting for “at least” and “at
most” class unions, where by “at least” class union
we mean set {k, . . . ,K} for some k, while by “at
most” class union we mean {1, . . . , k}. Such rules
can be incorporated by considering the vectors v in
the response of the rule to be of the form: v =
{−1, . . . ,−1, 1, . . . , 1} (vote for “at least” union) or
v = {1, . . . , 1,−1, . . . ,−1} (vote for “at most” union),
so that the rule increases the probability of a class
union, and not of a single class.

The whole algorithm remains the same, apart from the
formulas (16) and (17), which now takes the form:

`′(f ,vΦ) =
∑

Φ(xi)=1

K∑
k=1

vk(pik − δk,yi
), (19)

`′′(f ,vΦ) =
∑

Φ(xi)=1

K∑
1=t

vkpik

(
1−

K∑
k=1

vkpik

)
.(20)

The experimental verification of the usefulness of such
rule representation is postponed for future research
due to the lack of space.

6. Experimental Results

In this section, we show the results of the computa-
tional experiments on real datasets. First, we examine
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the behavior of the ensemble as the number of rules
increases. Then, we compare our algorithm with ex-
isting approaches to rule induction.

6.1. Error curves
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Figure 1. Train and test errors as functions of the ensemble
size, obtained by splitting the data into train (66%) and
test (33%) sets and averaging over 50 random splits. The
lower lines (dashed-dotted) correspond to the train error,
upper solid lines – to the test error with stopping condition
described in Section 5.2, upper dashed line – test error
when the stopping condition was not applied. Parameters
of the MLRules are: ν = 0.1, η = 0.5n

In Figure 6.1, we present the train and test error as a
function of the ensemble size M for two real datasets,
taken from the UCI Repository (Asuncion & Newman,
2007). On the sonar dataset, both ensembles (gradient
and Newton) do not overfit and the test error decreases
even if the number of rules reaches 1000; this is a rather
typical situation. An atypical one can be found on the
second dataset (haberman), where from some point,
test error starts to increase. However, then a stopping
condition described in Section 5.2 is satisfied which
prevents rule ensemble from overfitting.

6.2. Comparison with other rule ensemble
algorithms

To check the performance of MLRules on the real
datasets, we compare them with three existing rule
induction algorithms. SLIPPER (Cohen & Singer,
1999) was proposed within the AdaBoost reweighting
scheme and uses an induction procedure which involves
pruning. LRI (Weiss & Indurkhya, 2000) generates
rules in the form of a DNF-formula and uses a spe-
cific reweighting scheme based on the cumulative er-
rors. RuleFit (Friedman & Popescu, 2005) is based on
FSAM framework (Hastie et al., 2003), but it uses the
regression trees as base classifiers and then transforms
them to rules. All three approaches are thus based
on some boosting/reweighting strategy. According to
our knowledge, RuleFit has not been compared with
SLIPPER and LRI yet.

We used 35 files taken from UCI Repository (Asun-
cion & Newman, 2007), among which 20 files are bi-
nary classification tasks and 15 are multi-class tasks.
We omit characteristics of the datasets due to lack
of space. We tested four classifiers on each dataset
(MLRules with gradient and Newton steps, LRI and
SLIPPER) and RuleFit on binary datasets only (Rule-
Fit does not handle multi-class case). We selected the
following parameters for each method:

• SLIPPER: we set maximum number of iteration
to 500, rest of parameters were set to default (we
kept the internal cross validation, used to choose
the optimal number of rules).

• LRI: According to (Weiss & Indurkhya, 2000), we
set the rule length to 5 and froze feature after 50
rounds; we also chose 200 rules per class and 2
disjuncts since some previous tests showed that
those values work well in practice.

• RuleFit: According to the experiment in (Fried-
man & Popescu, 2005), we chose mixed rule-linear
mode, set average tree size to 4, increased the
number of trees to 500, and chose subsample size
η as min{0.5n, 100 + 6

√
n}.

• MLRules: We set η = 0.5n, ν = 0.1,M = 500,
but for the tree biggest datasets (letter, optdigits,
pendigits) we increased M to 2000 (to compare,
LRI had 26× 200 rules for letter). Those param-
eters have not been optimized on the UCI data.
We used artificial data to this end and due to the
space limit we omit the characteristic of the data
generating model.

Each test was performed using 10-fold cross validation
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Table 1. Test errors and ranks (in parenthesis). MLRules.G and MLRules.N are MLRules with gradient and Newton
method, respectively. Average ranks in the last row correspond to comparing LRI and MLRules on all 35 files.

Dataset SLIPPER LRI RuleFit MLRules.G MLRules.N
Binary-class Datasets

haberman 0.268(3.0) 0.275(5.0) 0.272(4.0) 0.262 (2.0) 0.249 (1.0)
breast-c 0.279(3.0) 0.293(4.0) 0.297(5.0) 0.259 (1.0) 0.273 (2.0)
diabetes 0.254(4.0) 0.254(3.0) 0.262(5.0) 0.247 (1.0) 0.253 (2.0)
credit-g 0.277(5.0) 0.239(1.0) 0.259(3.0) 0.241 (2.0) 0.260 (4.0)
credit-a 0.170(5.0) 0.122(1.0) 0.132(3.0) 0.133 (4.0) 0.130 (2.0)
ionosphere 0.065(3.0) 0.068(4.0) 0.085(5.0) 0.060 (1.0) 0.063 (2.0)
colic 0.150(4.0) 0.161(5.0) 0.147(3.0) 0.139 (2.0) 0.133 (1.0)
hepatitis 0.167(2.0) 0.180(3.0) 0.194(4.0) 0.162 (1.0) 0.201 (5.0)
sonar 0.264(5.0) 0.149(2.0) 0.197(4.0) 0.120 (1.0) 0.154 (3.0)
heart-statlog 0.233(5.0) 0.196(4.0) 0.185(3.0) 0.167 (1.0) 0.174 (2.0)
liver-disorders 0.307(5.0) 0.266(1.0) 0.307(4.0) 0.275 (2.0) 0.278 (3.0)
vote 0.050(5.0) 0.039(3.0) 0.050(5.0) 0.034 (1.0) 0.037 (2.0)
heart-c 0.195(5.0) 0.185(3.0) 0.189(4.0) 0.165 (2.0) 0.155 (1.0)
heart-h 0.200(5.0) 0.183(3.0) 0.183(4.0) 0.180 (2.0) 0.170 (1.0)
breast-w 0.043(5.0) 0.033(2.0) 0.041(4.0) 0.031 (1.0) 0.034 (3.0)
sick 0.016(2.0) 0.018(4.0) 0.019(5.0) 0.016 (3.0) 0.012 (1.0)
tic-tac-toe 0.024(2.0) 0.122(5.0) 0.053(3.0) 0.113 (4.0) 0.003 (1.0)
spambase 0.059(5.0) 0.049(3.0) 0.059(4.0) 0.047 (2.0) 0.046 (1.0)
cylinder-bands 0.217(4.0) 0.165(2.0) 0.381(5.0) 0.144 (1.0) 0.193 (3.0)
kr-vs-kp 0.006(2.0) 0.031(5.0) 0.029(4.0) 0.010 (3.0) 0.005 (1.0)
avg. rank 3.9 3.15 4.05 1.85 2.05

Multi-class Datasets
anneal 0.018 0.007(3.0) — 0.006 (1.5) 0.006 (1.5)
balance-scale 0.17 0.088(2.0) — 0.078 (1.0) 0.091 (3.0)
ecoli 0.211 0.140(2.0) — 0.149 (3.0) 0.140 (1.0)
glass 0.340 0.285(3.0) — 0.244 (1.0) 0.248 (2.0)
iris 0.080 0.053(2.0) — 0.053 (2.0) 0.053 (2.0)
letter 0.821 0.069(1.0) — 0.137 (3.0) 0.088 (2.0)
segment 0.215 0.021(2.0) — 0.029 (3.0) 0.020 (1.0)
soybean 0.505 0.413(3.0) — 0.073 (2.0) 0.067 (1.0)
vehicle 0.301 0.210(1.0) — 0.236 (3.0) 0.216 (2.0)
vowel 0.448 0.059(1.0) — 0.148 (3.0) 0.104 (2.0)
car 0.045 0.054(2.0) — 0.057 (3.0) 0.028 (1.0)
cmc 0.477 0.435(1.0) — 0.437 (2.0) 0.439 (3.0)
dermatology 0.161 0.057(3.0) — 0.019 (1.0) 0.024 (2.0)
optdigits 0.560 0.019(1.0) — 0.026 (3.0) 0.021 (2.0)
pendigits 0.460 0.010(2.0) — 0.014 (3.0) 0.010 (1.0)
avg. rank — 2.26 — 1.9 1.84
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Figure 2. Critical difference diagram

(with exactly the same train/test splits for each classi-
fier) and average 0-1 loss on the test set was calculated.
The results are shown in Table 6.2.

We first restrict the analysis to binary-class problems
only. To compare multiple classifiers on the multi-

ple datasets, we follow Demšar (2006), and make the
Friedman test, which uses ranks of each algorithm
to check whether all the algorithms perform equally
well (null hypothesis). Friedman statistics gives 33.28
which exceeds the critical value 9.488 (for confidence
level 0.05), so we can reject the null hypothesis and
state that classifiers are not equally good. Next, we
proceed to a post-hoc analysis and calculate the criti-
cal difference (CD) according to the Nemeneyi statis-
tics. We obtain CD = 1.364 which means that al-
gorithms with difference in average ranks more than
1.364 are significantly different. In Figure 6.2 aver-
age ranks were marked on a line, and groups of classi-
fiers that are not significantly different were connected.
This shows that both MLRules algorithms are not sig-



Maximum Likelihood Rule Ensembles

nificantly different to LRI, however they outperform
both SLIPPER and RuleFit. On the other hand, none
of three well-known rule ensemble algorithms (LRI,
SLIPPER, RuleFit) is significantly better to any other.

The situation remains roughly the same if we com-
pare the algorithms using all 35 datasets. We exclude
RuleFit (it does not work with multi-class problems)
and SLIPPER (its results are very poor, the worst al-
most every time1). Thus, we end up with 3 algorithms.
Friedman statistics gives 3.53 which does not exceed
the critical value 5.991, so that the null hypothesis
cannot be rejected. Note that the difference in ranks
decreased, mainly because LRI performs excellent on
the largest datasets (letters and digits recognition).

It is interesting to check how much of the improve-
ment in accuracy of MLRules comes from shrinkage,
resampling and regularizing the rule response, because
those techniques can also be simply incorporated to
SLIPPER and LRI. We plan to investigate this issue
in our future research.

7. Conclusions and Future Research

We proposed a new rule induction algorithm for solv-
ing classification problems, called MLRules, based on
the maximum likelihood estimation method and us-
ing boosting strategy in rule induction. In contrary
to previously considered algorithms, it estimates the
conditional class probability distribution and therefore
can work with any cost matrix for classification. We
considered two optimization techniques, based on gra-
dient and Newton steps, and introduced a stopping
condition to avoid overfitting. The performance of
MLRules was verified on a large collection of datasets,
both binary- and multi-class. Our algorithm is com-
petitive or outperforms the best existing approaches
to rule induction.

We also suggested the way in which MLRules can cap-
ture the order between classes and therefore can solve
the ordinal classification problems. We plan to verify
this issue experimentally in the future.
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