Deep Learning via Semi-Supervised Embedding

Jason Weston*
Frédéric Ratlet
Ronan Collobert*

JASONW@NEC-LABS.COM
FREDERIC.RATLEQGMAIL.COM
COLLOBER@QNEC-LABS.COM

(*) NEC Labs America, 4 Independence Way, Princeton, NJ 08540 USA
() IGAR, University of Lausanne, Amphipéle, 1015 Lausanne, Switzerland

Abstract

We show how nonlinear embedding algo-
rithms popular for use with shallow semi-
supervised learning techniques such as ker-
nel methods can be applied to deep multi-
layer architectures, either as a regularizer at
the output layer, or on each layer of the ar-
chitecture. This provides a simple alterna-
tive to existing approaches to deep learning
whilst yielding competitive error rates com-
pared to those methods, and existing shallow
semi-supervised techniques.

1. Introduction

Embedding data into a lower dimensional space or the
related task of clustering are unsupervised dimension-
ality reduction techniques that have been intensively
studied. Most algorithms are developed with the moti-
vation of producing a useful analysis and visualization
tool.

Recently, the field of semi-supervised learning
(Chapelle et al., 2006), which has the goal of improv-
ing generalization on supervised tasks using unlabeled
data, has made use of many of these techniques. For
example, researchers have used nonlinear embedding
or cluster representations as features for a supervised
classifier, with improved results.

Most of these architectures are disjoint and shallow,
by which we mean the unsupervised dimensionality
reduction algorithm is trained on unlabeled data sep-
arately as a first step, and then its results are fed
to a supervised classifier which has a shallow archi-
tecture such as a (kernelized) linear model. For ex-
ample, several methods learn a clustering or a dis-

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tance measure based on a nonlinear manifold embed-
ding as a first step (Chapelle et al., 2003; Chapelle &
Zien, 2005). Transductive Support Vector Machines
(TSVMs) (Vapnik, 1998) (which employs a kind of
clustering) and LapSVM (Belkin et al., 2006) (which
employs a kind of embedding) are examples of meth-
ods that are joint in their use of unlabeled data and
labeled data, but their architecture is still shallow.

Deep architectures seem a natural choice in hard Al
tasks which involve several sub-tasks which can be
coded into the layers of the architecture. As argued by
several researchers (Hinton et al., 2006; Bengio et al.,
2007) semi-supervised learning is also natural in such
a setting as otherwise one is not likely to ever have
enough labeled data to perform well.

Several authors have recently proposed methods for
using unlabeled data in deep neural network-based ar-
chitectures. These methods either perform a greedy
layer-wise pre-training of weights using unlabeled data
alone followed by supervised fine-tuning (which can be
compared to the disjoint shallow techniques for semi-
supervised learning described before), or learn unsu-
pervised encodings at multiple levels of the architec-
ture jointly with a supervised signal. Only considering
the latter, the basic setup we advocate is simple:

1. Choose an unsupervised learning algorithm.
2. Choose a model with a deep architecture.

3. The unsupervised learning is plugged into any (or
all) layers of the architecture as an auziliary task.

4. Train supervised and unsupervised tasks using the
same architecture simultaneously.

The aim is that the unsupervised method will improve
accuracy on the task at hand. However, the unsu-
pervised methods so far proposed for deep architec-
tures are in our opinion somewhat complicated and

Deep Learning via Semi-Supervised Embedding

restricted. They include a particular kind of genera-
tive model (a restricted Boltzmann machine) (Hinton
et al., 2006), autoassociators (Bengio et al., 2007), and
a method of sparse encoding (Ranzato et al., 2007).
Moreover, in all cases these methods are not compared
with, and appear on the surface to be completely dif-
ferent to, algorithms developed by researchers in the
field of semi-supervised learning.

In this article we advocate simpler ways of perform-
ing deep learning by leveraging existing ideas from
semi-supervised algorithms so far developed in shal-
low architectures. In particular, we focus on the idea
of combining an embedding-based regularizer with a
supervised learner to perform semi-supervised learn-
ing, such as is used in Laplacian SVMs (Belkin et al.,
2006). We show that this method can be: (i) general-
ized to multi-layer networks and trained by stochastic
gradient descent; and (ii) is valid in the deep learning
framework given above.

Our experimental evaluation is then split into three
parts: (i) stochastic training of semi-supervised multi-
layered architectures is compared with existing semi-
supervised approaches on several benchmarks, with
positive results; (ii) a demonstration of how to use
semi-supervised regularizers in deep architectures by
plugging them into any layer of the architecture is
shown on the well-known MNIST dataset; and (iii)
a case-study is presented using these techniques for
deep-learning of semantic role labeling of English sen-
tences.

The rest of the article is as follows. In Section 2 we
describe existing techniques for semi-supervised em-
bedding. In Section 3 we describe how to generalize
these techniques to the task of deep learning. Section 4
reviews existing techniques for deep learning, Section
5 gives an experimental comparison between all these
approaches, and Section 6 concludes.

2. Semi-Supervised Embedding

A key assumption in many semi-supervised algorithms
is the structure assumption': points within the same
structure (such as a cluster or a manifold) are likely
to have the same label. Given this assumption, the
aim is to use unlabeled data to uncover this structure.
In order to do this many algorithms such as cluster
kernels (Chapelle et al., 2003), LDS (Chapelle & Zien,
2005), label propagation (Zhu & Ghahramani, 2002)
and LapSVM (Belkin et al., 2006), to name a few,
make use of regularizers that are directly related to

IThis is often referred to as the cluster assumption or
the manifold assumption (Chapelle et al., 2006).

unsupervised embedding algorithms. To understand
these methods we will first review some relevant ap-
proaches to linear and nonlinear embedding.

2.1. Embedding Algorithms

We will focus on a rather general class of embedding al-
gorithms that can be described by the following type of
optimization problem: given the data x1,...,zy find
an embedding f(x;) of each point x; by minimizing

U
>0 Ll (i), flg, @), Wiy)

w.r.t. «, subject to
Balancing constraint.

This type of optimization problem has the following
main ingredients:

e f(x) € R™ is the embedding one is trying to learn
for a given example z € R?. It is parametrized by
a. In many techniques f(z;) = f; is a lookup table
where each example 7 is assigned an independent
vector f;.

e L is a loss function between pairs of examples.

e The matrix W of weights W;; specifying the sim-
ilarity or dissimilarity between examples z; and
x;. This is supplied in advance and serves as a
kind of label for the loss function.

e A balancing constraint is often required for cer-
tain objective functions so that a trivial solution
is not reached.

Many well known algorithms fit into this framework.

Multidimensional scaling (MDS) is a classical al-
gorithm that attempts to preserve the distance be-
tween points, whilst embedding them in a lower di-
mensional space, e.g. by using the loss function

L(fi, 5, Wiz) = (Ifs = fill = Wi;)?

MDS is equivalent to PCA if the metric is Euclidean
(Williams, 2001).

ISOMAP (Tenenbaum et al., 2000) is a nonlinear
embedding technique that attempts to capture mani-
fold structure in the original data. It works by defin-
ing a similarity metric that measures distances along
the manifold, e.g. Wj; is defined by the shortest path
on the neighborhood graph. One then uses those dis-
tances to embed using conventional MDS.

Deep Learning via Semi-Supervised Embedding

Laplacian Eigenmaps (Belkin & Niyogi, 2003)
learn manifold structure by emphasizing the preserva-
tion of local distances. One defines the distance metric
between the examples by encoding them in the Lapla-
cian L = W — D, where D;; = Zj Wi;; is diagonal.
Then, the following optimization is used:

DO LUfa £33 W) =Y Willfi = HIP =T (1)

subject to the balancing constraint:

f'Df =1 and f'D1=0. (2)

Siamese Networks (Bromley et al., 1993) are also
a classical method for nonlinear embedding. Neural
networks researchers think of such models as a network
with two identical copies of the same function, with the
same weights, fed into a “distance measuring” layer to
compute whether the two examples are similar or not,
given labeled data. In fact, this is exactly the same as
the formulation given at the beginning of this Section.

Several loss functions have been proposed for siamese
networks, here we describe a margin-based loss pro-
posed by the authors of (Hadsell et al., 2006):

fi = fi11? it Wiy =1,
max(0,m —||f; = f;|*) if Wi; =0

(3)
which encourages similar examples to be close, and dis-
similar ones to have a distance of at least m from each
other. Note that no balancing constraint is needed
with such a choice of loss as the margin constraint
inhibits a trivial solution. Compared to using con-
straints like (2) this is much easier to optimize by gra-
dient descent.

L(fi, f3, Wij) = {

2.2. Semi-Supervised Algorithms

Several semi-supervised classification algorithms have
been proposed which take advantage of the algorithms
described in the last section. Here we assume the set-
ting where one is given L + U examples x;, but only
the first L have a known label y;.

Label Propagation (Zhu & Ghahramani, 2002)
adds a Laplacian Eigenmap type regularization to a
nearest-neighbor type classifier:

L L+U
mfinz i = wil P+ XY Willfi = £I1P (@)
i=1 4,j=1

The algorithm tries to give two examples with large
weighted edge W;; the same label. The neighbors of
neighbors tend to also get the same label as each other
by transitivity, hence the name label propagation.

LapSVM (Belkin et al., 2006) uses the Laplacian
Eigenmaps type regularizer with an SVM: minimize

L+U

L
el [+ D>~ Hyaf () + X D~ Wigllf (i) = f ()|

i=1 ij=1
()
where H(z) = max(0,1 — x) is the hinge loss.

Other Methods In (Chapelle & Zien, 2005) a
method called graph is suggested which combines a
modified version of ISOMAP with an SVM. The au-
thors also suggest to combine modified ISOMAP with
TSVMs rather than SVMs, and call it Low Density
Separation (LDS).

3. Semi-supervised Embedding for
Deep Learning

We would like to use the ideas developed in semi-
supervised learning for deep learning. Deep learning
consists of learning a model with several layers of non-
linear mapping. In this article we will consider multi-
layer networks with M layers of hidden units that give
a C-dimensional output vector:

d
filw) = wi WM (z) 469, i=1,...,C (6)
j=1
where w© are the weights for the output layer, and

typically the k" layer is defined as

he(z) = S (wav" BE N () + b) k>1 (7)

hi(z) =S (ij zj+ b) 8)

and S is a non-linear squashing function such as tanh.
Here, we describe a standard fully connected multi-
layer network but prior knowledge about a particular
problem could lead one to other network designs. For
example in sequence and image recognition time delay
and convolutional networks (TDNNs and CNNs) (Le-
Cun et al., 1998) have been very successful. In those
approaches one introduces layers that apply convolu-
tions on their input which take into account locality
information in the data, i.e. they learn features from
image patches or windows within a sequence.

The general method we propose for semi-supervised
deep learning is to add a semi-supervised regularizer
in deep architectures in one of three different modes,
as shown in Figure 1:

Deep Learning via Semi-Supervised Embedding

INPUT

INPUT

Embedding
Space

Embedding

OUTPUT = Space OUTPUT

(a) Output (b) Internal

INPUT

OUTPUT

Embedding
Layer
(¢) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

Ze

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the k' hidden layer (7) directly:

L+U

xz)y Yi +>\Z

1,7=1

f(@5), Wij) (9)

L+U
Ze (i), yi) +)\ZLfk (1), fk(x]) Wij)
J=1
N (10)
where f(z) = (hf(z),..., b}, (2)) is the output

of the network up to the k** hidden layer.

(¢) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

ZwAUXz hk

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

+bAUX7, (11)

In our experiments we use the loss function (3) for
embedding, and the hinge loss

C
U f(z)y) = Hyle)folx)),

Algorithm 1 EmbedNN
Input: labeled data (z;,y;), ¢ = 1,..., L, unlabeled
data x;, i =L+ 1,...,U, set of functions f(-), and
embedding functions ¢g¥(-), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (z;,y;)
Make a gradient step to optimize £(f(x

i), yz)
for each embedding function ¢g*(-) do
Pick a random pair of neighbors x;, z;.
Make a gradient step for AL(g*(x;), g*(x;),1)
Pick a random unlabeled example z,,.
Make a gradient step for AL(g*(x;), g*(2,),0)
end for
until stopping criteria is met.

for labeled examples, where y(c¢) = 1 if y = ¢ and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where W;; = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W, that is, computing which unlabeled
examples are neighbors and have value W;; = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with W;; = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding

tasks. In common with other semi-supervised learn-
ing approaches, and indeed other deep learning ap-
proaches, we only expect this to work if p(z) is useful
for the supervised task p(y|z), i.e. if the structure as-
sumption is true. We believe many natural tasks have
this property.

We note that an alternative multi-task learning scheme
is presented in (Ando & Zhang, 2005) and applied to
neural networks in (Ahmed et al., 2008) which instead
constructs auxiliary supervised tasks from unlabeled
data by constructing tasks with labels y*. This is use-
ful when p(y*|z) is correlated to p(y|z), however an
expert must engineer a useful target y*.

4. Existing Approaches to Deep
Learning

Hinton and coworkers (2006) proposed the Deep Be-
lief Net (DBN) which is a multi-layered network first
trained as a generative model with unlabeled data be-
fore being subsequently trained in supervised mode. It
is based around iteratively training Restricted Boltz-
mann machines (RBMs) for each layer. An RBM is
a two-layer network in which visible, binary stochas-
tic pixels v are connected to hidden binary stochastic
feature detectors h. The probability assigned to an
example z is:

efE(r,h)
P(z)=Y_ Plx,h) =) ——
heH hEH
B(z,h)=— Y wlvi— Y wihi=> vihw
i€pixels j€features]

The idea is to obtain large values for the training ex-
amples, and small values elsewhere just as in any maxi-
mum likelihood density estimator. This is trained with
a procedure called contrastive divergence whereby one
pushes up the energy on training data and pushes
down the energy on samples generated by the model.
The authors used this method to pretrain a deep neigh-
borhood component analysis model (DBN-NCA) and
a regularized version that simultaneously trains an
autoencoder (DBN-rNCA) (Salakhutdinov & Hinton,
2007).

The authors of (Bengio et al., 2007) suggested a sim-
pler scheme: define an autoencoder that given an in-
put z tries to encode it in a low dimensional space
2 = fenc(), and then decode it again to reproduce it
as well as possible, e.g. so that

||£C - fdec(fenc(x))||2

is small. (Actually you can also view RBMs in this
way, see (Ranzato et al., 2007).) The idea is to use

an autoencoder as a regularizer which is trained on
unlabeled data. If the autoencoder is linear it corre-
sponds to PCA (Japkowicz et al., 2000) and hence also
MDS, making a clear link to the embedding algorithms
we discussed in Section 2.1. The authors claim that
autoassociators have the advantage “that almost any
parametrizations of the layers are possible, as long as
the training criterion is continuous in the parameters
[...] the class of probabilistic models for which [DBNs]
can be applied is currently more limited.”

Finally, recently the authors of (Ranzato et al., 2007)
introduced another method of deep learning which also
amounts to a kind of encoder/decoder architecture,
called SESM. In this case they choose to learn large,
sparse codes as they believe these are good for classifi-
cation. They choose an encoder fepe(z) = w' 2 + bepe
and a decoder with shared weights fgec(2) = wS(z) +
bgec- They then optimize the following loss:

ellz = fene(@)]13 + || = faec(2)]3 + ash(z) + ar|lwl

where the first term makes the output of the encoder
close to the code z (which is also learnt), the second
term makes the decoder try to reproduce the input,
and the third and fourth terms sparsify the codes z
and the weights of the encoder and decoder w. a., ay
and «,- are all hyperparameters. The training requires
an online coordinate descent scheme because both z
and w are being optimized.

We believe all of the methods just described are sig-
nificantly more complicated than our approach. Our
embedding approach can also be seen as an encoder
fene(x) that embeds data into a low dimensional space.
However we do not need to decode during training (or
indeed at all). Further, if the data is high dimensional
and sparse there is a significant speedup from not hav-
ing to decode.

Finally, existing approaches advocate greedy layer-
wise training, followed by a “fine-tuning” step using
the supervised signal. The intention is that the un-
supervised learning provides a better initialization for
supervised learning, and hence a better final local min-
imum. Our approach does not use a pre-training step,
but instead directly optimizes our new objective func-
tion. We advocate that it is the new choice of objective
that can provide improved results.

5. Experimental Evaluation

We test our approach on several datasets summarized
in Table 1.

Small-scale experiments gb0c, Text and Uspst
are small-scale datasets often used for semi-supervised

Deep Learning via Semi-Supervised Embedding

Table 1. Datasets used in our experiments. The first three
are small scale datasets used in the same experimental
setup as found in (Chapelle & Zien, 2005; Sindhwani et al.,
2005; Collobert et al., 2006). The following six datasets
are large scale. The Mmnist 1h,6h,1k,3k and 60k variants
are MNIST with a labeled subset of data, following the
experimental setup in (Collobert et al., 2006). SRL is a
Semantic Role Labeling task (Pradhan et al., 2004) with
one million labeled training examples and 631 million un-
labeled examples.

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1lh 10 784 70k 100
Mnist6h 10 784 70k 600
Mnist1k 10 784 70k 1000
Mnist3k 10 784 70k 3000
Mnist60k 10 784 70k 60000
SRL 16 - 631M 1M

learning experiments (Chapelle & Zien, 2005; Sind-
hwani et al., 2005; Collobert et al., 2006). We fol-
lowed the same experimental setup, averaging results
of ten splits of 50 labeled examples where the rest of
the data is unlabeled. In these experiments we test the
embedding regularizer on the output of a neural net-
work (see equation (9) and Figure 1(a)). We define a
two-layer neural network (NN) with hu hidden units.
We define W so that the 10 nearest neighbors of @
have W;; = 1, and W;; = 0 otherwise. We train for 50
epochs of stochastic gradient descent and fixed A = 1,
but for the first 5 we optimized the supervised tar-
get alone (without the embedding regularizer). This
gives two free hyperparameters: the number of hidden
units hu = {0,5,10,20,30,40,50} and the learning
rate Ir = {0.1,0.05,0.01,0.005, 0.001, 0.0005, 0.0001}.

We report the optimum choices of these values opti-
mized by 5-fold cross validation and by optimizing on
the test set in Table 2. Note the datasets are very
small, so cross validation is unreliable. Several meth-
ods from the literature optimized their hyperparam-
eters using the test set (those that are not marked
with (cv)). Our EmbedNN is competitive with state-
of-the-art semi-supervised methods based on SVMs,
even outperforming them in some cases.

MNIST experiments We compare our method in
all three different modes (Figure 1) with conventional
semi-supervised learning (TSVM) using the same data
split and validation set as in (Collobert et al., 2006).
We also compare to several deep learning methods:
RBMs, SESM and DBN-NCA and DBN-rNCA (how-
ever, they are trained on a different data split). In

Table 2. Results on Small-Scale Datasets. We report the
best test error over the hyperparameters of our method,
EmbedNN, as in the methodology of (Chapelle & Zien,
2005) as well as the error when optimizing the param-
eters by cross-validation, EmbedNN(?). LDS(*) and
LapSVM () also use cross-validation.

g50c Text Uspst
SVM 832 18.86 23.18
TSVM 580 571 17.61
LapSVM(eV) 54 104 127
LDS(V) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
Graph SVM 832 1048 16.92
NN 10.62 15.74 25.13
EmbedNN 566 5.82 15.49
EmbedNN(©Y) 6.78 6.19 15.84

Table 3. Results on MNIST with 100, 600, 1000 and 3000
labels. A two-layer Neural Network (NN) is compared to an
NN with Embedding regularizer (EmbedNN) on the output
(0), i layer (I4) or auxiliary embedding from the " layer
(A7) (see Figure 1). A convolutional network (CNN) is also
tested in the same way. We compare to SVMs and TSVMs.
RBM, SESM, DBN-NCA and DBN-rNCA (marked with
(*)) taken from (Ranzato et al., 2007; Salakhutdinov &
Hinton, 2007) are trained on a different data split.

Mnstlh Mnst6h Mnstlk Mnst3k

SVM 23.44 8.85 7T 4.21
TSVM 16.81 6.16 5.38 3.45
RBM®™ 21.5 - 8.8 -
SESM®™) 20.6 - 9.6 -
DBN-NCA®™ . 10.0 - 3.8
DBN-INCA®™ - 8.7 - 3.3
NN 25.81 11.44 10.70 6.04
Embed®° NN 17.05 5.97 5.73 3.59
Embed 'NN 16.86 9.44 8.52 6.02
Embed*'NN 17.17 7.56 7.89 4.93
CNN 22.98 7.68 6.45 3.35
Embed®°CNN 11.73 3.42 3.34 2.28
Embed’>CNN 7.75 3.82 2.73 1.83
Embed*®CNN 7.87 3.82 2.76 2.07

Table 4. Mnist1h dataset with deep networks of 2, 6, 8, 10
and 15 layers; each hidden layer has 50 hidden units. We
compare classical NN training with EmbedNN where we
either learn an embedding at the output layer (O) or an

auxiliary embedding on all layers at the same time (“*%).
2 4 6 8 10 15
NN 26.0 26.1 27.2 283 34.2 477

Embed®NN 19.7 151 151 15.0 13.7 11.8
Embed***NN 182 126 79 85 63 93

Deep Learning via Semi-Supervised Embedding

Table 5. Full Mnist60k dataset with deep networks of 2, 6,
8, 10 and 15 layers, using either 50 or 100 hidden units. We
compare classical NN training with Embed*''NN where
we learn an auxiliary embedding on all layers at the same
time.
2 4 6 8 10 15
NN (HUs=50) 29 26 28 31 31 42
Embed**"NN 28 1.9 20 22 24 26

NN (HUs=100) 2.0 1.9 2.0 22 23 3.0
Embed®**NN 19 15 16 1.7 18 24

these experiments we consider 2-layer networks (NN)
and 6-layer convolutional neural nets (CNN) for em-
bedding. We optimize the parameters of NN (hu =
{50,100, 150, 200,400} hidden units and learning rates
as before) on the validation set. The CNN architecture
is fixed: 5 layers of image patch-type convolutions, fol-
lowed by a linear layer of 50 hidden units, similar to
(LeCun et al., 1998). The results given in Table 3 show
the effectiveness of embedding in all three modes, with
both NNs and CNNs.

Deeper MNIST experiments We then conducted
a similar set of experiments but with very deep archi-
tectures — up to 15 layers, where each hidden layer
has 50 hidden units. Using Mnist1lh, we first compare
conventional NNs to Embed““NN where we learn an
auxiliary nonlinear embedding (50 hidden units and
a 10 dimensional embedding space) on each layer, as
well as Embed® NN where we only embed the outputs.
Results are given in Table 4. When we increase the
number of layers, NNs trained with conventional back-
propagation overfit and yield steadily worse test er-
ror (although they are easily capable of achieving zero
training error). In contrast, EmbedA““NN improves
with increasing depth due to the semi-supervised “reg-
ularization”. Embedding on all layers of the network
has made deep learning possible. Embed®NN (embed-
ding on the outputs) also helps, but not as much.

We also conducted some experiments using the full
MNIST dataset, Mnist60k. Again using deep networks
of up to 15 layers using either 50 or 100 hidden units
Embed*ENN outperforms standard NN. Results are
given in Table 5. Increasing the number of hidden
units is likely to improve these results further, e.g. us-
ing 4 layers and 500 hidden units on each layer, one
obtains 1.27% using Embed**“NN.

Semantic Role Labeling The goal of semantic role
labeling (SRL) is, given a sentence and a relation of
interest, to label each word with one of 16 tags that
indicate that word’s semantic role with respect to the

Table 6. A deep architecture for Semantic Role Labeling
with no prior knowledge outperforms state-of-the-art sys-
tems ASSERT and SENNA that incorporate knowledge
about parts-of-speech and parse trees. A convolutional
network (CNN) is improved by learning an auxiliary em-
bedding (Embed*'CNN) for words represented as 100-
dimensional vectors using the entire Wikipedia website as
unlabeled data.

Method Test Error
ASSERT (Pradhan et al., 2004) 16.54%
SENNA (Collobert & Weston, 2007) 16.36%
CNN [no prior knowledge] 18.40%
Embed* CNN [no prior knowledge] 14.55%

action of the relation. For example the sentence ”The
cat eats the fish in the pond” is labeled in the following
way: “Theargo catarcgo eatsrer thearai fisharca
inArRGM-LOC thearaym—rLoc pondaram—rLoc ” where
ARGO and ARGI1 effectively indicate the subject and
object of the relation “eats” and ARGM-LOC indi-
cates a locational modifier. The PropBank dataset
includes around 1 million labeled words from the Wall
Street Journal. We follow the experimental setup of
(Collobert & Weston, 2007) and train a 5-layer con-
volutional neural network for this task, where the
first layer represents the input sentence words as 50-
dimensional vectors. Unlike (Collobert & Weston,
2007), we do not give any prior knowledge to our classi-
fier. In that work words were stemmed and clustered
using their parts-of-speech. Our classifier is trained
using only the original input words.

We attempt to improve this system by, as before,
learning an auziliary embedding task. Our embedding
is learnt using unlabeled sentences from the Wikipedia
web site, consisting of 631 million words in total using
the scheme described in Section 3. The same lookup
table of word vectors as in the supervised task is used
as input to an 11 word window around a given word,
yielding 550 features. Then a linear layer projects
these features into a 100 dimensional embedding space.
All windows of text from Wikipedia are considered
neighbors, and non-neighbors are constructed by re-
placing the middle word in a sentence window with
a random word. Our lookup table indexes the most
frequently used 30,000 words, and all other words are
assigned index 30,001.

The results in Table 6 indicate a clear improvement
when learning an auxiliary embedding. ASSERT
(Pradhan et al., 2004) is an SVM parser-based sys-
tem with many hand-coded features, and SENNA is a
NN which uses part-of-speech information to build its
word vectors. In contrast, our system is the only state-

Deep Learning via Semi-Supervised Embedding

of-the-art method that does not use prior knowledge
in the form of features derived from parts-of-speech or
parse tree data. This application will be described in
more detail in a forthcoming paper.

6. Conclusion

In this work, we showed how one can improve su-
pervised learning for deep architectures if one jointly
learns an embedding task using unlabeled data. Our
results both confirm previous findings and generalize
them. Researchers using shallow architectures already
showed two ways of using embedding to improve gen-
eralization: (i) embedding unlabeled data as a sepa-
rate pre-processing step (i.e., first layer training) and;
(ii) using embedding as a regularizer (i.e., at the out-
put layer). More importantly, we generalized these ap-
proaches to the case where we train a semi-supervised
embedding jointly with a supervised deep multi-layer
architecture on any (or all) layers of the network, and
showed this can bring real benefits in complex tasks.

References

Ahmed, A., Yu, K., Xu, W., & Gong, Y. (2008). Training
hierarchical feed-forward visual recognition models using
transfer learning from pseudo-tasks. ECCV. Submitted.

Ando, R., & Zhang, T. (2005). A Framework for Learn-
ing Predictive Structures from Multiple Tasks and Unla-
beled Data. The Journal of Machine Learning Research,
6, 1817-1853.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for
dimensionality reduction and data representation. Neu-
ral Computation, 15, 1373-1396.

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold
regularization: a geometric framework for learning from
Labeled and Unlabeled Examples. Journal of Machine
Learning Research, 7, 2399—2434.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2007). Greedy layer-wise training of deep networks. Ad-
vances in Neural Information Processing Systems, NIPS
19.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, 1., LeCun,
Y., Moore, C., Sackinger, E., & Shah, R. (1993). Signa-
ture verification using a siamese time delay neural net-
work. International Journal of Pattern Recognition and
Artificial Intelligence, 7.

Caruana, R. (1997). Multitask Learning. Machine Learn-
ing, 28, 41-75.

Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-
supervised learning. Adaptive computation and machine
learning. Cambridge, Mass., USA: MIT Press.

Chapelle, O., Weston, J., & Schélkopf, B. (2003). Cluster
kernels for semi-supervised learning. NIPS 15 (pp. 585—
592). Cambridge, MA, USA: MIT Press.

Chapelle, O., & Zien, A. (2005). Semi-supervised classifi-
cation by low density separation. AISTATS (pp. 57-64).

Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006).
Large scale transductive svms. Journal of Machine
Learning Research, 7, 1687-1712.

Collobert, R., & Weston, J. (2007). Fast semantic extrac-
tion using a novel neural network architecture. Proceed-
ings of the 45th Annual Meeting of the Association of
Computational Linguistics, 25—32.

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimension-
ality reduction by learning an invariant mapping. Proc.
Computer Vision and Pattern Recognition Conference
(CVPR’06). IEEE Press.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural Comp.,
18, 1527-1554.

Japkowicz, N., Hanson, S., & Gluck, M. (2000). Nonlin-
ear autoassociation is not equivalent to PCA. Neural
Computation, 12, 531-545.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., & Juraf-
sky, D. (2004). Shallow semantic parsing using support
vector machines. Proceedings of HLT/NAACL-200.

Ranzato, M., Huang, F., Boureau, Y., & LeCun, Y. (2007).
Unsupervised learning of invariant feature hierarchies
with applications to object recognition. Proc. Computer
Vision and Pattern Recognition Conference (CVPR’07).
IEEE Press.

Salakhutdinov, R., & Hinton, G. (2007). Learning a Non-
linear Embedding by Preserving Class Neighbourhood
Structure. AISTATS.

Sindhwani, V., Niyogi, P., & Belkin, M. (2005). Beyond
the point cloud: from transductive to semi-supervised
learning. International Conference on Machine Learn-
ing, ICML.

Tenenbaum, J., de Silva, V., & Langford, J. (2000). A
global geometric framework for nonlinear dimensionality
reduction. Science, 290, 2319-2323.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley and Sons, New York.

Williams, C. (2001). On a connection between kernel PCA
and metric multidimensional scaling. Advances in Neural
Information Processing Systems, NIPS 183.

Zhu, X., & Ghahramani, Z. (2002). Learning from labeled
and unlabeled data with label propagation (Technical Re-
port CMU-CALD-02-107). Carnegie Mellon University.

Acknowledgements

Thanks to Sandra Cordero for producing the figures.
Frédéric Ratle is funded by the SNF, Grant no. 105211-
107862.

