
Efficiently Solving Convex Relaxations for MAP Estimation

M. Pawan Kumar pawan@robots.ox.ac.uk

Department of Engineering Science, University of Oxford

P.H.S. Torr philiptorr@brookes.ac.uk

Department of Computing, Oxford Brookes University

Abstract
The problem of obtaining the maximum a
posteriori (map) estimate of a discrete ran-
dom field is of fundamental importance in
many areas of Computer Science. In this
work, we build on the tree reweighted message
passing (trw) framework of (Kolmogorov,
2006; Wainwright et al., 2005). trw itera-
tively optimizes the Lagrangian dual of a lin-
ear programming relaxation for map estima-
tion. We show how the dual formulation of
trw can be extended to include cycle inequal-
ities (Barahona & Mahjoub, 1986) and some
recently proposed second order cone (soc)
constraints (Kumar et al., 2007). We pro-
pose efficient iterative algorithms for solving
the resulting duals. Similar to the method
described in (Kolmogorov, 2006), these algo-
rithms are guaranteed to converge. We test
our approach on a large set of synthetic data,
as well as real data. Our experiments show
that the additional constraints (i.e. cycle in-
equalities and soc constraints) provide better
results in cases where the trw framework fails
(namely map estimation for non-submodular
energy functions).

1. Introduction

The problem of obtaining the maximum a posteri-
ori (map) estimate of a discrete random field plays a
central role in various applications, e.g. stereo recon-
struction (Szeliski et al., 2006) and protein side-chain
prediction (Sontag & Jaakkola, 2007). Furthermore,
it is closely related to many important combinatorial
optimization problems such as maxcut (Goemans &
Williamson, 1995) and 0-extension (Karzanov, 1998).
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It is therefore not surprising that a number of approx-
imate map estimation approaches exist in the litera-
ture. One such class of approaches which provides a
good approximation, both in theory and in practice,
is based on convex relaxations (e.g. see (Kumar et al.,
2007) for an overview). In this work, we focus on the
issue of solving these relaxations efficiently with the
goal of handling a large number of random variables,
e.g. variables corresponding to pixels in an image.

A discrete random field is defined over random vari-
ables v = {v0, · · · , vn−1}, each of which can take a
label from the set l = {l0, · · · , lh−1}. Throughout this
paper, we will assume a conditional random field (crf)
while noting that all our results are applicable to the
Markov random field framework. A crf describes a
neighbourhood relationship E between the variables
such that (a, b) ∈ E if, and only if, va and vb are neigh-
bours. A labelling of the crf is specified by a function
f : {0, · · · , n − 1} −→ {0, · · · , h − 1} (i.e. variable va

takes label lf(a)). Given data D, the energy of the
labelling is given by

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E
θ2

ab;f(a)f(b), (1)

where θ1
a;f(a) and θ2

ab;f(a)f(b) are the data-dependent
unary and pairwise potentials respectively, and θ de-
notes the parameter of the crf. The problem of map
estimation is to obtain the labelling f∗ with the min-
imum energy (or equivalently the maximum posterior
probability), i.e. f∗ = arg minf Q(f ;D, θ).

Related Work: We build upon the linear program-
ming (lp) relaxation of (Wainwright et al., 2005),
which we call lp-s (since it was first proposed
by (Schlesinger, 1976) for the special case of hard con-
straint pairwise potentials). Although the lp-s relax-
ation can be solved in polynomial time using Interior
Point algorithms, the state of the art softwares can
only handle up to a few hundred variables due to their
large memory requirements. To overcome this prob-
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lem, two iterative algorithms were proposed by (Wain-
wright et al., 2005) for solving the dual of the lp-s re-
laxation. Similar to min-sum belief propagation (bp),
these algorithms are not guaranteed to converge. The
work of (Kolmogorov, 2006) addressed this problem by
proposing a convergent sequential tree-reweighted mes-
sage passing (trw-s) algorithm for solving the dual.

Despite its strong theoretical foundation, it was ob-
served that trw-s yields labellings with very high
energies when the energy function contains non-
submodular terms (Kolmogorov, 2006). This is not
surprising since the lp-s relaxation provides an inac-
curate approximation in such cases (e.g. see (Kumar
et al., 2007)). In this work, we address this deficiency
of trw-s by appending the lp-s relaxation with some
useful constraints.

Our Results: We show how the dual formulation
of the lp-s relaxation can be extended to include lin-
ear cycle inequalities (Barahona & Mahjoub, 1986)
(section 3). Furthermore, we incorporate the recently
proposed second order cone (soc) constraints of (Ku-
mar et al., 2007) within this framework (section 4).
Note that although the importance of cycle inequali-
ties and soc constraints is well-recognized, their use
has been limited to a small number of random vari-
ables due to the lack of efficient algorithms (Sontag &
Jaakkola, 2007). Our results on including these con-
straints within the trw formulation allow us to develop
efficient convergent algorithms for solving the result-
ing duals. We successfully apply these algorithms to
several synthetic and real problems containing a large
number of variables which could not be handled by pre-
vious approaches (section 5). Our experiments indicate
that incorporating these constraints provides a much
better approximation for the map estimation problem
within reasonable computational times compared to
several state of the art algorithms. Additional exper-
imental results and proofs are provided in (Kumar &
Torr, 2008).

2. Preliminaries
We begin by introducing some notation which would
allow us to describe our results concisely.

Optimal Energy and Min-Marginals: The en-
ergy of the optimal labelling and the min-marginals of
random variables and neighbouring random variables
is given by the following equations respectively:

q(θ) = min
f

Q(f : D), (2)

qa;i(θ) = min
f,f(a)=i

Q(f ;D, θ), (3)

qab;ij(θ) = min
f,f(a)=i,f(b)=j

Q(f ;D, θ), (4)

where the term D is dropped from the lhs to make the
notation less cluttered.

Reparameterization: A parameter θ is called a
reparameterization of the parameter θ (denoted by
θ ≡ θ) if, and only if,

Q(f ;D, θ) = Q(f ;D, θ), ∀f. (5)

Over-complete Representations: A labelling f
can be represented using an over-complete set of
boolean variables y defined as

ya;i =

{

1 if f(a) = i,
0 otherwise.

, yab;ij = ya;iyb;j . (6)

We also define variables (x,X) such that

xa;i = 2ya;i−1, Xab;ij = 4yab;ij−2ya;i−2yb;j +1. (7)

We will sometimes specify the additional constraints
(i.e. cycle inequalities and soc constraints) using vari-
ables (x,X), since they will allow us to write these
constraints concisely.

The lp-s Relaxation: The lp-s relaxation of the
map estimation problem is given by

y∗ = argminy∈LOCAL(v,E) y
⊤θ,

LOCAL(v, E) =







ya;i ∈ [0, 1], yab;ij ∈ [0, 1],
∑

li∈l ya;i = 1,
∑

lj∈l yab;ij = ya;i.
(8)

The term LOCAL(v, E) stands for local consistency
polytope (Wainwright et al., 2005) and denotes the fea-
sibility region of the lp-s relaxation (specified by the
above constraints for all va ∈ v, (a, b) ∈ E , li, lj ∈ l).

Dual of the lp-s Relaxation: Let T denote a set of
tree-structured crfs defined over subsets of the given
random variables. For a crf T ∈ T , we denote its ran-
dom variables by vT , its neighbourhood relationship by
ET and its parameter as θT . The parameter θT con-
sists of unary potentials θT1

a;i and pairwise potentials

θT2
ab;ij . Let ρ = {ρ(T ), T ∈ T } be a set of non-negative

real numbers which sum to one. Using the above nota-
tion, the dual of the lp-s relaxation can be written as
follows (Kolmogorov, 2006; Wainwright et al., 2005):

max
∑

T∈T
ρ(T )θT ≡θ

∑

T

ρ(T )q(θT ). (9)

The trw-s Algorithm: Table 1 describes the trw-s
algorithm (Kolmogorov, 2006) which attempts to solve
the dual of the lp-s relaxation. In other words, it
solves for the set of parameters θT , T ∈ T , which
maximize the dual (9). There are two main steps: (i)
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reparameterization, which involves running one pass of
bp on the tree structured crfs T; and (ii) averaging
operation. trw-s is guaranteed not to decrease the
value of the dual (9) at each iteration. Further, it can
be shown that it converges to a solution which satisfies
the weak tree agreement (wta) (Kolmogorov, 2006).

Initialization
1. For every ω ∈ v

⋃

E , find all trees Tω ⊆ T
which contains ω.

2. Initialize θT such that
∑

T
ρ(T )θT ≡ θ.

Typically, we set ρ(T ) = 1
|T |

for all T ∈ T .

Then we can initialize θT1
a;i = θ1

a;i
|T |

|Tva |
for all T ∈ Tva .

Similarly, θT2
ab;ij = θ2

ab;ij
|T |

|T(a,b)|
for all T ∈ T(a,b).

Iterative Steps
3. Pick an element ω ∈ v

⋃

E .

4. For all T ∈ Tω, reparameterize θT to θ
T

such that

(i) θ
T1
a;i = qa;i(θ

T ), if ω = va ∈ v,

(ii) θ
T1
a;i + θ

T1
b;j + θ

T2
ab;ij = qab;ij(θ

T ), if ω = (a, b) ∈ E .
This step involves running one iteration of bp for T .

5. Averaging operation:
(i) If ω = va ∈ v,

(a) Compute νa;i = 1
ρa

∑

T∈Ta
ρ(T )θ

T1
a;i.

(b) Set θ
T1
a;i = νa;i, for all T ∈ Tva .

(ii) If ω = (a, b) ∈ T ,
(a) Compute νab;ij =

1
ρab

∑

T∈T(a,b)
ρ(T )(θ

T1
a;i + θ

T1
b;j + θ

T2
ab;ij).

(b) Set θ
T1
a;i + θ

T1
b;j + θ

T2
ab;ij = νab;ij , for all T ∈ T(a,b).

6. Repeat steps 3, 4 and 5 till convergence.

Table 1. The trw-s algorithm. Recall that θT1
a;i and θT2

ab;ij

are the unary and pairwise potentials for the parameter

θT . Similarly, θ
T1
a;i and θ

T2
ab;ij are the unary and pairwise

potentials defined by the parameter θ. The terms ρa =
∑

T,va∈vT
ρ(T ) and ρab =

∑

T,(a,b)∈ET
ρ(T ) are the vari-

able and edge appearance terms for va ∈ v and (a, b) ∈ E
respectively. In step 3, the value of the dual (9) remains un-
changed. Step 4, i.e. the averaging operation, ensures that
the value of the dual does not decrease. trw-s converges
to a solution which satisfies the wta condition.

3. Adding Linear Constraints

We now show how the results of (Kolmogorov, 2006;
Wainwright et al., 2005) can be extended to include an
arbitrary number of linear cycle inequalities (Barahona
& Mahjoub, 1986; Kumar et al., 2007). This requires
us to incorporate cycle inequalities into the dual (11).

We begin by briefly describing cycle inequalities. Con-
sider a cycle of length c in the graphical model of
the given crf, which is specified over a set of ran-
dom variables vC = {vb, b = a1, a2, · · · , ac} such that
EC = {(a1, a2), (a2, a3), · · · , (an, a1)} ⊆ E . Further, let
EF ⊆ EC such that |EF | (i.e. the cardinality of EF ) is
odd. Using these sets of edges, a cycle inequality can
be specified as

∑

(ak,am)∈EF

Xakam;ikim −
∑

(ak,am)∈EC−EF

Xakam;ikim ≥ 2− c,

(10)

where lik
, lim

∈ l1. The variables Xakam;ikim
are de-

fined in equation (7). It can be shown that adding
cycle inequalities to lp-s, i.e. problem (8), provides a
better relaxation than lp-s alone. Their importance
is reflected in their wide use in recent literature such
as (Sontag & Jaakkola, 2007; Zwick, 1999).

In general, a set of NC cycle inequalities defined on a
cycle C = (vC , EC) (using different labels lik

for vari-
ables vak

∈ vC) can be written as ACy ≥ bC . In other
words, for every cycle we can define up to hc cycle in-
equalities (where h = |l|), i.e. NC ∈ {0, 1, · · · , hc}. Let
C be a set of cycles in the given crf. Theorem 1 (given
below) provides us with the dual of the lp relaxation
obtained by appending problem (8) with cycle inequal-
ities (defined over cycles in the set C). We refer to the
resulting relaxation as lp-c (where c denotes cycles).

Theorem 1: The following problem is the dual of
problem (8) appended with a set of cycle inequalities
ACy ≥ bC , for all C ∈ C (hereby referred to as the
lp-c relaxation):

max
∑

T ρ(T )q(θT ) +
∑

C ρ′(C)(bC)⊤uC ,

s.t.
∑

T ρ(T )θT +
∑

C ρ′(C)(AC)⊤uC ≡ θ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (11)

Here ρ′ = {ρ′(C), C ∈ C} is some (fixed) set of non-
negative real numbers which sum to one, and uC =
{uC

k , k = 1, · · · , NC} are some non-negative slack vari-
ables.

Similar to the dual (9), the above problem cannot be
solved using standard software for a large number of
variables v. In order to overcome this deficiency we
propose a convergent algorithm (similar to trw-s) to
approximately solve problem (11). We call our ap-
proach the trw-s(lp-c) algorithm. In order to de-
scribe trw-s(lp-c), we need the following definitions.

We say that a tree structured random field T =
(vT , ET ) ∈ T belongs to a cycle C = (vC , EC) ∈ C
(denoted by T ∈ C) if, and only if, there exists an
edge (a, b) ∈ ET such that (a, b) ∈ EC . In other words,
T ∈ C if they share a common pair of neighbouring
random variables (a, b) ∈ E . We also define the follow-
ing problem:

max
∑

T∈C ρ(T )q(θT ) + ρ′(C)(bC)⊤uC ,

1Note that using the variable y would result in a less
compact representation of cycle inequalities.
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s.t.
∑

T∈C ρ(T )θT + ρ′(C)(AC)⊤uC = θC ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, (12)

for some parameter θC . The variables of the above
problem are restricted to uC

k , θT1
a;i and θT2

ab;ij where
(a, b) ∈ ET

⋂

EC for some T ∈ C. In other words,
problem (12) has fewer variables and constraints than
dual (11) and can be solved easily using standard In-
terior Point algorithms for small cycles C. As will be
seen, even using cycles of size 3 or 4 results in much
better approximations of the map estimation problem
for non-submodular energy functions.

Table 2 describes the convergent trw-s(lp-c) algo-
rithm for approximately solving the dual (11). The
algorithm consists of two main steps : (i) solving prob-
lem (12) for a cycle; and (ii) running steps 4 and 5 of
the trw-s algorithm. Note that our approach is dif-
ferent from other generalizations of trw, e.g. (Wieger-
nick, 2005) which computes marginals. Specifically, we
do not cluster random variables but include additional
constraints to reduce the feasibility region of the re-
laxation. Our experiments in section 5 show that, un-
like (Wiegernick, 2005), we always outperform bp. The
properties of the trw-s(lp-c) algorithm are summa-
rized below.

Initialization
1. Choose a set of tree structured random fields T .
Choose a set of cycles C.
For example, if the 4-neighbourhood is employed,
C can be the set of all cycles of size 4.

2. Initialize θT such that
∑

T
ρ(T )θT ≡ θ.

Initialize uC
k = 0 for all C and k.

Iterative Steps
3. Pick an element ω ∈ v

⋃

C.
Find all cycles Cω ⊆ C which contains ω.

4. For a cycle C ∈ Cω, compute
θC =

∑

T∈C
ρ(T )θT + ρ′(C)(AC)⊤uC

using the values of θT and uC obtained
in the previous iteration.
Solve problem (12) using an Interior Point method.
Update the values of θT and uC .

5. For all trees T ∈ T which contain ω,
run steps 4 and 5 of the trw-s algorithm.

6. Repeat steps 3 and 4 for all cycles C ∈ Cω.
7. Repeat steps 3 to 5 for all elements ω
till convergence.

Table 2. The trw-s(lp-c) algorithm.

3.1. Properties of the trw-s(lp-c) Algorithm.

Property 1: At each step of the algorithm, the repa-
rameterization constraint is satisfied, i.e.

∑

T

ρ(T )θT +
∑

C

ρ′(C)(AC)⊤uC ≡ θ. (13)

The constraint in problem (12) ensures that parameter

vector θC of cycle C remains unchanged. Hence, after
step 4 of the trw-s(lp-c) algorithm, the reparameter-
ization constraint is satisfied. It was also shown that
step 5 (i.e. running trw-s) provides a reparameteriza-
tion of θ (see Lemma 3.3 of (Kolmogorov, 2006) for
details). This proves Property 1.

Property 2: At each step of the algorithm, the value
of the dual (11) never decreases. Clearly, step 4 of
the trw-s(lp-c) algorithm does not decrease the value
of the dual (11) (since the objective function of prob-
lem (12) is part of the objective function of dual (11)).
The work of (Kolmogorov, 2006) showed that step 5
(i.e. trw-s) also does not decrease this value. Note
that the lp-c relaxation is guaranteed to be bounded
since it dominates the lp-s relaxation (Kumar et al.,
2007), which itself is bounded (Kolmogorov, 2006).
Therefore, by the Bolzano-Weierstrass theorem (Fitz-
patrick, 2006), it follows that trw-s(lp-c) will con-
verge.

Property 3: Like trw-s, the necessary condition for
convergence of trw-s(lp-c) is that the parameter vec-
tors θT of the trees T ∈ T satisfy wta. This follows
from the fact that trw-s increases the value of the dual
in a finite number of steps as long as the set of param-
eters θT , T ∈ T , do not satisfy wta (see (Kolmogorov,
2006) for details).

Property 4: Unlike trw-s, wta is not the sufficient
condition for convergence. One of the main drawbacks
of the trw-s algorithm is that it converges as soon as
the wta condition is satisfied. Experiments in (Kol-
mogorov, 2006) indicate that this results in high energy
solutions for the map estimation problem when the
energy function is non-submodular. Using a counter-
example, it can be shown that wta is not the sufficient
condition for the convergence of trw-s(lp-c) (Kumar
& Torr, 2008).

Obtaining the Labelling: Similar to the trw-s al-
gorithm, trw-s(lp-c) solves the dual (11) and not the
primal problem. In other words, it does not directly
provide a labelling of the random variables. In order
to obtain a labelling, we use the same scheme as the
one suggested in (Kolmogorov, 2006) for the trw-s
algorithm. Briefly, we assign labels to the variables
v = {v0, v1, · · · , vn−1} in increasing order (i.e. we label
variable v0, followed by variable v1 and so on). Let
θT =

∑

T ρ(T )θT . At each stage, a variable va is as-
signed the label lf(a) such that

f(a) = arg min
i,li∈l



θT 1
a;i +

∑

b<a,(a,b)∈E
θT 2

ab;i,f(b))



 , (14)

where θT 1
a;i and θT 2

ab;i,f(b) are the unary and pairwise

potentials corresponding to the parameter θT respec-
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tively. It can be shown that under certain condi-
tions the above procedure provides the optimal la-
belling (Meltzer et al., 2005).

4. Adding SOC Constraints
We now show how second order cone (soc) constraints
can be added to the dual (9). Specifically, we consider
the two soc constraints proposed in (Kumar et al.,
2007) which result in the socp-c and socp-q relax-
ations described below.

The socp-c Relaxation: Consider a set of random
variables vC = {vb, b = a1, · · · , ac} ⊆ v such that
EC = {(a1, a2), (a2, a3), (ac, a1)} ⊆ E (i.e. vC forms a
cycle of length c). We define a vector xC whose kth ele-
ment is given by xak;ik

and a matrix XC whose (k, m)th

element is given by Xakam;ikim
(where lik

, lim
∈ l).

socp-c specifies constraints ||U⊤xC ||2 ≤ C•XC where
C = Dc+λcI = UU⊤ and (•) represents the Frobenius
inner product. The c × c matrix Dc is given by

Dc(i, j) =







(−1)c−1 if |i − j| = c − 1,
1 if |i − j| = 1,
0 otherwise,

(15)
and λc is the absolute value of the smallest eigenvalue
of Dc.

The socp-q Relaxation: Consider a set of random
variables vC = {vb, b = a1, · · · , ac} ⊆ v such that
EC = {(ai, aj), i, j = 1, · · · , c} ⊆ E (i.e. vC form a
clique of size c). socp-q specifies constraints of the
form ||U⊤xC ||

2 ≤ C • XC where C is a matrix whose
elements are all 1.

In general, a set of NC soc constraints on a cy-
cle/clique can be defined as

||AC
k y + bC

k || ≤ y⊤cC
k + dC

k , k ∈ {1, 2, · · · , NC}. (16)

Let C be a set of cycles/cliques in the graphical model
of the given random field. The following theorem pro-
vides us with the dual of the socp relaxation obtained
by appending problem (8) with soc constraints defined
over the set C.

Theorem 2: The following problem is the dual of
problem (8) appended with a set of soc constraints
||AC

k y + bC
k || ≤ y⊤cC

k + dC
k for k ∈ {1, 2, · · · , NC} and

C ∈ C.

max
∑

T ρ(T )q(θT ) −
∑

C ρ′(C)
∑

k pC
k ,

s.t.
∑

T ρ(T )θT +
∑

C ρ′(C)
∑

k qC
k ≡ θ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (17)

where

pC
k = (bC

k )⊤uC
k + dC

k vC
k , (18)

qC
k = (AC

k )⊤uC
k + cC

k vC
k . (19)

Here uC
k and vC

k are some slack variables.

We can define up to hc soc constraints for a cy-
cle/clique, where c is the size of the cycle/clique (i.e.
NC ∈ {0, 1, · · · , hc}). Before proceeding further, we
also define the following problem:

max
∑

T∈C ρ(T )q(θT ) − ρ′(C)
∑

k pC
k ,

s.t.
∑

T∈C ρ(T )θT + ρ′(C)
∑

k qC
k = θ

C ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, (20)

where θC is some parameter vector. The variables of
the above problem are restricted to uC

k , vC
k , θT1

a;i and

θT2
ab;ij where (a, b) ∈ ET

⋂

EC . Like problem (12), we
can solve problem (20) using standard Interior Point
algorithms for small cycles/cliques C.

Similar to trw-s(lp-c), a convergent algorithm can
now be described for solving the dual (17). This algo-
rithm differs from trw-s(lp-c) in only step 4, where
it solves problem (20) for a cycle/clique C instead of
problem (12). We refer to this algorithm as either
trw-s(socp-c) or trw-s(socp-q) depending upon the
socp relaxation that we are solving. When using the
trw-s(socp-q) algorithm, we include all slack vari-
ables corresponding to the cycle inequalities defined
over the cycles in clique C. It can easily be shown
that both trw-s(socp-c) and trw-s(socp-q) satisfy
all the properties given in § 3.1. Note that, like trw-s
and trw-s(lp-c), these algorithms do not directly pro-
vide a labelling for the random variables of the crf.
Instead we use the procedure described in § 3.1 to ob-
tain the final solution.

5. Experiments
We tested the approaches described in this paper using
both synthetic and real data. For synthetic data ex-
periments, we closely follow the setup of (Kolmogorov,
2006). We show that our algorithms overcome a well-
known deficiency of trw-s, namely that it does not
provide good map estimates for non-submodular en-
ergy functions. Next, we consider the problem of seg-
mentation using real data and show favourable compar-
ison between our methods and several other standard
map estimation techniques.

5.1. Synthetic Data

Datasets: We conducted two sets of experiments us-
ing binary grid crfs (i.e. h = |l| = 2) of size 30×30. In
the first experiment the edges of the graphical model,
i.e. E , were defined using a 4-neighbourhood system
while the second experiment used an 8-neighbourhood
system. Similar to (Kolmogorov, 2006), the unary po-
tentials θ1

a;0 and θ1
a;1 were generated using the normal

distribution N (0, 1). The pairwise potentials θ2
ab;00 and
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θ2
ab;11 were set to 0 while θ2

ab;01 and θ2
ab;10 were gener-

ated using N (0, σ2). For both experiments, 50 crfs
were generated using the method described above. All
the crfs defined non-submodular energy functions (i.e.
there exists an (a, b) ∈ E such that θab;01 + θab;10 < 0)
which are in general np-hard to minimize. As noted
in (Kolmogorov, 2006), trw-s performs considerably
worse than bp on such examples.

Implementation Details: We tested the lp-c and
the socp-c relaxations in the first experiment. Con-
straints were defined on all cycles of size 4. The lp-c
and socp-q relaxation were tested in the second exper-
iment. Cycles inequalities were defined on all cycles of
size 3. In addition, for socp-q, soc constraints were
defined on all cliques of size 4. In both the experiments,
our algorithms were tested using trees defined by indi-
vidual edges of the graphical model for ease of imple-
mentation. In other words, a tree T = (vT , ET ) ∈ T
such that vT = {va, vb} and ET = {(a, b)} ⊆ E . How-
ever, we note here that our algorithms are general and
can be applied for any choice of trees. Although our
current set of trees are quite restrictive, the results
show that they outperform several state of the art al-
gorithms. The trw-s algorithm, as well as other stan-
dard approaches, was tested using the publically avail-
able code which uses monotonic chains as trees.

The terms ρ(T ) and ρ′(C) were set to 1/|T | and 1/|C|
respectively for all T ∈ T and C ∈ C. We found it suf-
ficient to define one cycle inequality per cycle C using
a set of labels {li1 , li2 , · · · , lic

} which satisfies

∑

(ak,am)∈EF
θakam;ikim −

∑

(ak,am)∈EC−EF
θ2

akam;ikim
≥

∑

(ak,am)∈EF
θakam;jkjm −

∑

(ak,am)∈EC−EF
θ2

akam;jkjm
,

for all sets of labels {lj1 , · · · , ljc
}. Here EC =

{(a1, a2), · · · , (an, a1)} and EF ⊆ EC such that |EF | =
3. As proposed in (Kumar et al., 2007), we also define
only one soc constraint per cycle/clique when consid-
ering the socp-c and the socp-q relaxations. At each
iteration, problems (12) and (20) were solved using the
mosek software (available at http://www.mosek.com).

Results: Figure 1 (a) shows the results obtained for
the first experiment using σ = 10√

d
(where d is the de-

gree of the variables in the graphical model). Note that
since the energy functions are non-submodular, trw-s
provides labellings with higher energies than bp as ob-
served in (Kolmogorov, 2006). However, the additional
constraints in the lp-c and socp-c algorithm enable
us to obtain labelling with lower energies than bp. Fur-
ther, unlike bp, they also provide us with the value of
the dual at each iteration. This value allows us to find
out how close we are to the global optimum (since the
energy of the optimal labelling cannot be less than the

(a)

(b)

Figure 1. Results of the synthetic data experiment. (a)
First experiment. The x-axis shows the iteration number.
The lower curves show the average value of the dual at each
iteration over 50 random crfs while the upper curves show
the average energy of the best labelling found till that iter-
ation. The additional constraints in the lp-c and socp-c
relaxations enable us to obtain labellings with lower energy
compared to trw-s and bp. Cycle inequalities provide a
better approximation than the soc constraint of the socp-
c relaxation. (b) Second experiment. Note that the value
of the dual obtained using socp-q is greater than the value
of the dual of the lp-c relaxation.

value of the dual). Also note that the value of the lp-
c dual is greater than the value of the socp-c dual.
This provides empirical evidence that lp-c dominates
socp-c as conjectured in (Kumar et al., 2007).

The results of the second experiment are shown in Fig-
ure 1 (b) using σ = 10√

d
. Again, bp outperforms trw-s,

while lp-c and socp-q provide better approximations.
The soc constraints defined over cliques in socp-q pro-
vide a greater value of the dual compared to the lp-c
relaxation. The complexity and timings for all the al-
gorithms are given in tables 3 and 4.

5.2. Real Data - Segmentation
We now present the results of our method on interac-
tive segmentation (Boykov & Jolly, 2001) where, given
some seed pixels for all the segments present in an im-
age, we wish to obtain the segmentation of the image.

Problem Formulation: The problem of obtaining
the segmentation of an image can be cast within the
crf framework. Specifically, we define a crf over ran-
dom variables v = {v0, · · · , vn−1}, where each variable
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Algorithm No. of Var. No. of Cons. Time(sec)
bp - - 0.0018

trw-s nh + |E|h2 n + 2|E|h 0.0018
lp-c nh + |E|h2 2n + 2|E|h 7.5222

socp-c nh + |E|h2 2n + 2|E|h 8.9091

Table 3. Complexity and timings of the algorithms for the
first synthetic data experiment with a 4-neighbourhood re-
lationship. Recall that n = |v| is the number of random
variables, h = |l| is the size of the label set and E is the
neighbourhood relationship defined by the crf. The sec-
ond and third columns show the number of variables and
constraints in the primal problem respectively. The fourth
column shows the average time of the each algorithm for
one iteration (in seconds). All timings are reported for a
Pentium IV 3.3 GHz processor with 2GB RAM.

Algorithm No. of Var. No. of Cons. Time(sec)
bp - - 0.0027

trw-s nh + |E|h2 n + 2|E|h 0.0027
lp-c nh + |E|h2 5n + 2|E|h 7.7778

socp-q nh + |E|h2 6n + 2|E|h 9.1170

Table 4. Complexity and timings for the second synthetic
data experiment with an 8-neighbourhood relationship.
Note that socp-q includes all the constraints of lp-c.

corresponds to a pixel of the frame. Each label in the
set l = {l0, · · · , lh−1} corresponds to a segment (where
h is the total number of segments). The unary poten-
tial of assigning a variable va to segment li is specified
by the negative log-likelihood of the rgb value of pixel
a given the seed pixels of the segment li. The pair-
wise potentials encourage continuous segments whose
boundaries lie on image edges. For more details, we
refer the reader to (Boykov & Jolly, 2001). The prob-
lem of obtaining the segmentation of a frame then boils
down to that of finding the map estimate of the crf.

Datasets and Implementation Details: We used
the well-known ‘Garden’ sequence to conduct our ex-
periments (with frame size 120× 175). The seed pixels
were provided using the ground truth segmentation of
a keyframe as shown in Fig. 2.

Similar to the synthetic data experiment, we defined
the trees as individual edges of the graphical model
of the crf for our algorithms. Other algorithms were
tested using publically available code (including trw-
s which uses monotonic chains as trees). We specified
one cycle inequality and one soc constraint for each cy-
cle/clique (as described in the previous section). The
terms ρ(T ) and ρ′(C) were set to 1/|T | and 1/|C| re-
spectively for all T ∈ T and C ∈ C. Once again, prob-
lems (12) and (20) were solved using mosek.

Results: For the first set of experiments, we used a
4-neighbourhood system and tested the following algo-
rithms: trw-s, lp-c, socp-c, αβ-swap, α-expansion
and bp. Fig. 3 shows the segmentations (of frames

Figure 2. Segmented keyframe of the ‘Garden’ sequence.
The left image shows the keyframe while the right im-
age shows the corresponding segmentation provided by the
user. The four different colours indicate pixels belonging to
the four segments namely sky, house, garden and tree.

Algorithm Avg. Time-1 (s) Avg. Time-2 (s)
bp 0.1400 0.1740

trw-s 0.1400 0.1740
αβ-swap 0.1052 0.1201

α-expansion 0.1100 0.1240
lp-c 140.3320 142.2226

socp-c/socp-q 143.6365 144.9890

Table 5. Average timings of the algorithms (per iteration)
for the first experiment on video segmentation with a 4-
neighbourhood relationship (column 2) and the second ex-
periment with an 8-neighbourhood relationship (column 3).
Again, all timings are reported for a Pentium IV 3.3 GHz
processor with 2GB RAM.

other than the keyframe) and the values of the energy
function obtained for all algorithms. Note that, by in-
corporating additional constraints using all cycles of
length 4, lp-c and socp-c outperform other methods.
Further, the cycle inequalities in lp-c provide better
results than the soc constraints of socp-c. Table 5
provides the average time for all algorithms.

The second set of experiments used an 8-
neighbourhood system and tested the following
algorithms: trw-s, lp-c, socp-q, αβ-swap, α-
expansion and bp. For the lp-c algorithm, cycle
inequalities were specified for all cycles of size 3.
In addition, the socp-q algorithm specifies soc
constraints on all cliques of size 4. Fig. 4 shows the
segmentations and energies obtained for all the algo-
rithms. The average timings per iteration are shown
in table 5. Note that, similar to the synthetic data
examples, socp-q outperforms lp-c by incorporating
additional soc constraints.

6. Discussion
We extended the lp-s relaxation based approach
of (Kolmogorov, 2006; Wainwright et al., 2005) for
the map estimation problem. Specifically, we showed
how cycle inequalities and soc constraints can be in-
corporated within the trw framework. We also pro-
posed convergent algorithms for solving the result-
ing duals. Our experiments indicate that these ad-
ditional constraints provide a more accurate approxi-
mation for map estimation when the energy function
is non-submodular. Although our algorithm is much
faster than Interior Point methods, it is slower than
trw-s and bp. An interesting direction for future re-
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Input

bp

0380 0047 6098

αβ

0778 0433 0585

α

0571 0094 0176

trw-s

0151 0126 1596

lp-c

0000 0000 0000

socp-c

0026 0086 1044

Figure 3. Segmentations obtained for the ‘Garden’ video
sequence using 4-neighbourhood. The corresponding en-
ergy values (scaled up to integers for using αβ-swap and
α-expansion) of all the algorithms are shown below the
segmentation. The following constant terms are subtracted
from the energy values of all algorithms for the three frames
respectively (to make minimum energy among all algo-
rithms 0): 5139499, 5145234 and 5126941.

search would be to develop specialized algorithms for
solving problems (12) and (20) (which are used in our
approach).
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