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Abstract

We present an active learning scheme that
exploits cluster structure in data.

1. Introduction

The active learning model is motivated by scenarios in
which it is easy to amass vast quantities of unlabeled
data (images and videos off the web, speech signals
from microphone recordings, and so on) but costly to
obtain their labels. It shares elements with both su-
pervised and unsupervised learning. Like supervised
learning, the goal is ultimately to learn a classifier.
But like unsupervised learning, the data come unla-
beled. More precisely, the labels are hidden, and each
of them can be revealed only at a cost. The idea is to
query the labels of just a few points that are especially
informative about the decision boundary, and thereby
to obtain an accurate classifier at significantly lower
cost than regular supervised learning. Indeed, there
are canonical examples in which active learning prov-
ably yields exponentially lower label complexity than
supervised learning (Cohn et al., 1994; Freund et al.,
1997; Dasgupta, 2005; Balcan et al., 2006; Balcan
et al., 2007; Castro & Nowak, 2007; Hanneke, 2007;
Dasgupta et al., 2007). However, these examples are
highly specific, and the wider efficacy of active learning
remains to be characterized.

Sampling bias. A typical active learning heuristic
might start by querying a few randomly-chosen points,
to get a very rough idea of the decision boundary. It
might then query points that are increasingly closer to
its current estimate of the boundary, with the hope of
rapidly honing in. Such heuristics immediately bring
to the forefront the unique difficulty of active learn-
ing, the fundamental characteristic that separates it
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from other learning models: sampling bias. As train-
ing proceeds, and points are queried based on increas-
ingly confident assessments of their informativeness,
the training set quickly diverges from the underlying
data distribution. It consists of an unusual subset of
points, hardly a representative subsample; why should
a classifier trained on these strange points do well on
the overall distribution? In section 2, we make this in-
tuition concrete, and show how ill-managed sampling
bias causes many active learning heuristics to not be
consistent: even with infinitely many labels, they fail
to converge to a good hypothesis.

The two faces of active learning. The recent liter-
ature offers two distinct narratives for explaining when
active learning is helpful. The first has to do with effi-
cient search through the hypothesis space. Each time a
new label is seen, the set of plausible classifiers (those
roughly consistent with the labels seen so far) shrinks
somewhat. Using active learning, one can explicitly
select points whose labels will shrink this set as fast
as possible. Most theoretical work in active learning
attempts to formalize this intuition.

The second argument for active learning has to do with
exploiting cluster structure in data. Suppose, for in-
stance, that the unlabeled points form five nice clus-
ters; with luck, these clusters will be “pure” and only
five labels will be necessary! Of course, this is hope-
lessly optimistic. In general, there may be no nice clus-
ters, or there may be viable clusterings at many differ-
ent resolutions. The clusters themselves may only be
mostly-pure, or they may not be aligned with labels
at all. In this paper, we present a scheme for cluster-
based active learning that is statistically consistent
and never has worse label complexity than supervised
learning. In cases where there exists cluster structure
(at whatever resolution) that is loosely aligned with
class labels, the scheme detects and exploits it.

Our model. We start with a hierarchical clustering
of the unlabeled points. This should be constructed
so that some pruning of it is weakly informative of the
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class labels. We describe an active learning strategy
with good statistical properties, that will discover and
exploit any informative pruning of the cluster tree. For
instance, suppose it is possible to prune the cluster tree
to m leaves (m unknown) that are fairly pure in the
labels of their constituent points. Then, after querying
just O(m) labels, our learner will have a fairly accurate
estimate of the labels of the entire data set. These can
then be used as is, or as input to a supervised learner.
Thus, our scheme can be used in conjunction with any
hypothesis class, no matter how complex.

2. Active Learning and Sampling Bias

Many active learning heuristics start by choosing a
few unlabeled points at random and querying their
labels. They then repeatedly do something like this:
fit a classifier h ∈ H to the labels seen so far; and
query the label of the unlabeled point closest to the
decision boundary of h (or the one on which h is most
uncertain, or something similar). Such schemes make
intuitive sense, but do not correctly manage the bias
introduced by adaptive sampling. Consider this 1-d
example:
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Here the data lie in four groups on the line, and are
(say) distributed uniformly within each group. Filled
blocks have a + label, while clear blocks have a − la-
bel. Most of the data lies in the two extremal groups,
so an initial random sample has a good chance of com-
ing entirely from these. Suppose the hypothesis class
consists of thresholds on the line: H = {hw : w ∈ R}
where hw(x) = 1(x ≥ w). Then the initial bound-
ary will lie somewhere in the center group, and the
first query point will lie in this group. So will every
subsequent query point, forever. As active learning
proceeds, the algorithm will gradually converge to the
classifier shown as w. But this has 5% error, whereas
classifier w∗ has only 2.5% error. Thus the learner
is not consistent: even with infinitely many labels, it
returns a suboptimal classifier.

The problem is that the second group from the left gets
overlooked. It is not part of the initial random sample,
and later on, the learner is mistakenly confident that
the entire group has a − label. And this is just in
one dimension; in high dimension, the problem can
be expected to be worse, since there are more places
for this troublesome group to be hiding out. For a
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Figure 1. The top few nodes of a hierarchical clustering.

discussion of this problem in text classification, see
the recent paper of Schutze et al. (2006).

Sampling bias is the most fundamental challenge posed
by active learning. This paper presents a broad frame-
work for managing this bias that is provably sound.

3. A Clustering-Based Framework for

Guiding Sampling

Our active learner starts with a hierarchical clustering
of the data. Figure 1 shows how this might look for
the example of the previous section.

Here only the top few nodes of the hierarchy are shown;
their numbering is immaterial. At any given time, the
learner works with a particular partition of the data
set, given by a pruning of the tree. Initially, this is
just {1}, a single cluster containing everything. Ran-
dom points are drawn from this cluster and their la-
bels are queried. Suppose one of these points, x, lies
in the rightmost group. Then it is a random sample
from node 1, but also from nodes 3 and 9. Based on
these random samples, each node of the tree maintains
statistics about the relative numbers of positive and
negative instances seen. A few samples reveal that the
top node 1 is very mixed while nodes 2 and 3 are sub-
stantially more pure. Once this transpires, the parti-
tion {1} will be replaced by {2, 3}. Subsequent random
samples will be chosen from either 2 or 3, according
to a sampling strategy favoring the less-pure node. A
few more queries down the line, the pruning will likely
be refined to {2, 4, 9}. This is when the benefits of the
partitioning scheme become most obvious; based on
the samples seen, it can be concluded that cluster 9 is
(almost) pure, and thus (almost) no more queries will
be made from it until the rest of the space has been
partitioned into regions that are similarly pure.

The querying can be stopped at any stage; then, each
cluster in the current partition gets assigned the ma-
jority label of the points queried from it. In this way,
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the entire data set gets labeled, and the number of
erroneous labels induced is kept to a minimum. If de-
sired, these labels can be used for a subsequent round
of supervised learning, with any learning algorithm
and any hypothesis class.

3.1. Preliminary Definitions

The cost of a pruning. Say there are n unlabeled
points, and we have a hierarchical clustering repre-
sented by a binary tree T with n leaves. For any node
v of the tree, denote by Tv both the subtree rooted at
v and also the data points contained in this subtree
(at its leaves). A pruning of the tree is a subset of
nodes {v1, . . . , vm} such that the Tvi

are disjoint and
together cover all the data. At any given stage, the
active learner will work with a partition of the data
set given by a pruning of T . In the analysis, we will
also deal with a partial pruning : a subset of a pruning.

A weight of a node v ∈ T is the proportion of the data
set in Tv: wv = (number of leaves of Tv)/n. Likewise,
the weight of a partial pruning is the fraction of the
data set that it covers, w(P ) =

∑
v∈P wv. A full prun-

ing has weight 1.

Suppose there are k possible labels, and that their pro-
portions in Tv are pv,l for l = 1, . . . , k. Then the error
introduced by assigning all points in Tv their majority
label is ǫv = 1 − maxl pv,l. Consequently, the error
induced by a particular pruning (or partial pruning)
P—that is, the fraction of incorrect labels when each
cluster of P is assigned its majority label—is

ǫ(P ) =
1

w(P )

∑

v∈P

wvǫv

In pruning the tree, it always helps to go as far down
as possible, provided we can accurately estimate the
majority labels in those nodes.

Empirical estimates for individual nodes. Due
of limited sampling, we will only have labels from some
of the nodes, and even for those, we may not be able
to correctly determine the majority label. If we as-
sign label l to all the points in Tv, the induced er-
ror is ǫv,l = 1 − pv,l. Likewise, when each cluster
v of pruning (or partial pruning) P is assigned label
L(v) ∈ {1, 2, . . . , k}, the error induced is

ǫ(P,L) =
1

w(P )

∑

v∈P

wvǫv,L(v).

We will at any given time have only very imperfect
estimates of the pv,l’s and thus of these various er-
ror probabilities. Fix any node v, and suppose that at

Table 1. Key quantities in the algorithm and analysis. The
indexing (t) specifies the empirical quantity at time t.

dv depth of node v in tree
dP maximum depth of nodes in P

wv weight of node v

pv,l fraction of label l in node v

L∗(v) majority label of node v (that is, arg maxl pv,l)
nv(t) number of points sampled from node v

pv,l(t) fraction of label l in points sampled from Tv

A(t) admissible (node,label) pairs
ǫv,l(t) 1 − pv,l(t)
eǫv,l(t) ǫv,l(t) if (v, l) ∈ A(t); otherwise 1

time t, we have queried nv(t) random points contained
in that node. This gives us estimates of its class prob-
abilities, pv,l(t). Correspondingly, our estimate of ǫv,l

will be ǫv,l(t) = 1− pv,l(t).

The quality of these estimates can be assessed us-
ing generalization bounds. At any given time t, we
can associate with each node v and label l a con-
fidence interval [pLB

v,l , p
UB
v,l ] within which we expect

the true probability pv,l to lie. One possibility is to
use [max(pv,l(t)−∆v,l(t), 0),min(pv,l(t)+∆v,l, 1)], for

∆v,l(t) ≈
1

nv(t) +
√

pv,l(t)(1−pv,l(t))
nv(t) . In Lemma 1, we

will give a precise value for ∆v,l(t) for which we are
able to assert that (with high probability) every pv,l is
always within this interval. However, there are other
ways of constructing confidence intervals as well. The
most accurate is simply to use the binomial (or hyper-
geometric) distribution directly.

When are we confident about the majority label

of a subtree? As mentioned above, it is advantageous
to descend as far as possible in the tree, provided we
are confident about our estimate of the majority label.
To this end, define

Av,l(t) = true ⇔ (1−pLB
v,l (t)) < β·min

l′ 6=l
(1−pUB

v,l′(t)).

(1)
Av,l asserts that l is an admissible label for node v,
in the weak sense that it incurs at most β times as
much error as any other label. To see this, notice that
label l gets at most 1 − pLB

v,l (t) fraction of the points

wrong, whereas l′ gets at least 1 − pUB
v,l′(t) fraction of

the points wrong. In our experiments, we use β = 2,
in which case

Av,l(t) = true ⇔ pLB
v,l (t) > 2pUB

v,l′(t)− 1 ∀l′ 6= l.

For any given v, t, several different labels l might sat-
isfy this criterion, for instance if pLB

v,l (t) = pUB
v,l (t) =

1/k for all labels l. When there are only two possible
labels, the criterion further simplifies to pLB

v,l (t) > 1/3.
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We will maintain a set of (v, l) pairs for which the
condition Av,l(t) is either true or was true sometime
in the past:

A(t) = {(v, l) : Av,l(t
′) for some t′ ≤ t}.

A(t) is the set of admissible (v, l) pairs at time t. We
use it to stop ourselves from descending too far down
tree T when only a few samples have been drawn.
Specifically, we say pruning P and labeling L are ad-
missible in tree T at time t if:

• L(v) is defined for P and ancestors of P in T .

• (v, L(v)) ∈ A(t) for any node v that is a strict
ancestor of P in T .

• For any node v ∈ P , there are two options:

– either (v, L(v)) ∈ A(t);

– or there is no l for which (v, l) ∈ A(t). In this
case, if v has parent u, then (u,L(v)) ∈ A(t).

This final condition implies that if a node in P is not
admissible (with any label), then it is forced to take
on an admissible label of its parent.

Empirical estimate of the error of a pruning.

For any node v, the empirical estimate of the er-
ror induced when all of subtree Tv is labeled l is
ǫv,l(t) = 1 − pv,l(t). This extends to a pruning (or
partial pruning) P and a labeling L:

ǫ(P,L, t) =
1

w(P )

∑

v∈P

wvǫv,L(v)(t).

This can be a bad estimate when some of the nodes
in P have been inadequately sampled. Thus we use a
more conservative adjusted estimate:

ǫ̃v,l(t) =

{
1− pv,l(t) if (v, l) ∈ A(t)

1 if (v, l) 6∈ A(t)

with ǫ̃(P,L, t) = (1/w(P ))
∑

v∈P wv ǫ̃v,L(v)(t). The
various definitions are summarized in Table 1.

Picking a good pruning. It will be convenient to
talk about prunings not just of the entire tree T but
also of subtrees Tv. To this end, define the score of v at
time t—denoted s(v, t)—to be the adjusted empirical
error of the best admissible pruning and labeling (P,L)
of Tv. More precisely, s(v, t) is

min{ǫ̃(P,L, t) : (P,L) admissible in Tv at time t}.

Written recursively, s(v, t) is the minimum of

• ǫ̃v,l(t), for all l;

Algorithm 1 Cluster-adaptive active learning

Input: Hierarchical clustering of n unlabeled
points; batch size B
P ← {root} (current pruning of tree)
L(root)← 1 (arbitrary starting label for root)
for time t = 1, 2, . . . until the budget runs out do

for i = 1 to B do

v ← select(P )
Pick a random point z from subtree Tv

Query z’s label l
Update empirical counts and probabilities
(nu(t), pu,l(t)) for all nodes u on path from z
to v

end for

In a bottom-up pass of T , update A and compute
scores s(u, t) for all nodes u ∈ T (see text)
for each (selected) v ∈ P do

Let (P ′, L′) be the pruning and labeling of Tv

achieving scores s(v, t)
P ← (P \ {v}) ∪ P ′

L(v)← L′(u) for all u ∈ P ′

end for

end for

for each cluster v ∈ P do

Assign each point in Tv the label L(v)
end for

• wa

wv
s(a, t) + wb

wv
s(b, t), whenever v has children a, b

and (v, l) ∈ A(t) for some l.

Starting from the empirical estimates pv,l(t), p
LB
v,l , p

UB
v,l ,

it is possible to update the set A(t) and to compute
all the ǫ̃v,l(t) and s(v, t) values in a single linear-time,
bottom-up pass through the tree.

3.2. The Algorithm

Algorithm 1 contains the active learning strategy. It
remains to specify the the manner in which the hier-
archical clustering is built and the procedure select.
Regardless of how these decisions are made, the al-
gorithm is statistically sound in that the confidence
intervals pv,l±∆v,l(t) are valid, and these in turn vali-
date the guarantees for admissible prunings/labelings.
This leaves a lot of flexibility to explore different clus-
tering and sampling strategies.

The select procedure. This controls the selective
sampling. Some options:

(1) Choose v ∈ P with probability ∝ wv. This is
similar to random sampling.

(2) Choose v with probability ∝ wv(1 − pUB
v,L(v)(t)).

This is an active learning rule that reduces sampling
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in regions of the space that have already been observed
to be fairly pure in their labels.

(3) For each subtree (Tz, z ∈ P ), find the observed
majority label, and assign this label to all points in
the subtree; fit a classifier h to this data; and choose
v ∈ P with probability ∝ min{|{x ∈ Tv : h(x) =
+1}|, |{x ∈ Tv : h(x) = −1}|}. This biases sampling
towards regions close to the current decision boundary.

Building a hierarchical clustering. The scheme
works best when there is a pruning P of the tree such
that |P | is small and a significant fraction of its con-
stituent clusters are almost-pure. One option is to
run a standard hierarchical clustering algorithm, like
average linkage, perhaps with a domain-specific dis-
tance function (or one generated from a neighborhood
graph). Another option is to use a bit of labeled data
to guide the construction of the hierarchy.

3.3. Naive Sampling

First consider the naive sampling strategy in which
a node v ∈ P is selected in proportion to its weight
wv. We’ll show that if there is an almost-pure pruning
with m nodes, then only O(m) labels are needed before
the entire data is labeled almost-perfectly. Proofs are
deferred to the full version of the paper.

Theorem 1 Pick any δ, η > 0 and any pruning Q
with ǫ(Q) ≤ η. With probability at least 1 − δ, the
learner induces a labeling (of the data set) with error
≤ (β + 1)ǫ(Q) + η when the number of labels seen is

Bt = O

(
β + 1

β − 1
·
|Q|

η
log

2dQkB|Q|

ηδ

)
.

Recall that β is used in the definition of an admissible
label (equation (1)); we use β = 2 in our experiments.

The number of prunings with m nodes is about 4m;
and these correspond to roughly (4k)m possible clas-
sifications (each of the m clusters can take on one of
k labels). Thus this result is what one would expect
if one of these classifiers were chosen by supervised
learning. In our scheme, we do not evaluate such clas-
sifiers directly, but instead evaluate the subregions of
which they are composed. We start our analysis with
confidence intervals for pv,l and nv.

Lemma 1 Pick any δ > 0. With probability at least
1− δ, the following holds for all nodes v ∈ T , all labels
l, and all times t.

(a) |pv,l − pv,l(t)| ≤ ∆v,l ≤ ∆v,l(t), where

∆v,l =
2

3nv(t)
log

1

δ′
+

√
2pv,l(1− pv,l)

nv(t)
log

1

δ′
.

∆v,l(t) =
5

nv(t)
log

1

δ′
+

√
9pv,l(t)(1− pv,l(t))

2nv(t)
log

1

δ′
.

for δ′ = δ/(kBt2d2
v).

(b) nv(t) ≥ Btwv/2 if Btwv ≥ 8 log(t222dv/δ).

Our empirical assessment of the quality of a pruning
P is a blend of sampling estimates pv,l(t) and perfectly
known values wv. Next, we examine the rate of con-
vergence of ǫ(P,L, t) to the true value ǫ(P,L).

Lemma 2 Assume the bounds of Lemma 1 hold.
There is a constant c such that for all prunings (or
partial prunings) P ⊂ T , all labelings L, and all t,

w(P ) · |ǫ(P,L, t)− ǫ(P,L)| ≤ c ·
(
|P |

Bt
log

kBt22dP

δ
+

√
w(P )ǫ(P,L)

|P |

Bt
log

kBt22dP

δ

)
.

Lemma 2 gives useful bounds on ǫ(P,L, t). Our algo-
rithm uses the more conservative estimate ǫ̃(P,L, t),
which is identical to ǫ(P,L, t) except that it automati-
cally assigns an error of 1 to any (v, L(v)) 6∈ A(t), that
is to say, any (node, label) pair for which insufficiently
many samples have been seen. We need to argue that
for nodes v of reasonable weight, and their majority
labels L∗(v), we will have (v, L∗(v)) ∈ A(t).

Lemma 3 There is a constant c′ such that (v, l) ∈
A(t) for any node v with majority label l and

wv ≥ max

(
8

Bt
log

t222dv

δ
,

β + 1

β − 1
·

c′

Bt
log

kBt2d2
v

δ

)
.

The purpose of the set A(t) is to stop the algorithm
from descending too far in the tree. We now quantify
this. Suppose there is a good pruning that contains a
node q whose majority label is L∗(q). However, our al-
gorithm descends far below q, to some pruning P (and
associated labeling L) of Tq. By the definition of ad-
missible pruning, this can only happen if (q, L(q)) lies
in A(t). Under such circumstances, it can be proved
that (P,L) is not too much worse than (q, L∗(q)).

Lemma 4 For any node q, let (P,L) be the admissible
pruning and labeling of Tq found by our algorithm at
time t. If (q, L(q)) ∈ A(t), then ǫ(P,L) ≤ (β + 1)ǫq.
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Proof sketch of Theorem 1. Let Q, t be as in the theo-
rem statement, and let L∗ denote the optimal labeling
(by majority label) of each node. Define V to be the
set of all nodes v with weight exceeding the bound in
Lemma 3. As a result, (v, L∗(v)) ∈ A(t) for all v ∈ V .

Suppose that at time t, the learning scheme is using
some pruning P with labeling L. We will decompose
P and Q into three groups of nodes each: (i) Pa ⊂ P
are strict ancestors of Qa ⊂ Q; (ii) Pd ⊂ P are strict
descendants of Qd ⊂ Q; and (iii) the remaining nodes
are common to P and Q.

Since nodes of Pa were never expanded to Qa, we
can show w(Pa)ǫ(Pa, L) ≤ w(Pa)ǫ(Qa, L∗) + 2η/3 +
w(Qa \ V ). Meanwhile, from Lemma 4 we have
w(Pd)ǫ(Pd, L) ≤ (β + 1)w(Qd)ǫ(Qd, L

∗) + w(Qd \ V ).
Putting it all together, we get ǫ(P,L) − ǫ(Q,L∗) ≤
η + (β + 1)ǫ(Q), under the conditions on t.

3.4. Active Sampling

Suppose our current pruning and labeling are (P,L).
So far we have only discussed the naive strategy of
choosing query nodes u ∈ P with probability propor-
tional to wu. For active learning, a more intelligent
and adaptive strategy is needed. A natural choice is
to pick u with probability proportional to wuǫUB

u,L(u)(t),

where ǫUB
u,l = 1−pLB

u,l (t) is an upper bound on the error
associated with node u. This takes advantage of large,
pure clusters: as soon as their purity becomes evident,
querying is directed elsewhere.

Fallback analysis. Can the adaptive strategy per-
form worse than naive random sampling? There is one
problematic case. Suppose there are only two labels,
and that the current pruning P consists of two nodes
(clusters), each with 50% probability mass; however,
cluster A has impurity (minority label probability) 5%
while B has impurity 50%. Under our adaptive strat-
egy, we will query 10 times more from B than from
A. But suppose B cannot be improved: any attempts
to further refine it lead to subclusters which are also
50% impure. Meanwhile, it might be possible to get
the error in A down to zero by splitting it further. In
this case, random sampling, which weighs A equally
to B, does better than the active learning scheme.

Such cases can only occur if the best pruning has high
impurity, and thus active learning still yields a pruning
that is not much worse than optimal. To see this, pick
any good pruning Q (with optimal labeling L∗), and
let’s see how adaptive sampling fares with respect to
Q. Suppose our scheme is currently working with a
pruning P and labeling L. Divide P into two regions:
P0 = {p ∈ P : p ∈ Tv for some v ∈ Q} and P1 = P \

P0. The danger is that we will sample too much from
P0, where no further improvement is needed (relative
to Q), and not enough from P1. But it can be shown
that either the active strategy samples from P1 at least
half as often as the random strategy would, or the
current pruning is already pretty good, in that

ǫ(P,L) ≤ 2ǫ(Q,L∗)+terms involving sampling error.

Benefits of active learning. Active sampling is sure
to help when the hierarchical clustering has some large,
fairly-pure clusters near the top of the tree. These
will be quickly identified, and very few queries will
subsequently be made in those regions. Consider an
idealized example in which there are only two possi-
ble labels and each node in the tree is either pure or
(1/3, 2/3)-impure. Specifically: (i) each node has two
children, with equal probability mass; and (ii) each
impure node has a pure child and an impure child.
In this case, active sampling can be seen to yield a
convergence rate 1/n2 in contrast to the 1/n rate of
random sampling.

The example is set up so that the selected pruning
P (with labeling L) always consists of pure nodes
{a1, a2, . . . , ad} (at depths 1, 2, . . . , d) and a single im-
pure node b (at depth d). These nodes have weights
wai

= 2−i, i = 1, . . . , d, and wb = 2−d; the im-
pure node causes the error of the best pruning to be
ε = 2−d/3. The goal, then, is to sample enough from
node b to cut this error in half (say, because the target
error is ε/2). This can be achieved with a constant
number of queries from node b, since this is enough to
render the majority label of its pure child admissible
and thus offer a superior pruning.

If we were to completely ignore the pure nodes, then
the next several queries could all be made in node b;
we thus halve the error with only a constant number
of queries. Continuing this way leads to an exponen-
tial improvement in convergence rate. Such a policy of
neglect is fine in our present example, but this would
be imprudent in general: after all, the nodes we ignore
may actually turn out impure, and only further sam-
pling would reveal them as such. We instead select a
node u with probability proportional to wuǫUB

u,L(u)(t),
and thus still select a pure node ai with probability
roughly proportional to wai

/nai
(t). This allows for

some cautionary exploration while still affording an
improved convergence rate.

The chance of selecting the impure node b is

wbǫ
UB
b,L(b)

wbǫUB
b,L(b) +

∑d

i=1 wai
ǫUB
ai,L(ai)

≥ Ω


 ε

ε + d
P

d
i=1

nai
(t)


 .
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The inequality follows (with high probability) because
the error bound for b is always at least the true error ε
(up to constants), while another argument shows that

d∑

i=1

wai
ǫUB
ai,L(ai)

= O

(
d∑

i=1

wai

nai
(t)

)
= O

(
d

∑d

i=1 nai
(t)

)
.

We need to argue that the pure nodes do not get
queried too much. Well, if they have been queried
at least

√
d/ε = O(

√
(1/ε) log 1/ε) times, the chance

of selecting b is Ω(
√

ε/d); another O(
√

d/ε) queries
with active sampling suffice to land a constant num-
ber in node b—just enough to cut the error in
half. Overall, the number of queries needed is then
O(
√

(1/ε) log(1/ε)), considerably less than the O(1/ε)
required of random sampling.

4. Experiments

How many label queries can we save by exploiting
cluster structure with active learning? Our analysis
suggests that the savings is tied to how well the clus-
ter structure aligns with the actual labels. To evaluate
how accommodating real world data is in this sense,
we studied the performance of our active learner on
several natural classification tasks.

4.1. Classification Tasks

When used for classification, our active learning frame-
work decomposes into three parts: (1) unsupervised hi-
erarchical clustering of the unlabeled data, (2) cluster-
adaptive sampling (Algorithm 1, with the second vari-
ant of select), and (3) supervised learning on the re-
sulting fully labeled data. We used standard statistical
procedures, Ward’s average linkage clustering and lo-
gistic regression, for the unsupervised and supervised
components, respectively, in order to assess just the
role of the cluster-adaptive sampling method.

We compared the performance of our active learner
to two baseline active learning methods, random sam-
pling and margin-based sampling, that only train a
classifier on the subset of queried labeled data. Ran-
dom sampling chooses points to label at random, and
margin-based sampling chooses to label the points
closest to the decision boundary of the current classi-
fier (as described in Section 2). Again, we used logistic
regression with both of these methods.

A few details: We ran each active learning method 10
times for each classification task, allowing the budget
of labels to grow in small increments. For each bud-
get size, we evaluated the resulting classifier on a test
set, computed its misclassification error, and averaged
this error over the repeated trials. Finally, we used
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Figure 2. Results on OCR digits. Left: Errors of the best
prunings in the OCR digits tree. Right: Test error curves
on classification task.

ℓ2-regularization with logistic regression, choosing the
trade-off parameter with 10-fold cross validation.

OCR digit images. We first considered multi-class
classification of the MNIST handwritten digit images.1

We used 10000 training images and 2000 test images.

The tree produced by Ward’s hierarchical cluster-
ing method was especially accommodating for cluster-
adaptive sampling. Figure 2 (left) depicts this quanti-
tatively; it shows the error of the best k-pruning of the
tree for several values of k. For example, the tree had a
pruning of 50 nodes with about 12% error. Our active
learner found such a pruning using just 400 labels.

Figure 2 (right) plots the test errors of the three active
learning methods on the multi-class classification task.
Margin-based sampling and cluster-adaptive sampling
both outperformed random sampling, with margin-
based sampling taking over a little after 2000 label
queries. The initial advantage of cluster-adaptive sam-
pling reflects its ability to discover and subsequently
ignore relatively pure clusters at the onset of sampling.
Later on, it is left sampling from clusters of easily con-
fused digits (e.g. 3’s, 5’s, and 8’s).

The test error of the margin-based method appeared
to actually dip below the test error of classifier trained
using all of the training data (with the correct labels).
This appears to be a case of fortunate sampling bias.
In contrast, cluster-adaptive sampling avoids this issue
by concentrating on converging to the same result as
if it had all of the correct training labels.

Newsgroup text. We also considered four pairwise
binary classification tasks with the 20 Newsgroups
data set. Following Schohn and Cohn (2000), we chose
four pairs of newsgroups that varied in difficulty. We
used a version of the data set that removes duplicates
and some newsgroup-identifying headers, but other-

1http://yann.lecun.com/exdb/mnist/
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Figure 3. Results on newsgroup text. Top: Errors of the
best prunings in various trees for atheism/religion pair.
Bottom: Test error curves on newsgroup tasks.

wise represents each document as a simple word count
vector.2 Each newsgroup had about 1000 documents,
and the data for each pair were partitioned into train-
ing and test sets at a 2:1 ratio. We length-normalized
the count vectors before training the logistic regression
models in order to speed up the training and improve
classification performance.

The initial word count representation of the newsgroup
documents yielded poor quality clusterings, so we tried
various techniques for preprocessing text data before
clustering with Ward’s method: (1) normalize each
document vector to unit length; (2) apply TF/IDF and
length normalization to each document vector; and (3)
infer a posterior topic mixture for each document us-
ing a Latent Dirichlet Allocation model trained on the
same data (Blei et al., 2003). For the last technique,
we used Kullback-Leibler divergence as the notion of
distance between the topic mixture representations.
Figure 3 (top) plots the errors of the best prunings.
Indeed, the various changes-of-representation and spe-
cialized notions of distance help build clusterings of
greater utility for cluster-adaptive active learning.

In all four pairwise tasks, both margin-based sampling
and cluster-adaptive sampling outperformed random
sampling. Figure 3 (bottom) shows the test errors
on two of these newsgroup pairs. We observed the
same effects regarding cluster-adaptive sampling and

2http://people.csail.mit.edu/jrennie/20Newsgroups/

margin-based sampling as in the OCR digits data.

4.2. Rare Category Detection

To demonstrate its versatility, we applied our cluster-
adaptive sampling method to a rare category detec-
tion task. We used the Statlog Shuttle data, a set of
43500 examples from seven different classes; the small-
est class comprises a mere 0.014% of the whole. To
discover at least one example from each class, ran-
dom sampling needed over 8000 queries (averaged over
several trials). In contrast, cluster-adaptive sampling
needed just 880 queries; it sensibly avoided sampling
much from clusters confidently identified as pure, and
instead focused on clusters with more potential.
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