
Grassmann Discriminant Analysis:
a Unifying View on Subspace-Based Learning

Jihun Hamm jhham@seas.upenn.edu
Daniel D. Lee ddlee@seas.upenn.edu

GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104 USA

Abstract

In this paper we propose a discriminant
learning framework for problems in which
data consist of linear subspaces instead of
vectors. By treating subspaces as basic el-
ements, we can make learning algorithms
adapt naturally to the problems with lin-
ear invariant structures. We propose a uni-
fying view on the subspace-based learning
method by formulating the problems on the
Grassmann manifold, which is the set of
fixed-dimensional linear subspaces of a Eu-
clidean space. Previous methods on the prob-
lem typically adopt an inconsistent strategy:
feature extraction is performed in the Eu-
clidean space while non-Euclidean distances
are used. In our approach, we treat each sub-
space as a point in the Grassmann space, and
perform feature extraction and classification
in the same space. We show feasibility of
the approach by using the Grassmann kernel
functions such as the Projection kernel and
the Binet-Cauchy kernel. Experiments with
real image databases show that the proposed
method performs well compared with state-
of-the-art algorithms.

1. Introduction

We often encounter learning problems in which the ba-
sic elements of the data are sets of vectors instead of
vectors. Suppose we want to recognize a person from
multiple pictures of the individual, taken from differ-
ent angles, under different illumination or at different
places. When comparing such sets of image vectors, we
are free to define the similarity between sets based on
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the similarity between image vectors (Shakhnarovich
et al., 2002; Kondor & Jebara, 2003; Zhou & Chel-
lappa, 2006).

In this paper, we specifically focus on those data that
can be modeled as a collection of linear subspaces. In
the example above, let’s assume that the set of images
of a single person is well approximated by a low di-
mensional subspace (Turk & Pentland, 1991), and the
whole data is the collection of such subspaces. The
benefits of using subspaces are two-fold: 1) compar-
ing two subspaces is cheaper than comparing two sets
directly when those sets are very large, and 2) it is
more robust to missing data since the subspace can
‘fill-in’ the missing pictures. However the advantages
come with the challenge of representing and handling
the subspaces appropriately.

We approach the subspace-based learning problems by
formulating the problems on the Grassmann manifold,
the set of fixed-dimensional linear subspaces of a Eu-
clidean space. With this unifying framework we can
make analytic comparisons of the various distances of
subspaces. In particular, we single out those distances
that are induced from the Grassmann kernels, which
are positive definite kernel functions on the Grassmann
space. The Grassmann kernels allow us to use the
usual kernel-based algorithms on this unconventional
space and to avoid ad hoc approaches to the problem.

We demonstrate the proposed framework by using the
Projection metric and the Binet-Cauchy metric and by
applying kernel Linear Discriminant Analysis to clas-
sification problems with real image databases.

1.1. Contributions of the Paper

Although the Projection metric and the Binet-Cauchy
metric were previously used (Chang et al., 2006; Wolf
& Shashua, 2003), their potential for subspace-based
learning has not been fully explored. In this work, we
provide an analytic exposition of the two metrics as
examples of the Grassmann kernels, and contrast the
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Figure 1. Principal angles and Grassmann distances. Let span(Yi) and span(Yj) be two subspaces in the Euclidean space
RD on the left. The distance between two subspaces span(Yi) and span(Yj) can be measured by the principal angles
θ = [θ1, ... , θm]′ using the usual innerproduct of vectors. In the Grassmann manifold viewpoint, the subspaces span(Yi)
and span(Yj) are considered as two points on the manifold G(m, D), whose Riemannian distance is related to the principal
angles by d(Yi, Yj) = ‖θ‖2. Various distances can be defined based on the principal angles.

two metrics with other metrics used in the literature.

Several subspace-based classification methods have
been previously proposed (Yamaguchi et al., 1998;
Sakano, 2000; Fukui & Yamaguchi, 2003; Kim et al.,
2007). However, these methods adopt an inconsistent
strategy: feature extraction is performed in the Eu-
clidean space when non-Euclidean distances are used.
This inconsistency can result in complications and
weak guarantees. In our approach, the feature ex-
traction and the distance measurement are integrated
around the Grassmann kernel, resulting in a simpler
and better-understood formulation.

The rest of the paper is organized as follows. In Sec. 2
and 3 we introduce the Grassmann manifolds and de-
rive various distances on the space. In Sec. 4 we
present a kernel view of the problem and emphasize the
advantages of using positive definite metrics. In Sec. 5
we propose the Grassmann Discriminant Analysis and
compare it with other subspace-based discrimination
methods. In Sec. 6 we test the proposed algorithm for
face recognition and object categorization tasks. We
conclude in Sec. 7 with a discussion.

2. Grassmann Manifold and Principal
Angles

In this section we briefly review the Grassmann man-
ifold and the principal angles.

Definition 1 The Grassmann manifold G(m,D) is
the set of m-dimensional linear subspaces of the RD.

The G(m,D) is a m(D−m)-dimensional compact Rie-
mannian manifold.1 An element of G(m,D) can be

1G(m, D) can be derived as a quotient space of orthog-
onal groups G(m, D) = O(D)/O(m) × O(D − m), where

represented by an orthonormal matrix Y of size D by
m such that Y ′Y = Im, where Im is the m by m iden-
tity matrix. For example, Y can be the m basis vectors
of a set of pictures in RD. However, the matrix rep-
resentation of a point in G(m,D) is not unique: two
matrices Y1 and Y2 are considered the same if and only
if span(Y1) = span(Y2), where span(Y ) denotes the
subspace spanned by the column vectors of Y . Equiva-
lently, span(Y1) = span(Y2) if and only if Y1R1 = Y2R2

for some R1, R2 ∈ O(m). With this understanding, we
will often use the notation Y when we actually mean
its equivalence class span(Y ), and use Y1 = Y2 when
we mean span(Y1) = span(Y2), for simplicity.

Formally, the Riemannian distance between two sub-
spaces is the length of the shortest geodesic connecting
the two points on the Grassmann manifold. However,
there is a more intuitive and computationally efficient
way of defining the distances using the principal angles
(Golub & Loan, 1996).

Definition 2 Let Y1 and Y2 be two orthonormal
matrices of size D by m. The principal an-
gles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2 between two subspaces
span(Y1) and span(Y2), are defined recursively by

cos θk = max
uk∈span(Y1)

max
vk∈span(Y2)

uk
′vk, subject to

uk
′uk = 1, vk

′vk = 1,

uk
′ui = 0, vk

′vi = 0, (i = 1, ..., k − 1).

In other words, the first principal angle θ1 is the small-
est angle between all pairs of unit vectors in the first
and the second subspaces. The rest of the principal

O(m) is the group of m by m orthonormal matrices. We
refer the readers to (Wong, 1967; Absil et al., 2004) for
details on the Riemannian geometry of the space.
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angles are similarly defined. It is known (Wong, 1967;
Edelman et al., 1999) that the principal angles are re-
lated to the geodesic distance by d2

G(Y1, Y2) =
∑

i θ2
i

(refer to Fig. 1.)

The principal angles can be computed from the Singu-
lar Value Decomposition (SVD) of Y ′

1Y2,

Y ′
1Y2 = U(cos Θ)V ′, (1)

where U = [u1 ... um], V = [v1 ... vm], and cos Θ
is the diagonal matrix cos Θ = diag(cos θ1 ... cos θm).
The cosines of the principal angles cos θ1, ... , cos θm

are also known as canonical correlations.

Although the definition can be extended to the cases
where Y1 and Y2 have different number of columns,
we will assume Y1 and Y2 have the same size D by m
throughout this paper. Also, we will occasionally use
G instead of G(m,D) for simplicity.

3. Distances for Subspaces

In this paper we use the term distance as any assign-
ment of nonnegative values for each pair of points in
a space X . A valid metric is, however, a distance that
satisfies the additional axioms:

Definition 3 A real-valued function d : X × X → R
is called a metric if

1. d(x1, x2) ≥ 0,

2. d(x1, x2) = 0 if and only if x1 = x2,

3. d(x1, x2) = d(x2, x1),

4. d(x1, x2) + d(x2, x3) ≤ d(x1, x3),

for all x1, x2, x3 ∈ X .

A distance (or a metric) between subspaces d(Y1, Y2)
has to be invariant under different representations
d(Y1, Y2) = d(Y1R1, Y2R2), ∀R1, R2 ∈ O(m).

In this section we introduce various distances for sub-
spaces derivable from the principal angles.

3.1. Projection Metric and Binet-Cauchy
Metric

We first underline two main distances of this paper.

1. Projection metric

dP (Y1, Y2) =

(
m∑

i=1

sin2 θi

)1/2

=

(
m−

m∑
i=1

cos2 θi

)1/2

.

(2)

The Projection metric is the 2-norm of the sine
of principal angles (Edelman et al., 1999; Wang
et al., 2006).

2. Binet-Cauchy metric

dBC(Y1, Y2) =

(
1−

∏
i

cos2 θi

)1/2

. (3)

The Binet-Cauchy metric is defined with the
product of canonical correlations (Wolf &
Shashua, 2003; Vishwanathan & Smola, 2004).

As the names hint, these two distances are in fact valid
metrics satisfying Def. 3. The proofs are deferred until
Sec. 4.

3.2. Other Distances in the Literature

We describe a few other distances used in the liter-
ature. The principal angles are the keys that relate
these distances.

1. Max Correlation

dMax(Y1, Y2) =
(
1− cos2 θ1

)1/2
= sin θ1. (4)

The max correlation is a distance based on only
the largest canonical correlation cos θ1 (or the
smallest principal angle θ1). This max correla-
tion was used in previous works (Yamaguchi et al.,
1998; Sakano, 2000; Fukui & Yamaguchi, 2003).

2. Min Correlation

dMin(Y1, Y2) =
(
1− cos2 θm

)1/2
= sin θm. (5)

The min correlation is defined similarly to the
max correlation. However, the min correlation
is more closely related to the Projection metric:
we can rewrite the Projection metric as dP =
2−1/2 ‖Y1Y

′
1 − Y2Y

′
2‖F and the min correlation

as dMin = ‖Y1Y
′
1 − Y2Y

′
2‖2.

3. Procrustes metric

dCF (Y1, Y2) = 2

(
m∑

i=1

sin2(θi/2)

)1/2

. (6)

The Procrustes metric is the minimum distance
between different representations of two subspaces
span(Y1) and span(Y2): (Chikuse, 2003)

dCF = min
R1,R2∈O(m)

‖Y1R1−Y2R2‖F = ‖Y1U−Y2V ‖F ,

where U and V are from (1). By definition,
the distance is invariant of the choice of the



Grassmann Discriminant Analysis

bases of span(Y1) and span(Y2). The Procrustes
metric is also called chordal distance (Edelman
et al., 1999). We can similarly define the mini-
mum distance using other matrix norms such as
dC2(Y1, Y2) = ‖Y1U − Y2V ‖2 = 2 sin(θm/2).

3.3. Which Distance to Use?

The choice of the best distance for a classification task
depends on a few factors. The first factor is the dis-
tribution of data. Since the distances are defined with
particular combinations of the principal angles, the
best distance depends highly on the probability dis-
tribution of the principal angles of the given data.
For example, dMax uses the smallest principal angle θ1

only, and may be robust when the data are noisy. On
the other hand, when all subspaces are sharply concen-
trated on one point, dMax will be close to zero for most
of the data. In this case, dMin may be more discrimi-
native. The Projection metric dP , which uses all the
principal angles, will show intermediate characteristics
between the two distances. Similar arguments can be
made for the Procrustes metrics dCF and dC2, which
use all angles and the largest angle only, respectively.

The second criterion for choosing the distance, is the
degree of structure in the distance. Without any struc-
ture a distance can be used only with a simple K-
Nearest Neighbor (K-NN) algorithm for classification.
When a distance have an extra structure such as tri-
angle inequality, for example, we can speed up the
nearest neighbor searches by estimating lower and up-
per limits of unknown distances (Faragó et al., 1993).
From this point of view, the max correlation is not a
metric and may not be used with more sophisticated
algorithms. On the other hand, the Min Correlation
and the Procrustes metrics are valid metrics2.

The most structured metrics are those which are in-
duced from a positive definite kernel. Among the met-
rics mentioned so far, only the Projection metric and
the Binet-Cauchy metric belong to this class. The
proof and the consequences of positive definiteness are
the main topics of the next section.

4. Kernel Functions for Subspaces

We have defined a valid metric on Grassmann mani-
folds. The next question is whether we can define a
kernel function compatible with the metric. For this
purpose let’s recall a few definitions. Let X be any

2The metric properties follow from the properties of
matrix 2-norm and F-norm. To check the conditions in
Def. 3 for Procrustes we use the equality minR1,R2 ‖Y1R1−
Y2R2‖2,F = minR3 ‖Y1 − Y2R3‖2,F for R1, R2, R3 ∈ O(m).

set, and k : X × X → R be a symmetric real-valued
function k(xi, xj) = k(xj , xi) for all xi, xj ∈ X .

Definition 4 A real symmetric function is a (resp.
conditionally) positive definite kernel function, if∑

i,j cicjk(xi, xj) ≥ 0, for all x1, ..., xn(xi ∈ X ) and
c1, ..., cn(ci ∈ R) for any n ∈ N. (resp. for all
c1, ..., cn(ci ∈ R) such that

∑n
i=1 ci = 0.)

In this paper we are interested in the kernel functions
on the Grassmann space.

Definition 5 A Grassmann kernel function is a pos-
itive definite kernel function on G.

In the following we show that the Projection metric
and the Binet-Cauchy are induced from the Grass-
mann kernels.

4.1. Projection Metric

The Projection metric can be understood by associ-
ating a point span(Y ) ∈ G with its projection matrix
Y Y ′ by an embedding:

ΨP : G(m,D) → RD×D, span(Y ) 7→ Y Y ′. (7)

The image ΨP (G(m,D)) is the set of rank-m or-
thogonal projection matrices. This map is in fact
an isometric embedding (Chikuse, 2003) and the
projection metric is simply a Euclidean distance in
RD×D. The corresponding innerproduct of the space
is tr [(Y1Y

′
1)(Y2Y

′
2)] = ‖Y ′

1Y2‖2F , and therefore

Proposition 1 The Projection kernel

kP (Y1, Y2) = ‖Y ′
1Y2‖2F (8)

is a Grassmann kernel.

Proof The kernel is well-defined because kP (Y1, Y2) =
kP (Y1R1, Y2R2) for any R1, R2 ∈ O(m). The positive
definiteness follows from the properties of the Frobe-
nius norm. For all Y1, ..., Yn(Yi ∈ G) and c1, ..., cn(ci ∈
R) for any n ∈ N, we have∑

ij

cicj‖Y ′
i Yj‖2F =

∑
ij

cicjtr(YiY
′
i YjY

′
j )

= tr(
∑

i

ciYiY
′
i )2 = ‖

∑
i

ciYiY
′
i ‖2F ≥ 0.

We can generate a family of kernels from the Projec-
tion kernel. For example, the square-root ‖Y ′

i Yj‖F is
also a positive definite kernel.
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4.2. Binet-Cauchy Metric

The Binet-Cauchy metric can also be understood from
an embedding. Let s be a subset of {1, ..., D} with
m elements s = {r1, ..., rm}, and Y (s) be the m × m
matrix whose rows are the r1, ... , rm-th rows of Y . If
s1, s2, ..., sn are all such choices of the subset s ordered
lexicographically, then the Binet-Cauchy embedding is
defined as

ΨBC : G(m,D) → Rn, Y 7→
(
det Y (s1), ...,det Y (sn)

)
,

(9)
where n = DCm is the number of choosing m rows out
of D rows. The natural innerproduct in this case is∑n

r=1 det Y
(si)
1 det Y

(si)
2 .

Proposition 2 The Binet-Cauchy kernel

kBC(Y1, Y2) = (det Y ′
1Y2)2 = detY ′

1Y2Y
′
2Y1 (10)

is a Grassmann kernel.

Proof First, the kernel is well-defined because
kBC(Y1, Y2) = kBC(Y1R1, Y2R2) for any R1, R2 ∈
O(m). To show that kBC is positive definite it suffices
to show that k(Y1, Y2) = detY ′

1Y2 is positive definite.
From the Binet-Cauchy identity, we have

det Y ′
1Y2 =

∑
s

det Y
(s)
1 det Y

(s)
2 .

Therefore, for all Y1, ..., Yn(Yi ∈ G) and c1, ..., cn(ci ∈
R) for any n ∈ N, we have∑
ij

cicj det Y ′
i Yj =

∑
ij

cicj

∑
s

det Y
(s)
i det Y

(s)
j

=
∑

s

(∑
i

ci det Y
(s)
i

)2

≥ 0.

We can also generate another family of kernels
from the Binet-Cauchy kernel. Note that although
det Y ′

1Y2 is a Grassmann kernel we prefer using
kBC(Y1, Y2) = det(Y ′

1Y2)2, since it is directly related
to principal angles det(Y ′

1Y2)2 =
∏

cos2 θi, whereas
det Y ′

1Y2 6=
∏

cos θi in general.3 Another variant
arcsin kBC(Y1, Y2) is also a positive definite kernel4

and its induced metric d = (arccos(detY ′
1Y2))

1/2 is
a conditionally positive definite metric.

4.3. Indefinite Kernels from Other Metrics

Since the Projection metric and the Binet-Cauchy
metric are derived from positive definite kernels, all

3det Y ′
1Y2 can be negative whereas

Q
cos θi, the product

of singular values, is nonnegative by definition.
4Theorem 4.18 and 4.19 (Schölkopf & Smola, 2001).

the kernel-based algorithms for Hilbert spaces are at
our disposal. In contrast, other metrics in the previ-
ous sections are not associated with any Grassmann
kernel. To show this we can use the following result
(Schoenberg, 1938; Hein et al., 2005):

Proposition 3 A metric d is induced from a positive
definite kernel if and only if

k̂(x1, x2) = −d2(x1, x2)/2, x1, x2 ∈ X (11)

is conditionally positive definite.

The proposition allows us to show a metric’s non-
positive definiteness by constructing an indefinite ker-
nel matrix from (11) as a counterexample.

There have been efforts to use indefinite kernels for
learning (Ong et al., 2004; Haasdonk, 2005), and sev-
eral heuristics have been proposed to make an in-
definite kernel matrix to a positive definite matrix
(Pekalska et al., 2002). However, we do not advocate
the use of the heuristics since they change the geome-
try of the original data.

5. Grassmann Discriminant Analysis

In this section we give an example of the Discriminant
Analysis on Grassmann space by using kernel LDA
with the Grassmann kernels.

5.1. Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) (Fukunaga,
1990), followed by a K-NN classifier, has been success-
fully used for classification.

Let {x1, ...,xN} be the data vectors and {y1, ..., yN}
be the class labels yi ∈ {1, ..., C}. Without loss of
generality we assume the data are ordered according
to the class labels: 1 = y1 ≤ y2 ≤ ... ≤ yN = C. Each
class c has Nc number of samples.

Let µc = 1/Nc

∑
{i|yi=c} xi be the mean of class c, and

µ = 1/N
∑

i xi be the overall mean. LDA searches
for the discriminant direction w which maximizes the
Rayleigh quotient L(w) = w′Sbw/w′Sww where Sb

and Sw are the between-class and within-class covari-
ance matrices respectively:

Sb =
1
N

C∑
c=1

Nc(µc − µ)(µc − µ)′

Sw =
1
N

C∑
c=1

∑
{i|yi=c}

(xi − µc)(xi − µc)′

The optimal w is obtained from the largest eigenvec-
tor of S−1

w Sb. Since S−1
w Sb has rank C − 1, there are
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C − 1-number of local optima W = {w1, ...,wC−1}.
By projecting data onto the space spanned by W , we
achieve dimensionality reduction and feature extrac-
tion of data onto the most discriminant subspace.

5.2. Kernel LDA with Grassmann Kernels

Kernel LDA can be formulated by using the kernel
trick as follows. Let φ : G → H be the feature map,
and Φ = [φ1...φN ] be the feature matrix of the train-
ing points. Assuming w is a linear combination of the
those feature vectors, w = Φα, we can rewrite the
Rayleigh quotient in terms of α as

L(α) =
α′Φ′SBΦα

α′Φ′SW Φα
=

α′K(V − 1N1′N/N)Kα

α′(K(IN − V )K + σ2IN )α
,

(12)
where K is the kernel matrix, 1N is a uniform vector
[1 ... 1]′ of length N , V is a block-diagonal matrix
whose c-th block is the uniform matrix 1Nc

1′Nc
/Nc,

and σ2IN is a regularizer for making the computation
stable. Similarly to LDA, the set of optimal α’s are
computed from the eigenvectors.

The procedures for using kernel LDA with the Grass-
mann kernels are summarized below:

Assume the D by m orthonormal bases {Yi} are
already computed from the SVD of sets in the data.

Training:

1. Compute the matrix [Ktrain]ij = kP (Yi, Yj) or
kBC(Yi, Yj) for all Yi, Yj in the training set.

2. Solve maxα L(α) by eigen-decomposition.

3. Compute the (C − 1)-dimensional coefficients
Ftrain = α′Ktrain.

Testing:

1. Compute the matrix [Ktest]ij = kP (Yi, Yj) or
kBC(Yi, Yj) for all Yi in training set and Yj in
the test set.

2. Compute the (C − 1)-dim coefficients Ftest =
α′Ktest.

3. Perform 1-NN classification from the Eu-
clidean distance between Ftrain and Ftest.

Another way of applying LDA to subspaces is to use
the Projection embedding ΨP (7) or the Binet-Cauchy
embedding ΨBC (9) directly. A subspace is repre-
sented by a D by D matrix in the former, or by a
vector of length n = DCm in the latter. However, us-
ing these embeddings to compute Sb or Sw is a waste

of computation and storage resources when D is large.

5.3. Other Subspace-Based Algorithms

5.3.1. Mutual Subspace Method (MSM)

The original MSM (Yamaguchi et al., 1998) performs
simple 1-NN classification with dMax with no feature
extraction. The method can be extended to any dis-
tance described in the paper. There are attempts to
use kernels for MSM (Sakano, 2000). However, the
kernel is used only to represent data in the original
space, and the algorithm is still a 1-NN classification.

5.3.2. Constrained MSM

Constrained MSM (Fukui & Yamaguchi, 2003) is a
technique that applies dimensionality reduction to
bases of the subspaces in the original space. Let
G =

∑
i YiY

′
i be the sum of the projection matrices

and {v1, ...,vD} be the eigenvectors corresponding to
the eigenvalues {λ1 ≤ ... ≤ λD} of G. The authors
claim that the first few eigenvectors v1, ...,vd of G are
more discriminative than the later eigenvectors, and
they suggest projecting the basis vectors of each sub-
space Y1 onto the span(v1, ...,vl), followed by normal-
ization and orthonormalization. However these proce-
dure lack justifications, as well as a clear criterion for
choosing the dimension d, on which the result crucially
depends from our experience.

5.3.3. Discriminant Analysis of Canonical
Correlations (DCC)

DCC (Kim et al., 2007) can be understood as a non-
parametric version of linear discrimination analysis us-
ing the Procrustes metric (6). The algorithm finds the
discriminating direction w which maximize the ratio
L(w) = w′SBw/w′Sww, where Sb and Sw are the
nonparametric between-class and within-class ‘covari-
ance’ matrices:

Sb =
∑

i

∑
j∈Bi

(YiU − YjV )(YiU − YjV )′

Sw =
∑

i

∑
j∈Wi

(YiU − YjV )(YiU − YjV )′,

where U and V are from (1). Recall that tr(YiU −
YjV )(YiU − YjV )′ = ‖YiU − YjV ‖2F is the squared
Procrustes metric. However, unlike our method, Sb

and Sw do not admit a geometric interpretation as
true covariance matrices, and cannot be kernelized ei-
ther. A main disadvantage of the DCC is that the
algorithm iterates the two stages of 1) maximizing the
ratio L(w) and of 2) computing Sb and Sw, which
results in computational overheads and more parame-
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ters to be determined. This reflects the complication
of treating the problem in a Euclidean space with a
non-Euclidean distance.

6. Experiments

In this section we test the Grassmann Discriminant
Analysis for 1) a face recognition task and 2) an object
categorization task with real image databases.

6.1. Algorithms

We use the following six methods for feature extraction
together with an 1-NN classifier.

1) GDA1 (with Projection kernel), 2) GDA2 (with
Binet-Cauchy kernel), 3) Min dist , 4) MSM, 5) cMSM,
and 6) DCC.

For GDA1 and GDA2, the optimal values of σ
are found by scanning through a range of val-
ues. The results do not seem to vary much as
long as σ is small enough. The Min dist is
a simple pairwise distance which is not subspace-
based. If Yi and Yj are two sets of basis vectors:
Yi = {yi1, ...,yimi} and Yj = {yj1, ...,yjmj}, then
dMindist(Yi, Yj) = mink,l ‖yik − yjl‖2. For cMSM and
DCC, the optimal dimension l is found by exhaus-
tive searching. For DCC, we have used two nearest-
neighbors for Bi and Wi in Sec. 5.3.3. Since the Sw

and Sb are likely to be rank deficient, we first reduced
the dimension of the data to N − C using PCA as
recommended. Each optimization is iterated 5 times.

6.2. Testing Illumination-Invariance with Yale
Face Database

The Yale face database and the Extended Yale face
database (Georghiades et al., 2001) together consist of
pictures of 38 subjects with 9 different poses and 45 dif-
ferent lighting conditions. Face regions were cropped
from the original pictures, resized to 24 × 21 pixels
(D = 504), and normalized to have the same variance.
For each subject and each pose, we model the illumi-
nation variations by a subspace of the size m = 1, ..., 5,
spanned by the 1 to 5 largest eigenvectors from SVD.
We evaluate the recognition rate of subjects with nine-
fold cross validation, holding out one pose of all sub-
jects from the training set and using it for test.

The recognition rates are shown in Fig. 2. The GDA1
outperforms the other methods consistently. The
GDA2 also performs well for small m, but performs
worse as m becomes large. The rates of the others
also seem to decrease as m increases. An interpreta-
tion of the observation is that the first few eigenvec-

tors from the data already have enough information
and the smaller eigenvectors are spurious for discrim-
inating the subjects.

6.3. Testing Pose-Invariance with ETH-80
Database

The ETH-80 (Leibe & Schiele, 2003) database con-
sists of pictures of 8 object categories (‘apple’, ‘pear’,
‘tomato’, ‘cow’, ‘dog’, ‘horse’, ‘cup’, ‘car’). Each cat-
egory has 10 objects that belong to the category, and
each object is recorded under 41 different poses. Im-
ages were resized to 32 × 32 pixels (D = 1024) and
normalized to have the same variance. For each cate-
gory and each object, we model the pose variations by
a subspace of the size m = 1, ..., 5, spanned by the 1
to 5 largest eigenvectors from SVD. We evaluate the
classification rate of the categories with ten-fold cross
validation, holding out one object instance of each cat-
egory from the training set and using it for test.

The recognition rates are also summarized in Fig. 2.
The GDA1 also outperforms the other methods most
of the time, but the cMSM performs better than GDA2
as m increases. The rates seem to peak around m =
4 and then decrease as m increases. This results is
consistent with the observation that the eigenvalues
from this database decrease more gradually than the
eigenvalues from the Yale face database.

7. Conclusion

In this paper we have proposed a Grassmann frame-
work for problem in which data consist of subspaces.
By using the Projection metric and the Binet-Cauchy
metric, which are derived from the Grassmann ker-
nels, we were able to apply kernel methods such as
kernel LDA to subspace data. In addition to having
theoretically sound grounds, the proposed method also
outperformed state-of-the-art methods in two experi-
ments with real data. As a future work, we are pur-
suing a better understanding of probabilistic distribu-
tions on the Grassmann manifold.
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