
Learning from Incomplete Data with Infinite Imputations

Uwe Dick dick@mpi-sb.mpg.de

Peter Haider haider@mpi-sb.mpg.de

Tobias Scheffer scheffer@mpi-sb.mpg.de

Max Planck Institute for Computer Science, Saarbrücken, Germany

Abstract

We address the problem of learning deci-
sion functions from training data in which
some attribute values are unobserved. This
problem can arise, for instance, when train-
ing data is aggregated from multiple sources,
and some sources record only a subset of at-
tributes. We derive a generic joint optimiza-
tion problem in which the distribution gov-
erning the missing values is a free parame-
ter. We show that the optimal solution con-
centrates the density mass on finitely many
imputations, and provide a corresponding al-
gorithm for learning from incomplete data.
We report on empirical results on benchmark
data, and on the email spam application that
motivates our work.

1. Introduction

In many applications, one has to deal with training
data with incompletely observed attributes. For in-
stance, training data may be aggregated from differ-
ent sources. If not all sources are capable of providing
the same set of input attributes, the combined train-
ing sample contains incompletely observed data. This
situation occurs in email spam detection, where it is
helpful to augment the content of an email with real-
time information about the sending server, such as its
blacklist status. This information is available for all
training emails that arrive at a mail server under one’s
own control, and it is also available at application time.
But if one wants to utilize training emails from public
archives, this information is missing.

We adress a learning setting in which values are miss-

ing at random: here, the presence or absence of values
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does not convey information about the class labels. If
this condition is not met, it is informative to consider
the presence or absence of values as additional input to
the decision function. Techniques for learning from in-
complete data typically involve a distributional model
that imputes missing values, and the desired final pre-
dictive model. Prior work on learning from incomplete
data is manifold in the literature, and may be grouped
by the way the distributional model is used.

The first group models the distribution of missing val-
ues in a first step, and learns the decision function
based on the distributional model in a second step.
Shivaswamy et al. (2006) formulate a loss function
that takes a fixed proportion of the probability mass
of each instance into account, with respect to the es-
timated distribution of missing values. They derive
second order cone programs which renders the method
applicable only to very small problems. Other exam-
ples include Williams and Carin (2005), Williams et al.
(2005), and Smola et al. (2005).

The second group estimates the parameters of a distri-
butional model and the final predictive model jointly.
As an example, recently Liao et al. (2007) propose
an EM-algorithm for jointly estimating the imputa-
tion model and a logistic regression classifier with lin-
ear kernel, assuming the data arises from a mixture of
multivariate Gaussians.

The third group makes no model assumption about the
missing values, but learns the decision function based
on the visible input alone. For example, Chechik et al.
(2007) derive a geometrically motivated approach. For
each example, the margin is re-scaled according to the
visible attributes. This procedure specifically aims at
learning from data with values that are structurally

missing—as opposed to missing at random. Chechik
et al. (2007) find empirically that the procedure is not
adequate when values are missing at random.

Jointly learning a distributional model and a kernel
predictive model relates to the problem of learning a
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kernel function from a prescribed set of parameterized
kernels. This problen drew a lot of attention recently;
see, for example, Argyriou et al. (2005) and Micchelli
and Pontil (2007).

Estimating the distributional model first and training
the predictive model in a second step leaves the user
free to choose any learning algorithm for this second
step. However, a harder problem has to be solved than
would be necessary. If one is only interested in a deci-
sion function that minimizes the desired loss, knowing
the values or distribution of the missing attributes in
the training set is not actually required. Furthermore,
errors made in the imputation step and errors made in
estimating the parameters of the predictive model can
add up in a sequential procedure.

Consequently, we investigate learning the decision
function and the distribution of imputations depen-
dently. Unlike prior work on this topic, we develop a
solution for a very general class of optimization crite-
ria. Our solution covers a wide range of loss functions
for classification and regression problems. It comes
with all the usual benefits of kernel methods. We de-
rive an optimization problem in which the distribution
governing the missing values is a free parameter. The
optimization problem searches for a decision function
and a distribution governing the missing values which
together minimize a regularized empirical risk.

No fixed parametric form of the distributional model
is assumed. A regularizer that can be motivated by a
distributional assumption may bias the distributional
model towards a prior belief. However, the regularizer
may be overruled by the data, and the resulting distri-
butional model may be different from any parametric
form. We are able to prove that there exists an opti-
mal solution based on a distribution that is supported
by finitely many imputations. This justifies a greedy
algorithm for finding a solution. We derive manifesta-
tions of the general learning method and study them
empirically.

The paper is structured as follows. After introducing
the problem setting in Section 2, we derive an opti-
mization problem in Section 3. Section 4 proves that
there is an optimal solution that concentrates the den-
sity mass on finitely many imputations and presents
an algorithm. Example instantiations of the general
solution are presented in Section 5. We empirically
evaluate the method in Section 6. Section 7 concludes.

2. Problem Setting

We address the problem of learning a decision func-
tion f from a training sample in which some attribute

values are unobserved.

Let X be a matrix of n training instances xi and let
y be the vector of corresponding target values yi. In-
stances and target values are drawn iid from an un-
known distribution p(x, y) with xi ∈ R

d and yi ∈ Y,
where Y denotes the set of possible target values. Ma-
trix Z indicates which features are observed. A value
of zil = 1 indicates that xil, the l-th feature of the i-th
example, is observed. Values are missing at random:

yi is conditionally independent of zi given xi.

The goal is to learn a function f : x 7→ y that pre-
dicts target values for completely observed examples.
The decision function should incur only a minimal true
risk R(f) =

∫

L(y, f(x))p(x, y)dxdy, where L is a loss
function for the task at hand.

As a means to minimizing the true risk, we seek a
function f in the reproducing kernel Hilbert space Hk

induced by a kernel k that minimizes a regularized
empirical risk functional R(f) =

∑n
i=1 l(yi, f(xi)) +

η‖f‖2k. We demand k to be a Mercer kernel. Loss
function l approximates the true loss L. The represen-

ter theorem allows us to write the minimizer as a sum
over functions in Hk centered at training instances:
f(x) =

∑n
j=1 cjk(xj ,x).

The learning problem from completely observed data
would amount to solving Optimization Problem 1.

Optimization Problem 1 (Primal learning prob-
lem, observed data). Over c, minimize

R(c, k)=
n
∑

i=1

l
(

yi,

n
∑

j=1

cjk(xj ,xi)
)

+η

n
∑

i,j=1

cicjk(xj ,xi)

We require that the loss function be defined in such
a way that Optimization Problem 1 can be written
in the dual form of Optimization Problem 2. A wide
range of loss functions satisfies this demand; we will
later see that this includes hinge loss and squared loss.

Optimization Problem 2 (Dual of learning
problem). Given a < 0, over c, maximize

a 〈c,Kc〉 −R∗(c)

subject to the constraints

∀
m∗

1
i=1g

∗
i (c) ≤ 0, ∀

m∗

2
j=1h

∗
j (c) = 0. (1)

R∗(c) denotes a differentiable convex function of the
dual variables c which we demand to be independent
of the kernel matrix K. The inequality constraints g∗i
are differentiable convex and the equality constraints
h∗

j differentiable affine. We like to note that the re-
quirement of independence between R∗ and K is not
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very restrictive in practice, as we will see in chapter
5. Furthermore, we demand strong duality to hold
between Optimization problems 1 and 2.

3. Learning from Incomplete Data in

One Step

If any instance xi has unobserved features, then
k(xi,x) and, consequently, the decision function f are
not properly defined. In order to learn from incom-
plete data, we will marginalize the decision function
and risk functional by the observable attributes and
integrate over all unobserved quantities. To this end,
we define ω ∈ ΩZ

X
⊂ R

n×d as a matrix of imputations
constrained by ωil = xil if zil = 1. We demand ΩZ

X
to

be compact for the rest of this paper. Let ωi denote
the i-th row of ω. Then we can define a family of ker-
nels K(ω)(xj ,xi) = k(ωj ,ωi). Any probability mea-
sure p(ω) on imputations induces a marginalization of
the kernel by the observable variables. Equation 2 in-
tegrates over all imputations of unobserved values; it
can be evaluated based on the observed values.

K(p)(xj ,xi) =

∫

ω∈ΩZ

X

k(ωj ,ωi)dp(ω) (2)

Any probability measure p(ω) constitutes an optimiza-
tion criterion R(c,K(p)). In the absence of knowledge
about the true distribution of missing values, p(ω) be-
comes a free parameter. Note that p(ω) is a continu-
ous probability measure that is not constrained to any
particular parametric form; the space of parameters is
therefore of infinite dimensionality.

It is natural to add a regularizer Q(p) that reflects
prior belief on the distribution of imputations p(ω) to
the optimization criterion, in addition to the empiri-
cal risk and regularizer on the predictive model. The
regularizer is assumed to be continuous in p. The reg-
ularizer does not constrain p(ω) to any specific class
of distribution, but it reflects that some distributions
are believed to be more likely. Without a regularizer,
the criterion can often be minimized by imputations
which move instances with missing values far away
from the separator, thereby removing their influence
on the outcome of the learning process. This leads to
Optimization Problem 3.

Optimization Problem 3 (Learning problem
with infinite imputations). Given n training ex-

amples with incomplete feature values, γ > 0, kernel

function k, over all c and p, minimize

R̃k,γ(c, p) = R(c,K(p)) + γQ(p) (3)

subject to the constraints

∀ω : p(ω) ≥ 0,
∫

ω∈ΩZ

X

p(ω)dω = 1.

Each solution to Optimization Problem 3 integrates
over infinitely many different imputations. The search
space contains all continuous probability measures on
imputations, the search is guided by the regularizer Q.
The regularization parameter γ determines the influ-
ence of the regularization on the resulting distribution.
For γ → ∞ the solution of the optimization reduces
to the solution obtained by first estimating the distri-
bution of missing attribute values that minimizes the
regularizer. For γ → 0 the solution is constituted by
the distribution minimizing the risk functional R.

4. Solving the Optimization Problem

In this section, we devise a method for efficiently find-
ing a solution to Optimization Problem 3. Firstly, we
show that there exists an optimal solution ĉ, p̂ with p̂

supported on at most n+2 imputations ω ∈ ΩZ

X
. Sec-

ondly, we present an algorithm that iteratively finds
the optimal imputations and parameters minimizing
the regularized empirical risk.

4.1. Optimal Solution with Finite Combination

In addition to the parameters c of the predictive mod-
els, continuous probability measure p(ω) contributes
an infinite set of parameters to Optimization Problem
3. The implementation of imputations as parameters
of a kernel family allows us to show that there exists
an optimal probability measure p̂ for Equation 3 such
that p̂ consists of finitely many different imputations.

Theorem 1. Optimization Problem 3 has an optimal

solution ĉ, p̂ in which p̂ is supported by at most n + 2
imputations ω ∈ ΩZ

X
.

Proof. The compactness of ΩZ

X
and the continuity of K

immediately imply that there exists some solution to
Optimization Problem 3. It remains to be shown that
at least one of the solutions is supported by at most
n + 2 imputations. Let c̄, p̄ be any solution and let all
requirements of the previous section hold. The idea
of this proof is to construct a correspondence between
distributions over imputations and vectors in R

n+1,
where a finite support set is known to exist. Define
S(ω) = K(ω)c̄ ∈ R

n and D = {(S(ω)⊤, Q(ω))⊤ : ω ∈
ΩZ

X
} ⊂ R

n+1. Since ΩZ

X
is compact and K(·) and Q(·)

are continuous by definition, D is compact as well. We
define a measure over D as µ(A×B) = p̄({ω : S(ω) ∈
A ∧Q(ω) ∈ B}).

Then, by Carathéodory’s convex hull theorem, there
exists a set of k vectors {(s⊤1 , q1)

⊤, . . . , (s⊤k , qk)⊤} ⊆ D

with k ≤ n + 2 and nonnegative constants νi with
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∑k
i=1 νi = 1, such that

∫

D

(s⊤, q)⊤dµ((s⊤, q)⊤) =
k
∑

i=1

(s⊤i , qi)
⊤νi.

For each i, select any ωi such that (S(ωi)
⊤, Q(ωi)) =

(s⊤i , qi). We construct p̂ by setting p̂(ω) =
∑k

i=1 νiδωi
,

where δωi
denotes the Dirac measure at ωi. The op-

timal ĉ results as arg minc R(c,K(p̂)). We have

∫

D

sdµ((s⊤, q)⊤) =

k
∑

i=1

siνi, and

∫

D

qdµ((s⊤, q)⊤) =

k
∑

i=1

qiνi.

Then

K(p̄)c̄ =

(

∫

ΩZ

X

K(ω)dp̄(ω)

)

c̄ =

∫

ΩZ

X

S(ω)dp̄(ω)

=

∫

D

S(ω)dµ
(

(S(ω)⊤, Q(ω))⊤
)

=

k
∑

i=1

siνi =

∫

ΩZ

X

S(ω)dp̂(ω)

=

∫

ΩZ

X

K(ω)dp̂(ω)c̄ = K(p̂)c̄.

Likewise,

Q (p̄) =

∫

D

Q (ω) dµ
(

(S(ω)⊤, Q(ω))⊤
)

=

k
∑

i=1

qiνi = Q(p̂).

Since Q(p) does not depend on c, c̄ =
arg minc R(c,K(p̄)), and by strong duality,
c̄ = arg maxc a 〈c,K(p̄)c〉 − R∗(c). This implies
that the Karush-Kuhn-Tucker conditions hold for c̄,
namely there exist constants κi ≥ 0 and λj such that

aK(p̄)c̄−∇R∗(c̄) +
∑

i

κi∇g∗i (c̄) +
∑

j

λj∇h∗
j (c̄) = 0

∀i g∗i (c̄) ≤ 0, ∀j h∗
i (c̄) = 0, ∀i κig

∗
i (c̄) = 0

It is easy to see that therefore c̄ is also a maximizer
of a 〈c,K(p̂)c〉 − R∗(c), because K(p̄)c̄ = K(p̂)c̄ and
the Karush-Kuhn-Tucker conditions still hold. Their
sufficiency follows from the fact that K(p) is positive
semi-definite for any p, and the convexity and affinity
premises. Thus,

R(c̄,K(p̄)) + γQ(p̄)

=
[

min
c

R(c,K(p̄))
]

+ γQ(p̄)

=
[

max
c

a 〈c,K(p̄)c〉 −R∗(c)
]

+ γQ(p̄)

= [a 〈c̄,K(p̄)c̄〉 −R∗(c̄)] + γQ(p̄)

= [a 〈c̄,K(p̂)c̄〉 −R∗(c̄)] + γQ(p̂)

=
[

max
c

a 〈c,K(p̂)c〉 −R∗(c)
]

+ γQ(p̂)

=
[

min
c

R(c,K(p̂))
]

+ γQ(p̂)

= R(ĉ,K(p̂)) + γQ(p̂).

We have now established that there exists a solution
with at most n + 2 imputations.

4.2. Iterative Optimization Algorithm

This result justifies the following greedy algorithm to
find an optimal solution to Optimization Problem 3.
The algorithm works by iteratively optimizing Prob-
lem 1 (or, equivalently, 2), and updating the distribu-
tion over the missing attribute values. Let pω̄ denote
the distribution p(ω) = δω̄. Algorithm 1 shows the
steps.

Algorithm 1 Compute optimal distribution of impu-
tations on ΩZ

X

Initialization: Choose p(1) = p
ω

(1) ; e.g., ω
(1)
il = 0 for

all zil 6= 1
for t = 1 . . . do

1. ĉ← arg minc R(c,K(p(t)))
2. Find ω

(t+1) ∈ ΩZ

X
: R̃k,γ(ĉ, p

ω
(t+1)) <

R̃k,γ(ĉ, p(t)). If no such ω
(t+1) exists, terminate.

3. βt ← arg minβ∈(0,1]

[

minc R̃k,γ(c, βp
ω

(t+1) +

(1− β)p(t))
]

4. p(t+1) ← βtpω
(t+1) + (1− βt)p

(t)

5. ∀j < t : βj ← βj(1− βt)
end for

Step 1 consists of minimizing the regularized empiri-
cal risk functional R, given the current distribution.
In step 2 a new imputation is constructed which im-
proves on the current objective value. Since in gen-
eral R̃k,γ(c, pω) is not convex in ω, one cannot find
the optimal ω efficiently. But the algorithm only re-
quires to find any better ω. Thus it is reasonable to
perform gradient ascent on ω, with random restarts
in case the found local optimum does not satisfy the
inequality of step 2. In step 3 and 4 the optimal dis-
tribution consisting of the weighted sum of currently
used Dirac impulses

∑t
i=1 βiδωi

and the new imputa-
tion δ

ω
(t+1) is computed. This step is convex in β if
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R̃k,γ(c, βp
ω

(t+1) +(1−β)p(t)) is linear in β. By looking
at Optimization Problem 2, we see that this is the case
for R. Thus the convexity depends on the choice for
Q (see Sect. 5.2). Step 5 updates the weights of the
previous imputations.

The algorithm finds t imputations ω
(j) and their

weights βj , as well as the optimal example coefficients
c. We can construct the classification function f as

f(x) =
t
∑

j=1

n
∑

i=1

βjcik(ω
(j)
i ,x). (4)

Note that the value n + 2 is an upper bound for the
number of basic kernels which constitute the optimal
solution. The algorithm is not guaranteed to terminate
after n + 2 iterations, because the calculated imputa-
tions are not necessarily optimal. In practice, however,
the number of iterations is usually much lower. In our
experiments, the objective value of the optimization
problem converges in less than 50 iterations.

5. Example Learners

In this chapter we present manifestations of the generic
method, which we call weighted infinite imputations,
for learning from incomplete data that we use in the
experimental evaluation.

Recall from Section 3 the goal to learn a decision func-
tion f from incomplete data that minimizes the ex-
pected risk R(f) =

∫

L(y, f(x))p(x, y)dxdy. In clas-
sification problems the natural loss function L be-
comes the zero-one loss, whereas in regression prob-
lems the loss depends on the specific application; com-
mon choices are the squared error or the ǫ-insensitive

loss. The considerations in the previous chapters show
that, in order to learn regression or classification func-
tions from training instances with missing attribute
values, we only have to specify the dual formulation of
the preferred learning algorithm on complete data and
a regularizer on the distribution of imputations p.

5.1. Two Standard Learning Algorithms

For binary classification problems, we choose to ap-
proximate the zero-one by the hinge loss and perform
support vector machine learning. The dual formula-
tion of the SVM is given by RSV M (c, k) =

∑n
i=1

ci

yi
−

1
2

∑n
i,j=1 cicjk(xj ,xi) subject to the constraints 0 ≤

ci

yi
≤ 1

η
and

∑n
i=1 ci = 0. We see that the demands

of Optimization Problem 2 are met and a finite solu-
tion can be found. Taking the SVM formulation as
the dual Optimization Problem 2 gives us the means –
in conjunction with an appropriate regularizer Q – to

learn a classification function f from incomplete data.

For regression problems, the loss depends on the task
at hand, as noted above. We focus on penalizing the
squared error, though we like to mention that the ap-
proach works for other losses likewise. One widely used
learning algorithm for solving the problem is kernel

ridge regression. Again, we can learn the regression
function f from incomplete data by using the same
principles as described above. Kernel ridge regression
minimizes the regularized empirical risk

∑n
i=1(yi −

f(xi))
2 + η‖f‖2. The dual formulation RKRR(c, k) =

∑n
i=1 ciyi −

1
4

∑n
i=1 c2

i + 1
4η

∑n
i,j=1 cicjk(xi, xj) again

meets the demands of the dual optimization problem
2. Substituting its primal formulation for R in step 1
of Algorithm 1 and in Eqn. 3 solves the problem of
learning the regression function from incomplete data
after specifying a regularizer Q.

5.2. Regularizing towards Prior Belief in
Feature Space

A regularizer on the distribution of missing values can
guide the search towards distributions ω̂ that we be-
lieve to be likely. We introduce a regularization term
which penalizes imputations that are different from
our prior belief ω̂. We choose to penalize the sum
of squared distances between instances xi and ω̂i in
feature space Hk induced by kernel k. We define the
squared distance regularization term Qsq as

Qsq(k, ω̂) =

n
∑

i=1

‖φk(xi)− φk(ω̂i)‖
2
2

=
n
∑

i=1

k(xi,xi)− 2k(xi, ω̂i) + k(ω̂i, ω̂i).

Note that when using Qsq, step 3 of Algorithm 1 be-
comes a convex minimization procedure.

5.3. Imputing the Mean in Feature Space

In principle any imputation we believe is useful for
learning a good classifier can be used as ω̂. Sev-
eral models of the data can be assumed to com-
pute corresponding optimal imputations. We like
to mention one interesting model, namely the class-
based mean imputation in the feature space Hk in-
duced by kernel k. This model imputes missing
values such that the sum of squared distances be-
tween completed instances to the class-dependent
mean in feature space is minimal over all possi-
ble imputations. ω̂ = arg minω

∑n
i=1 ‖φk(ωi) −

1
nyi

∑

j:yj=yi
φk(ωj)‖

2
2, where ny denotes the num-

ber of instances with label y. Simple alge-
braic manipulations show that this is equivalent to
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minimizing the sum of squared distances between
all instances

∑

υ∈{−1,1}
1

nυ

∑

i,j:yi=yj=υ ‖φk(ωi) −

φk(ωj)‖
2
2 =

∑

υ∈{−1,1}
1

nυ

∑

i,j:yi=yj=υ

[

k(ωi,ωi) −

2k(ωi,ωj) + k(ωj ,ωj)
]

Definition 1 (Mean in Feature Space). The class-

based mean in feature space imputation method im-

putes missing values ω̂ which optimize

ω̂ = arg min
ω

∑

υ∈{−1,+1}

1

nυ

∑

i,j:yi=yj=υ
[

k(ωi,ωi)− 2k(ωi,ωj) + k(ωj ,ωj)
]

Note that this model reduces to the standard mean in
input space when using the linear kernel.

6. Empirical Evaluation

We evaluate the performance of our generic approach
weighted infinite imputations for two example realiza-
tions. We test for classification performance on the
email spam data set which motivates our investiga-
tion. Furthermore, we test on seven additional binary
classification problems and three regression problems.

6.1. Classification

We choose to learn the decision function for the binary
classification task by substituting the risk functional of
the support vector machine, −RSV M , as presented in
section 5.1 for R and the squared distance regularizer
Qsq (Section 5.2) for Q in Optimization Problem 3.

For the motivating problem setting, we assemble a
data set of 2509 spam and non-spam emails, which
are preprocessed by a linear text classifier which is
currently in use at a large webspace hosting company.
This classifier discriminates reasonably well between
spam and non-spam, but there is still a small fraction
of misclassified emails. The classifier has been trained
on about 1 million emails from a variety of sources, in-
cluding spam-traps as well as emails from the hosting
company itself, recognizing more than 10 million dis-
tinct text features. On this scale, training a support
vector machine with Gaussian kernel is impractical,
therefore we employ a two-step procedure. We discard
the contents of the emails and retain only their spam
score from the text classifier and their size in bytes as
content features in the second-step classifier. At the
time of collection of the emails, we record auxiliary
real-time information about the sending servers. This
includes the number of valid and invalid receiver ad-
dresses of all emails seen from the server so far, and
the mean and standard deviation of the sizes and spam
scores of all emails from the server. Such information

is not available for emails from external sources, but
will be available when classifying unseen emails. We
randomly draw 1259 emails, both spam and non-spam,
with server information, whereas half of those were
drawn from a set of misclassified spam-emails. We aug-
ment this set with 1250 emails drawn randomly from
a source without server information for which only 2
of the 8 attributes are observed.

To evaluate the common odd versus even digits dis-
crimination, random subsets of 1000 training examples
from the USPS handwritten digit recognition set are
used. We test on the remaining 6291 examples. Ad-
ditionally, we test on KDD Cup 2004 Physics (1000
train, 5179 test, 78 attributes) data set and on the
4-view land mine detection data (500, 213, 41) as
used by Williams and Carin (2005). In the latter,
instances consist of 4 views on the data, each from
a separate sensor. Consequently, we randomly select
complete views as missing. From the UCI machine
learning repository we take the Breast (277 instances,
9 features), Diabetes (768, 8), German (1000, 20), and
Waveform (5000, 21) data sets. Selection criteria for
this subset of the repository were minimum require-
ments on sample size and number of attributes.

On each data set we test the performance of weighted

infinite imputation using four different regularization
imputations ω̂ for the regularizer Qsq(K(p), ω̂). These
imputations are computed by mean imputation in in-

put space (MeanInput) and mean imputation in fea-

ture space (MeanFeat) as by Definition 1. Addi-
tionally we use the EM algorithm to compute the at-
tributes imputed by the maximum likelihood parame-
ters of an assumed multivariate Gaussian distribution
with no restrictions on the covariate matrix (Gauss),
and a Gaussian Mixture Model with 10 Gauss centers
and spherical covariances (GMM).

Four learning procedures based on single imputations
serve as reference methods: the MeanInput, Mean-
Feat, Gauss, and GMM reference methods first de-
termine a single imputation, and then invoke the learn-
ing algorithm.

All experiments use a spheric Gaussian kernel. Its vari-
ance parameter σ as well as the SVM-parameter η are
adjusted using the regular SVM with a training and
test split on fully observed data. All experiments on
the same data set use this resulting parameter setting.
Results are averaged over 100 runs were in each run
training and test split as well as missing attributes are
chosen randomly. If not stated otherwise, 85% of at-
tributes are marked missing on all data sets. In order
to evaluate our method on the email data set, we per-
form 20-fold cross-validation. Since the emails with
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Table 1. Classification accuracies and standard errors for all data sets. Higher accuracy values are written in bold face,
“∗” denotes significant classification improvement.

MeanInput Gauss GMM MeanFeat

Email Single imp 0.9571 ± 0.0022 0.9412 ± 0.0037 0.9505 ± 0.0030 0.9570 ± 0.0022
WII 0.9571 ± 0.0022 0.9536 ± 0.0022 ∗ 0.9527 ± 0.0024 0.9600 ± 0.0019 ∗

USPS Single imp 0.8581 ± 0.0027 0.8688 ± 0.0022 0.9063 ± 0.0012 0.8581 ± 0.0027
WII 0.8641 ± 0.0027 ∗ 0.8824 ± 0.0024 ∗ 0.9105 ± 0.0015 ∗ 0.8687 ± 0.0027 ∗

Physics Single imp 0.6957 ± 0.0035 0.5575 ± 0.0038 0.6137 ± 0.0050 0.6935 ± 0.0028
WII 0.7084 ± 0.0039 ∗ 0.6543 ± 0.0055 ∗ 0.6881 ± 0.0049 ∗ 0.7036 ± 0.0032 ∗

Mine Single imp 0.8650 ± 0.0025 0.8887 ± 0.0023 0.8916 ± 0.0023 0.8660 ± 0.0026
WII 0.8833 ± 0.0026 ∗ 0.8921 ± 0.0021 0.8946 ± 0.0022 ∗ 0.8844 ± 0.0026 ∗

Breast Single imp 0.7170 ± 0.0055 0.7200 ± 0.0048 0.7164 ± 0.0048 0.7085 ± 0.0057
WII 0.7184 ± 0.0056 0.7243 ± 0.0048 ∗ 0.7212 ± 0.0050 ∗ 0.7152 ± 0.0057 ∗

Diabetes Single imp 0.7448 ± 0.0025 0.7053 ± 0.0036 0.7154 ± 0.0043 0.7438 ± 0.0026
WII 0.7455 ± 0.0025 0.7234 ± 0.0036 ∗ 0.7389 ± 0.0031 ∗ 0.7439 ± 0.0024

German Single imp 0.7331 ± 0.0029 0.7058 ± 0.0029 0.7056 ± 0.0028 0.7364 ± 0.0029
WII 0.7368 ± 0.0025 ∗ 0.7118 ± 0.0030 ∗ 0.7120 ± 0.0028 ∗ 0.7357 ± 0.0027

Waveform Single imp 0.8700 ± 0.0019 0.8241 ± 0.0031 0.7827 ± 0.0049 0.8679 ± 0.0020
WII 0.8700 ± 0.0019 0.8612 ± 0.0019 ∗ 0.8583 ± 0.0020 ∗ 0.8686 ± 0.0020 ∗
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Figure 1. Detailed results on USPS classification task.

missing attributes cannot be used as test examples,
the test sets are only taken from the fully observed
part of the data set.

Table 6.1 shows accuracies and standard errors for
the weighted infinite imputations (WII) method with
squared distance regularization compared to all single
imputations ω̂ on each data set. Regularization pa-
rameter γ is automatically chosen for each run based
on the performance on a separate tuning set. Base-
lines are obtained by first imputing ω̂ and learning the
classifier in a second step. The weighted infinite impu-

tations method outperforms the single imputation in
virtually all settings. We test for significant improve-
ments with a paired t-test on the 5% significance level.
Significant improvements are marked with a “∗” in the
table.

We explore the dependence of classification perfor-

mance on training sample size and the percentage of
missing attribute values in more detail. The first graph
in Figure 1 shows improvements in classification accu-
racy of our method over the single imputations de-
pending on the percentage of missing values. Graph
2 shows classification accuracy improvements depend-
ing on the size of the labeled training set. Both ex-
periments are performed on USPS data set and we
again adjust γ separately for each run based on the
performance on the tuning set. We note that similar
results are obtained for the other classification prob-
lems. The weighted infinite imputation method can
improve classification accuracy even when only 30%
of the attribute values are missing. It shows, though,
that it works best if at least 60% are missing, depend-
ing on ω̂. On the other hand, we see that it works for
all training set sizes, again depending on ω̂. Similar
results are obtained for the other data sets.
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Table 2. Mean squared error results and standard errors for regression data sets. Smaller mean squared errors are written
in bold face, “∗” denotes significant improvement.

MeanInput Gauss GMM MeanFeat

Housing Single imp 193.0908 ± 19.9408 288.6192 ± 41.5954 160.4940 ± 16.2004 1134.5635 ± 101.9452
WII 66.5144 ± 0.8958 ∗ 62.3073 ± 0.8479 ∗ 66.7959 ± 0.9173 ∗ 64.7926 ± 0.9619 ∗

Ailerons Single imp 81.7671 ± 4.5862 172.5037 ± 8.6705 79.8924 ± 4.0297 193.5790 ± 10.4899
WII 11.8034 ± 0.1494 ∗ 8.7505 ± 0.0932 ∗ 11.7595 ± 0.1530 ∗ 11.8220 ± 0.1387 ∗

Cpu act Single imp 10454.176 ± 962.598 15000.380 ± 973.100 10123.172 ± 933.143 15710.812 ± 1099.603
WII 306.257 ± 12.500 ∗ 204.180 ± 5.058 ∗ 305.651 ± 13.627 ∗ 247.988 ± 8.010 ∗

To evaluate the convergence of our method, we mea-
sure classification accuracy after each iteration of the
learning algorithm. It shows that classification accu-
racy does not change significantly after about 5 itera-
tions for a typical γ, in this case γ = 105 for the USPS
data set. On average the algorithm terminates after
about 30-40 iterations. The computational demands of
the weighted infinite imputation method are approxi-
mately quadratic in the training set size for the classifi-
cation task, as can be seen in Graph 3 of Figure 1. This
result depends on the specific risk functional R and its
optimization implementation. Nevertheless, it shows
that risk functionals which are solvable in quadratic
time do not change their computational complexity
class when learned with incomplete data.

6.2. Regression

We evaluate the weighted infinite imputations method
on regression problems using the squared error as loss
function. Consequently, risk functional RKRR (Sect.
5.1) is used as R and again the squared distance reg-
ularizer Qsq for Q in Optimization Problem 3. From
UCI we take the Housing data (506, 14), and from the
Weka homepage cpu act (1500, 21) and ailerons (2000,
40). Ridge parameter η and RBF-kernel parameter σ

were again chosen such that they lead to best results
on the completely observed data. Regularization pa-
rameter γ was chosen based on the performance on
a tuning set consisting of 150 examples. Results are
shown in Table 2. We can see that our method outper-
forms the results obtained with the single imputations
significantly for all settings.

7. Conclusion

We devised an optimization problem for learning de-
cision functions from incomplete data, where the dis-
tribution p of the missing attribute values is a free
parameter. The investigated method makes only mi-
nor assumptions on the distribution by the means of a
regularizer on p that can be chosen freely. By simul-
taneously optimizing the function and the distribution
of imputations, their dependency is taken into account

properly. We presented a proof that the optimal so-
lution for the joint learning problem concentrates the
density mass of the distribution on finitely many impu-
tations. This justifies the presented iterative algorithm
that finds a solution. We showed that instantiations
of the general learning method consistently outperform
single imputations.

Acknowledgments

We gratefully acknowledge support from STRATO
Rechenzentrum AG.

References

Argyriou, A., Micchelli, C., & Pontil, M. (2005). Learning
convex combinations of continuously parameterized ba-
sic kernels. Proceedings of the 18th Conference on Learn-
ing Theory.

Chechik, G., Heitz, G., Elidan, G., Abbeel, P., & Koller,
D. (2007). Max-margin classification of incomplete data.
Advances in Neural Information Processing Systems 19.

Liao, X., Li, H., & Carin, L. (2007). Quadratically gated
mixture of experts for incomplete data classification.
Proceedings of the 24th International Conference on Ma-
chine learning.

Micchelli, C., & Pontil, M. (2007). Feature space perspec-
tives for learning the kernel. Machine Learning, 66.

Shivaswamy, P. K., Bhattacharyya, C., & Smola, A. J.
(2006). Second order cone programming approaches for
handling missing and uncertain data. Journal of Ma-
chine Learning Research, 7.

Smola, A., Vishwanathan, S., & Hofmann, T. (2005). Ker-
nel methods for missing variables. Proceedings of the
Tenth International Workshop on Artificial Intelligence
and Statistics.

Williams, D., & Carin, L. (2005). Analytical kernel ma-
trix completion with incomplete multi-view data. Pro-
ceedings of the ICML 2005 Workshop on Learning With
Multiple Views.

Williams, D., Liao, X., Xue, Y., & Carin, L. (2005).
Incomplete-data classification using logistic regression.
Proceedings of the 22nd International Conference on
Machine learning.


