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Abstract

Canonical Correlation Analysis (CCA) is a
well-known technique for finding the correla-
tions between two sets of multi-dimensional
variables. It projects both sets of variables
into a lower-dimensional space in which they
are maximally correlated. CCA is commonly
applied for supervised dimensionality reduc-
tion, in which one of the multi-dimensional
variables is derived from the class label. It
has been shown that CCA can be formu-
lated as a least squares problem in the binary-
class case. However, their relationship in the
more general setting remains unclear. In this
paper, we show that, under a mild condi-
tion which tends to hold for high-dimensional
data, CCA in multi-label classifications can
be formulated as a least squares problem.
Based on this equivalence relationship, we
propose several CCA extensions including
sparse CCA using 1-norm regularization. Ex-
periments on multi-label data sets confirm
the established equivalence relationship. Re-
sults also demonstrate the effectiveness of the
proposed CCA extensions.

1. Introduction

Canonical Correlation Analysis (CCA) (Hotelling,
1936) is commonly used for finding the correlations
between two sets of multi-dimensional variables. It
makes use of two views of the same set of objects and
projects them into a lower-dimensional space in which
they are maximally correlated. CCA has been applied
successfully in various applications (Hardoon et al.,
2004; Vert & Kanehisa, 2003). One popular use of
CCA is for supervised learning, in which one view is
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derived from the data and another view is derived from
the class labels. In this setting, the data can be pro-
jected into a lower-dimensional space directed by the
label information. Such formulation is particularly ap-
pealing in the context of dimensionality reduction for
multi-label data (Yu et al., 2006).

Multivariate linear regression (MLR) that minimizes
the sum-of-squares cost function is a well-studied tech-
nique for regression problems. It can also be applied
for classification with an appropriate class indicator
matrix (Bishop, 2006; Hastie et al., 2001). The so-
lution to least squares problems can be obtained by
solving a linear system of equations. A number of al-
gorithms, including the conjugate gradient algorithm,
can be applied to solve it efficiently (Golub & Loan,
1996). Furthermore, the least squares formulation can
be readily extended using the regularization technique.
For example, 1-norm regularization can be incorpo-
rated into the least squares formulation to control
model complexity and improve sparseness (Tibshirani,
1996). Sparseness often leads to easy interpretation
and a good generalization ability. It has been used
successfully in PCA (d’Aspremont et al., 2004) and
SVM (Zhu et al., 2003).

In contrast to least squares, CCA involves a gener-
alized eigenvalue problem, which is computationally
more expensive to solve. Furthermore, it is challenging
to derive sparse CCA, as it involves a difficult sparse
generalized eigenvalue problem. Convex relaxation of
sparse CCA has been studied in (Sriperumbudur et al.,
2007), where the exact sparse CCA formulation has
been relaxed in several steps. On the other hand, in-
teresting connection between least squares and CCA
has been established in the literature. In particular,
CCA has been shown to be equivalent to Fisher Linear
Discriminant Analysis (LDA) for binary-class prob-
lems (Hastie et al., 1995). Meanwhile, it is well-known
that LDA is equivalent to least squares in this case
(Bishop, 2006; Hastie et al., 2001). Thus CCA can be
formulated as a least squares problem for binary-class
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problems. In practice, the multi-class and multi-label
problems are more prevalent. It is therefore tempting
to investigate the relationship between least squares
and CCA in the more general setting.

In this paper, we study the relationship between CCA
and least squares for multi-label problems. We show
that, under a mild condition which tends to hold for
high-dimensional data, CCA can be formulated as a
least squares problem by constructing a specific class
indictor matrix. Based on this equivalence relation-
ship, we propose several CCA extensions including
sparse CCA using the 1-norm regularization. Further-
more, the entire solution path for sparse CCA can be
readily computed by the Least Angle Regression algo-
rithm (LARS) (Efron et al., 2004). We evaluate the es-
tablished theoretical results using a collection of multi-
label data sets. Our experiments confirm the equiva-
lence relationship between these two models under the
given assumption. Results also show that, even when
the assumption does not hold, they achieve very sim-
ilar performance. Our experiments also demonstrate
the effectiveness of the proposed CCA extensions.

Notations The number of training samples, the data
dimensionality, and the number of labels are denoted
by n, d, and k, respectively. x; € R? denotes the ith
observation and y; € R¥ encodes the corresponding
label information. Let X = [z1,---,x,] € R¥" be
the data matrix and Y = [y1, -+ ,y,] € RF*" be the
class label matrix. We assume that both {z;}7 and
{y;}} are centered, i.e., >, z; =0,and Y, y; = 0.

2. Background and Related Work

In this section we give a brief overview of CCA and
least squares as well as several other related work.

2.1. Canonical Correlation Analysis

In CCA two different representations of the same set
of objects are given, and a projection is computed
for each representation such that they are maximally
correlated in the dimensionality-reduced space. For
X € R¥™™ and Y € RF*™ CCA computes two pro-
jection vectors, w, € R? and wy € R¥, such that the
following correlation coefficient:

TyyT
wy XY w,

p =
\/(ngXTwz)(ngYTwy)

(1)

is maximized. Since p is invariant to the scaling of w,
and w,, CCA can be formulated equivalently as

max wl XY Tw, (2)
W Wy
subject to ngXTu% =1, wyTYYTwy =1

We assume that YY7 is nonsingular. It can be shown
that w, can be obtained by solving the following opti-
mization problem:

wI XY (YYT) T Y X w,

max
Wy

subject to wl X XTw, = 1. (3)
Both formulations in Egs. (2) and (3) attempt to find
the eigenvectors corresponding to top eigenvalues of
the following generalized eigenvalue problem:

XYT(vyH) 'ty XTw, = nX XTw,, (4)

where 7 is the eigenvalue corresponding to the eigen-
vector w;. Multiple projection vectors under certain
orthonormality constraints can be computed simulta-
neously by solving the following optimization problem
(Hardoon et al., 2004):

trace W XYT (YY) "'y XxTw)

max
w

subject to ~ WIXXTW =1, (5)
where W € R?*¢ is the projection matrix, ¢ is the num-
ber of projection vectors, and I is the identity matrix.
The solution to the optimization problem in Eq. (5)
consists of the top ¢ eigenvectors of the generalized
eigenvalue problem in Eq. (4).

In regularized CCA (rCCA), a regularization term A
with A > 0 is added to XX in Eq. (5) to prevent the
overfitting and avoid the singularity of X X7 (Bach &
Jordan, 2003). Specifically, rCCA solves the following
generalized eigenvalue problem:

XYY" 'y XTw, = n(XXT + ADw,. (6)

2.2. Least Squares for Regression and
Classification

In regression, we are given a training set {(x;,¢;)}7" 4,
where z; € R is the observation and t; € R* is the
corresponding target. We assume that both the ob-
servations and the targets are centered. Thus the bias
term can be ignored. In this case, the projection ma-
trix W can be computed by minimizing the following
sum-of-squares cost function:

min 3 (W7~ 13 = (WX ~TIR, (7)
i=1
where T' = [t1,-- - , ). It is well known that the opti-

mal projection matrix is given by

Wrs = (XXT)TXTT, (8)
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where the pseudo-inverse is used in case X X7 is sin-
gular. To improve the generality ability of the model,
a penalty term based on 2-norm or 1-norm regulariza-
tion is commonly applied (Hastie et al., 2001).

Least squares is also commonly applied for classifica-
tion. In the general multi-class case, we are given a
data set consisting of n samples {(x;,y;)};, where
r; € RY and y; € {1,2,---,k} denotes the class la-
bel of the i-th sample, and k& > 2. To apply the least
squares formulation to the multi-class case, the 1-of-k
binary coding scheme is usually employed to apply a
vector-valued class code to each data point (Bishop,
2006). The solution to the least squares problem de-
pends on the choice of class indicator matrix. Several
class indicator matrices have been proposed in the lit-
erature (Hastie et al., 2001).

2.3. Related Work

The inherent relationship between least squares and
several other models has been established in the past.
In particular, LDA for binary-class problems can be
formulated as a least squares problem (Duda et al.,
2000; Bishop, 2006). Moreover, this equivalence rela-
tionship can be extended to the multi-class case using
a specific class indicator matrix (Ye, 2007). CCA has
been shown to be equivalent to LDA for multi-class
problems (Hastie et al., 1995). Thus, CCA is closely
related to least squares in the multi-class case. We
show in the next section that, under a mild condition,
CCA can be formulated as a least squares problem for
multi-label classifications when one of the views used
in CCA is derived from the labels.

3. Relationship between CCA and
Least Squares
In this section we investigate the relationship between

CCA and least squares in the multi-label case. We
first define four matrices essential for our derivation:

H = Y'(vyT)"z e R™F, 9)
Cxx = XXT R (10)
Cupy = XHHTXT e R™¥4 11)
Cpp = CX)(—CHHERdXd. (12)

Note that we assume n > k and rank(Y) = k for
multi-label problems. Thus, (YY7)~2 is well-defined.
It follows from the definition above that the solution
to CCA can be expressed as the eigenvectors corre-
sponding to top eigenvalues of the matrix C’;(XCHH.

3.1. Basic Matrix Properties

In this subsection, we study the basic properties of the
matrices involved in the following discussion. Follow-
ing the definition of H in Eq. (9), we have:

Lemma 1. Let H be defined as in Eq. (9) and let
{y:}7 be centered, i.e., Y., yi =0. Then we have

(1). H has orthonormal columns, i.e., HT H = I;

(2). H e = 0.

Given H € R™* with orthonormal columns, there
exists D € R™ (") such that [H, D] € R"*" is an
orthogonal matrix (Golub & Loan, 1996), that is

I,=[H,D|H,D|" = HHT + DD”.
It follows that
Cpp =Cxx — Cygy = XDDTXT. (13)

It can be verified from Egs. (10), (11), and (13) that
the matrices C'xx,Cgg, and Cpp are all positive
semidefinite.

Let the Singular Value Decomposition (SVD) of X be

X = UxVT =[U},U,] diag(%,,0) [Vi, Va]®
= %V, (14)

where r = rank(X), U and V are orthogonal matrices,
D= Rdxn7 U, € RdX'r7 U, € Rdx(d—'r')’ Vv, € Rnxr7
Vo € R™*(n=7) and ¥, € R7™*".

Since Us lies in the null space X, we have:

Lemma 2. Let H, X, Uy, and D be defined as above.
Then HT XTUy = 0 and DT XTU, = 0.

3.2. Computing CCA via Eigendecomposition

Recall that the solution to CCA consists of the top ¢
eigenvectors of the matrix C';( <Crr. We next show

how to compute the eigenvectors of C}L( xCru. Define
the matrix A € R™** by

A=3'Ur'XH. (15)
Let the SVD of A be A = PY,Q", where P € R™*"
and Q € R*** are orthogonal, and ¥, € R™F is di-

agonal. Then

AAT = Py, PT. (16)
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The matrix C;( xCrp can be diagonalized as follows:

Cl Cuu=US2UFXHHT XT

=U, %, " AHTXTUUT

_u {)] SOUAIHTXTUL, HTXTU,)0T
[S1AATS, 0,0

AR O]U

=P 0] [2a5% 0] [PTS, 0],

=V IH o o o 1V

where the second equality follows since U is orthogo-
nal, the fourth equality follows since HY XTU, = 0 as
shown in Lemma 2, and the last equality follows from
Eq. (16). Thus the solution to CCA, which consists of
the top £ eigenvectors of matrix C’i{ «Crm, is given by

Weea = Ui, 'R, (17)

where P, contains the first ¢ columns of P.

3.3. Equivalence of CCA and Least Squares

Recall from Eq. (8) that for a given class indicator
matrix 7', the solution to the least squares problem is
given by
(XX xTT,
We define the class indicator matrix T as follows:
T=(vy")y 2y =H". (18)
In this case, the solution to the least squares problem
is given by
Wis = (XXT)'XH=U,2?U'xXH

= US'A=U,271P¥,Q". (19)
It is clear from Eqgs. (17) and (19) that the difference
between CCA and least squares lies in ¥4 and Q.

We next show that all diagonal elements of ¥4 are
one under a mild condition, that is, rank(X) =n — 1
and rank(Y) = k. Note that the first condition is
equivalent to requiring that the original data points
are linearly independent before centering, which tends
to hold for high-dimensional data.

Before presenting the main result summarized in The-
orem 1 below, we have the following lemma:

Lemma 3. Assume
rank(Cxx) + s = rank(Cuyg) + rank(Cpp),

for some non-negative integer s. Then for the matrix
Ya =AY = diag(ar, az,- - ,a,) € R"™*", we have

l=vv=ay_s>ap_sy12--2a5>ap41=---=0.
where f = rank(X4).

Proof. Define the matrix J € R?*? as follows:

(20)

-1
J:U{zr P 0 }

0 Ig .

It follows from the definition of Cx x, Cym, and Cpp
in Egs. (10)-(12) that

JTOX)(J = diag(fm()),
JTCxpd = diag(£aX%,0)

= diag(ai,---,a,,0,---,0),
JTCppd = JTCxxJ —J ChpJ

= diag(by,--- ,b,0,---,0), (21)

where b; = 1 —ay, for i = 1,--- ,r. Note that since J

is nonsingular, we have
rank(Cx x) = rank(JT Cxx.J) = r.
It follows from our assumption that

rank(JTCypJ) +rank(JTCppJ) =r+s.  (22)
Since both JTCyyJ and JTCppJ are diagonal, there
are a total of r 4+ s nonzero elements in JTC'Z{HJ and
JTCppJ. Note that f = rank(X4) = rank(>4), thus
ar = ---2af >0=apy1 = = a,. It follows from
Eq. (21) that

a;+b;=1,for1<i<r, b.>2--->2b20. (23)
This implies that at least one of a; or b; is positive for
1 <4 < r. To satisfy the rank equality in Eq. (22), we
therefore must have

1 = ai=a=---=ay_s>a5 5412 2ay
> app1 = =a, =0,
0 = bi=by=-=bp_s<bp_sp1<---<by
< bppr=--=b =
This completes the proof of the lemma. O

Theorem 1. Assume that rank(X) = n — 1 and
rank(Y') = k for multi-label problems. Then we have

rank(Cxx) = n—1, (24)
rank(Cpm) = k, (25)
rank(Cpp) = n—k— 1. (26)

Thus s = 0, where s is defined in Lemma 3, and
l=a1==ar>ap41="-=a, =0.

This implies that all diagonal elements of ¥ 4 are ones.
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Proof. Denote e = [1,1,---,1] € R>*" H =
[h1, - hi], and D = [hgg1, -, hn]. Note that X
is column centered, i.e., Y., x; = 0. It follows from
Lemma 1 that HTe = 0, that is,

hle=0, for 1 <i < k. (27)

Since [H, D] is an orthogonal matrix, {hq, -+, hyn}
form a basis for R”. Thus we can represent e € R"”
as

e= Z «o;h;, where o; € R. (28)

i=1

It follows from the orthogonality of [H, D] and Eq. (27)

that e can be expressed as e = > | | a;h;, and
n n
0= Xe :X< > aih,) = ) ai(Xh).  (29)
i=k+1 i=k+1

Since not all a;’s are zero, the n — k columns of XD
are linearly dependent, thus rank(XD) < n —k — 1.
According to the property of matrix rank, we have

rank(X D) > rank(X) + rank(D) — n
=n-1)+n-k)—n=n—k—1 (30)

Thus, rank(X D) =n — k — 1 holds.

For matrix X H, we have

rank(X) = rank(X[H, D]) < rank(X H) + rank(X D)

en—1<rank(XH)+n—k—1
< rank(XH) > k.

On the other hand, since X H € R™* rank(XH) < k.
Thus we have rank(X H) = k and

rank(Cxx) = rank(X)=n—1,
rank(Cyy) = rank(XH) =k,
rank(Cpp) = rank(XD)=n—-k—1

It follows that s = 0. On the other hand,
f =rank(A) = rank(S, 'Uf XH) = rank(X H) = k.

1:@1:a2:...:ak>0:ak+1:...:ar7

and all diagonal elements of ¥4 are ones. This com-
pletes the proof of the theorem. O

Since rank(¥4) = k, C}L(XCHH contains k nonzero
eigenvalues. If we choose ¢ = k, then

Weoa = UL S, Py (31)

The only difference between Wyrg and Weea lies in
the orthogonal matrix Q7 in Wrg.

In practice, we can use both Weoc a4 and Wi g to project
the original data onto a lower-dimensional space before
classification. For any classifiers based on Euclidean
distance, the orthogonal transformation Q7 will not
affect the classification performance since the Eu-
clidean distance is invariant of any orthogonal trans-
formations. Some well-known algorithms with this
property include the K-Nearest-Neighbor (KNN) algo-
rithm (Duda et al., 2000) based on the Euclidean dis-
tance and the linear Support Vector Machines (SVM)
(Scholkopf & Smola, 2002). In the following, the least
squares CCA formulation is called “LS-CCA”.

4. Extensions of CCA

Based on the equivalence relationship established in
the last section, the classical CCA formulation can be
extended using the regularization technique.

Regularization is commonly used to control the com-
plexity of the model and improve the generalization
performance. Linear regression using the 2-norm reg-
ularization, called ridge regression (Hoerl & Ken-
nard, 1970), minimizes the penalized sum-of-squares
cost function. By using the class indicator matrix T
in Eq. (18), we obtain the 2-norm regularized least
squares CCA formulation (called “LS-CCA5”) by min-
imizing the following objective function:

k n
LyW,0) =Y (Z(w?wj ~Ti)? + ijg) :
j=1

i=1

where W = [wy, -+ ,wg], and A > 0 is the regulariza-
tion parameter.

In mathematical programming, it is known that
sparseness can often be achieved by penalizing the
Li-norm of the variables (Donoho, 2006; Tibshirani,
1996). It has been introduced into the least squares
formulation and the resulting model is called lasso
(Tibshirani, 1996). Based on the established equiv-
alence relationship between CCA and least squares,
we derive the 1-norm least squares CCA formulation
(called “LS-CCA;”) by minimizing the following ob-
jective function:

k n
Li(W,A) =Y (Z(%ij —Ty)* + /\|wj1> :
j=1

i=1
The optimal wj, for 1 < j <k, is given by

n

wj = arg%in@(x?wj = Tij)* + Allwyllh),  (32)

=1
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which can be reformulated as:

n
* o __

wj

arg min (2T w; — Ti;)%, (33)
[lw;ll1 <7 P

=1

for some tuning parameter 7 > 0 (Tibshirani, 1996).
Furthermore, the solution can be readily computed by
the Least Angle Regression algorithm (Efron et al.,
2004). One key feature of LARS is that it computes
the entire solution path for all values of 7, with essen-
tially the same computational cost as fitting the model
with a single 7 value.

If the value of 7 is large enough, the constraint in
Eq. (33) is not effective, resulting in an unconstrained
optimization problem. We can thus consider 7 from
a finite range [0, 7], for some 7 > 0. Define v = 7/7
so that 7 = 77 with 0 < v < 1. The estimation of 7
is equivalent to the estimation of «y. Cross-validation
is commonly used to estimate the optimal value from
a large candidate set S = {v1,72,--- ,7s|}, where ||
denotes the size of S. If the value of « is sufficiently
small, many of the coefficients in W will become ex-
actly zero, which leads to a sparse CCA model. We
thus call v the “sparseness coefficient”.

5. Experiments

We use a collection of multi-label data sets to ex-
perimentally verify the equivalence relationship estab-
lished in this paper. We also evaluate the performance
of various CCA extensions.

5.1. Experimental Setup

We use two types of data in the experiment. The
gene expression pattern image data! describe the gene
expression patterns of Drosophila during development
(Tomancak & et al., 2002). Each image is annotated
with a variable number of textual terms (labels) from
a controlled vocabulary. We apply Gabor filters to ex-
tract a 384-dimensional feature vector from each im-
age. We use five data sets with different numbers of
terms (class labels). We also use the scene data set
(Boutell et al., 2004) which contains 2407 samples of
294-dimension and 6 labels. In all the experiments,
ten random splittings of data into training and test
sets are generated and the averaged performance is re-
ported.

In the experiment, five methods including CCA and
its regularized version rCCA in Eq. (6), as well as
LS-CCA and its regularization versions LS-CCA4 and
LS-CCA; are compared. These CCA methods are used

'All images were extracted from the FlyExpress
database at http://www.flyexpress.net.

to project the data into a lower-dimensional space in
which a linear SVM is applied for classification for each
label. The Receiver Operating Characteristic (ROC)
score is computed for each label and the averaged per-
formance over all labels is reported.

5.2. Gene Expression Pattern Image Data

In this experiment we first evaluate the equivalence
relationship between CCA and least squares. For all
cases, we set the data dimensionality d larger than
the sample size n, ie., d/n > 1. The condition in
Theorem 1 holds in all cases. We observe that for all
splittings of all of the five data sets, rank(Cx x ) equals
rank(Cp ) + rank(Cpp)), and the ratio of the maxi-
mal to the minimal diagonal element of X 4 is 1, which
implies that all diagonal elements of 34 are the same,
i.e., ones. Our experimental evidences are consistent
with the theoretical results presented in Section 3.3.

5.2.1. PERFORMANCE COMPARISON

In Table 1, we report the mean ROC scores over all
terms and all splittings for each data set. The main ob-
servations include: (1) CCA and LS-CCA achieve the
same performance for all data sets, which is consistent
with our theoretical results; (2) The regularized CCA
extensions including rCCA, LS-CCA,, and LS-CCA;
perform much better than their counterparts CCA and
LS-CCA without the regularization; and (3) LS-CCA,
is comparable to rCCA in all data sets, while LS-CCA;
achieves the best performance in all cases. These fur-
ther justify the use of the proposed least squares CCA
formulations for multi-label classifications.

Table 1. Comparison of different CCA methods in terms of
mean ROC scores. nio: denotes the total number of images
in the data set, and k denotes the number of terms (labels).
Ten different splittings of the data into training (of size n)
and test (of size ntot —n) sets are applied for each data set.
For the regularized algorithms, the value of the parameter
is chosen via cross-validation. The proposed sparse CCA
model (LS-CCA;) performs the best for this data set.

Niot | k | CCA | LS-COA [ rCCA | LS-CCA, | LS-CCA,

863 10 | 0.542 0.542 0.617 0.619 0.722
1041 15 | 0.534 0.534 0.602 0.603 0.707
1138 | 20 | 0.538 0.538 0.609 0.610 0.714
1222 | 25 | 0.540 0.540 0.603 0.605 0.704
1349 | 30 | 0.548 0.548 0.606 0.608 0.709

5.2.2. SENSITIVITY STUDY

In this experiment, we investigate the performance of
LS-CCA and its variants in comparison with CCA
when the condition in Theorem 1 does not hold, which
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Figure 1. Comparison of all algorithms on gene data set (left) and scene data set (right) in terms of mean ROC scores.

is the case in many applications. Specifically, we use a
gene data set with the dimensionality fixed at d = 384,
while the size of the training set varies from 100 to 900
with a step size about 100.

The performance of different algorithms as the size
of training set increases is presented in Figure 1 (left
graph). We can observe that in general, the perfor-
mance of all algorithms increases as the training size
increases. When n is small, the condition in Theorem
1 holds, thus CCA and LS-CCA are equivalent, and
they achieve the same performance. When n further
increases, CCA and LS-CCA achieve different ROC
scores, although the difference is always very small in
our experiment. Similar to the last experiment, we
can observe from the figure that the regularized meth-
ods perform much better than CCA and LS-CCA, and
LS-CCA; is comparable to rCCA. The sparse formu-
lation LS-CCA; performs the best for this data set.

5.3. Scene Data Set

We conduct a similar set of experiments on the scene
data. As in the gene data set, the equivalence relation-
ship holds when the condition in Theorem 1 holds.

For the performance comparison and sensitivity study,
we generate a sequence of training sets with the size
n ranging from 100 to 900 with a step size around
100. The results are summarized in Figure 1 (right
graph). Similar to the gene data set, CCA and LS-
CCA achieve the same performance when n is small,
and they differ slightly when n is large. We can also
observe from the figure that the regularized algorithms
including rCCA, and LLS-CCA5, and LS-CCA; perform

much better than CCA and LS-CCA without regular-
ization, and LS-CCA4 performs slightly better than
others in this data set.

5.4. The Entire CCA Solution Path

In this experiment, we investigate the sparse CCA
model, i.e., LS-CCA; using the scene data set. Recall
that the sparseness of the weight vectors w;’s depends
on the sparseness coefficient v between 0 and 1.

Figure 2 shows the entire collection of solution paths
for a subset of the coefficients from the first weight
vector wi. The z-axis denotes the sparseness coeffi-
cient 7y, and the y-axis denotes the value of the coef-
ficients. The vertical lines denote (a subset of) the
turning point of the path, as the solution path for
each of the coefficients is piecewise linear (Efron et al.,
2004). We can observe from Figure 2 that when v = 1,
most of the coeflicients are non-zero, i.e., the model is
dense. When the value of the sparseness coefficient
decreases (from the right to the left side along the -
axis), more and more coefficients become exactly zero.
All coefficients become zero when ~ = 0.

6. Conclusion and Future Work

In this paper we show that CCA for multi-label clas-
sifications can be formulated as a least squares prob-
lem under a mild condition, which tends to hold for
high-dimensional data. Based on the equivalence rela-
tionship established in this paper, we propose several
CCA extensions including sparse CCA. We have con-
ducted experiments on a collection of multi-label data
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Figure 2. The entire collection of solution paths for a sub-
set of the coefficients from the first weight vector wy on the
scene data set. The z-axis denotes the sparseness coeffi-
cient v, and the y-axis denotes the value of the coefficients.

sets to validate the proposed equivalence relationship.
Our experimental results show that the performance
of the proposed least squares formulation and CCA
is very close even when the condition does not hold.
Results also demonstrate the effectiveness of the pro-
posed CCA extensions.

The proposed least squares formulation facilitates the
incorporation of the unlabeled data into the CCA
framework through the graph Laplacian, which cap-
tures the local geometry of the data (Belkin et al.,
2006). We plan to examine the effectiveness of this
semi-supervised CCA model for learning from both la-
beled and unlabeled data. The proposed sparse CCA
performs well for the gene data set. We plan to ana-
lyze the biological relevance of the features extracted
via the sparse CCA model.
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