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Abstract dle the more practically relevant case of SVMs, although

. . - we focus on linear kernels.
We discuss how the runtime of SVM optimiza-

tion shoulddecrease as the size of the training We then return to the finite-data scenario and ask our origi-
data increases. We present theoretical and em-  nal question: How does the runtime required in order to get
pirical results demonstrating how a simple sub- some desired generalization error change with the amount
gradient descent approach indeed displays such  of available data? In Section 5, we present both a theoreti-
behavior, at least for linear kernels. cal analysis and a thorough empirical study demonstrating

that, at least for linear kernels, the runtime of the subgra-
dient descent optimizer PEGASOS (Shalev-Shwartz et al.,
1. Introduction 2007) does indeed decrease as more data is made available.

The traditional runtime analysis of training Support Vec-
tor Machines (SVMs), and indeed most runtime analysis 02' Background

training learning methods, shows how the training runtimewe briefly introduce the SVM setting and the notation used
increasesas the training set size increases. This is becausg this paper, and survey the standard runtime analysis of
the analysis views SVM training as an optimization prob-several optimization approaches. The goal of SVM train-
lem, whose size increases as the training size increasks, ajmg is to find a linear predictow that predicts the label
asks “what is the runtime of finding a very accurate solution, ¢ +1 associated with a feature vectomssign((w, x)).

to the SVM training optimization problem?”. However, This is done by seeking a predictor with small empirical
this analysis ignores the underlying goal of SVM training, (hinge) loss relative to a large classification “margin”. We
which is to find a classifier with low generalization error. gssume that instance-label pairs come from some source
When our goal is to obtain a good predictor, having moregistribution P(X,Y'), and that we are given access to la-
training data at our disposal should not increase the runpeled example$(x;, y;)}™, sampled i.i.d. fromP. Train-

time required to get some desired generalization error: l{ng a SVM then amounts to minimizing, for some regular-

we can get a predictor with a generalization error of 5%ization parametek, the regularized empirical hinge loss:
in an hour using a thousand examples, then given ten thou-

sand examples we can always ignore nine thousand of them 2 5 A 2

and do exactly what we did before, using the same runtime. Pw) = fw) + 2 v @
But, can we use the extra nine thousand examples to get a A

predictor with a generalization error of 5%l@sstime? where/(w) = -3 6(w; (x4,5:)) and £(w; (x,y)) =
max{0, I-y (w, x)} is the hinge loss. For simplicity, we do

In this paper we begin answering the above question. Bufiy 5ji0 a bias term. We say that an optimization method
first we analyze the runtime of various SVM optimization finds ane-accurate solutiok if fk(vv) < miny fx (w)+e

approaches in the data-laden regime, i.e. given unlimited
amounts of data. This serves as a basis to our investigatidfistead of being provided with the feature vectors di-
and helps us compare different optimization approachegectly, we are often only provided with their inner products
when working with very large data sets. A similar type through a kernel function. Our focus here is on “linear ker-
of analysis for unregularized linear learning was recentlynels”, i.e. we assume we are indeed provided with the fea-
presented by Bottou and Bousquet (2008)—here we harfure vectors themselves. This scenario is natural in severa
applications, including document analysis where the bag-
Appearing inProceedings of the?5"" International Conference of-words vectors provide a sparse high dimensional repre-
on Machine LearningHelsinki, Finland, 2008. Copyright 2008 sentation that does not necessarily benefit from the kernel
by the author(s)/owner(s). trick. We used to denote the dimensionality of the feature
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vectors. Or, if the feature vectors are sparse, weduge  nels (Shalev-Shwartz et al., 2007; Bottou, Web Page).

denote the average numt_)er of non-zero elements in eaClthese runtime guarantees of SVM-Perf and PEGASOS are
feature vector (e.g. when input vectors are bag-of-watds, . . }
: . not comparable with those of traditional approaches: the
is the average number of words in a document). . : .

runtimes scale better withe, but worse withe, and also
The runtime of SVM training is usually analyzed as the depend om\. We will return to this issue in Section 4.
required runtime to obtain anaccurate solution to the op-

timization problemmin, fx(w). 3. Error Decomposition

Traditional imization roach nverge linear . L .
aditional optimization approaches converge linearty, QThe goal of supervised learning, in the context we consider

even quadratically, to the optimal solution. Thatis, thelrit, is to use the available training data in order to obtain a

runtime has a logarithmic, or double logarithmic, depen- : . -
27 predictor with low generalization error (expected errogov
dence on the optimization accuracyHowever, they scale o . ;
future predictions). However, since we cannot directly ob-

poorly with the size of the training set. For example, a o . o
. . L f serve the generalization error of a predictor, the traieing
nave implementation of interior point search on the dual” . : L
. . 3 ror is used as a surrogate. But in order for the training error
of the SVM problem would require a runtime 6f(m?) o
. . . . ) . to be a good surrogate for the generalization error, we must
per iteration, with the number of iterations also theoreti- . : .
. i . . . restrict the space of allowed predictors. This can be done
cally increasing withm. To avoid a cubic dependence on - . . .
. " by restricting ourselves to a certain hypothesis classy or i
m, many modern SVM solvers use “decomposition tech- . . T .
. . . he SVM formulation studied here, minimizing a combina-
niques™. Only a subset of the dual variables is updated a{tlon of the training error and some regularization term
each iteration (Platt, 1998; Joachims, 1998). It is possi- 9 9 '
ble to establish linear convergence for specific decompoln studying the generalization error of the predictor mini-
sition methods (e.g. Lin, 2002). However, a careful ex-mizing the training error on a limited hypothesis classsiti
amination of this analysis reveals that the number of iterastandard to decompose this error into:
tions before the linearly convergent stage can grow:as
In fact, Bottou and Lin (2007) argue that any method that o The approximation error— the minimum genera]-

solves the dual problem very accurately might in general jzation error achievable by a predictor in the hypothe-

require runtimeQ(dm?), and also provide empirical ev- sis class. The approximation error does not depend on
idence suggesting that modern dual-decomposition meth-  the sample size, and is determined by the hypothesis
ods come close to a runtime 6f(dm?log(1/¢)). There- class allowed.

fore, for the purpose of comparison, we take the runtime of

dual-decomposition methods @dm?log 1/e). e Theestimation error—the difference between the ap-

proximation error and the error achieved by the pre-
dictor in the hypothesis class minimizing the training
error. The estimation error of a predictor is a result of
the training error being only an estimate of the gen-
eralization error, and so the predictor minimizing the
training error being only an estimate of the predictor
minimizing the generalization error. The quality of
this estimation depends on the training set size and
the size, or complexity, of the hypothesis class.

With the growing importance of handling very large data
sets, optimization methods with a more moderate scaling
on the data set size were presented. The flip side is that
these approaches typically have much worse dependence
on the optimization accuracy. A recent example is SVM-
Perf (Joachims, 2006), an optimization method that uses a
cutting planes approach for training linear SVMs. Smola
et al. (2008) showed that SVM-Perf can find a solution
with accuracye in time O(md/(Xe)).

Although SVM-Perf does have a much more favorable deA similar decomposition is also possible for the somewhat
pendence on the data set size, and runs much faster onore subtle case of regularized training error minimiza-
large data sets, its runtime still increases (linearly)hwit tion, as in SVMs. We are now interested in the generaliza-
m. More recently, Shalev-Shwartz et al. (2007) presentedion error{(w) = Ex y)~p [{(w; X,Y)] of the predictor
PEGASOS, a simple stochastic subgradient optimizer fog;, — arg min,, f(w) minimizing the training objective
training linear SVMs, whose runtime does not at all in- (1) Note that for the time being we are 0n|y concerned
crease with the sample size. PEGASOS is guaranteed {gjth the (hinge) loss, and not with the misclassification er-
find, with high probability, an-accurate solution in timte oy, and even measure the generalization error in terms of

O(d/(Xe)). Empirical comparisons show that PEGASOS the hinge loss. We will return to this issue in Section 5.2.
is considerably faster than both SVM-Perf and dual decom-

position methods on large data sets with sparse, linear, ker The approximation error is now the generaliza-

1The O(-) notation hides logarithmic factors. tion error {(w*) aChieYQd .by the predic_tOW* =
arg miny, f(w) that minimizes theegularizedgen-
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eralization error: o Caox | €est , Copt | generalization
0 Z(W*) é(VAV) é(VNV) error
Ia(w) = tw) + 3 [|w]|” - i izati
A 2 : Figure 1.Decomposition of the generalization error of the output

w of the optimization algorithmé(W) = €aprx + €est+ €opt-
As before, the approximation error is independent of
the training set or its size, and depends on the regular-
ization parametek. This parameter plays a role sim- -
. . . _empirical error Uw) = 25 peslw; (x,y
ilar to that of the complexity of the hypothesis class: generajization error ZE ;Z g (w; (x,9))
Decreasing\ can decrease the approximation error.  gym objective Fr(w) = f(w) + A A wl)?

y=14¢

. ) . . Expected SVM obj. 3
e The estimation error is now the difference between the Re?erence predictg)r QO(W (w) + HW”

generalization error of* and the generalization error  Population optimum ~w* = arg miny, fx(w)
¢(w) of the predictor minimizing the training objec- Empirical optimum W = arg miny fx( )

tive fx(w). Again, this error is a result of the training _eaccoptimal predictor W s.t. /(W) < fa(W) + €acc
error being only an estimate of the generalization er-
ror, and so the training objectivé, (w) being only an
estimate of the regularized logs(w).

Table 1.Summary of Notation
error (hinge loss) Lw; (x, y)) max{0,1—y (w,x)}

3.1. The Data-Bounded Regime

The standard analysis of statistical learning theory can be
The error decompositions discussed so far are well underiewed as an analysis of an extreme regime in which train-
stood, as is the trade-off between the approximation anihg data is scarce, and computational resources are plenti-
estimation errors controlled by the complexity of the hy-ful. In this regime, the optimization error diminishes, as w
pothesis class. In practice, however, we do not minimizecan spend the time required to optimize the training objec-
the training objective exactly and so do not use the mathtive very accurately. We need only consider the approxi-
ematically definedv. Rather, we use some optimization mation and estimation errors. Such an analysis provides an
algorithm that runs for some finite time and yields a pre-understanding of the sample complexity as a function of the
dictor w that only minimizes the training objecti\/fa(w) target error: how many samples are necessary to guarantee
to within some accuracys.e. We should therefore con- some desired error level.
sider the decomposition of the generalization ef(e¥) of
this predictor. In addition to the two error terms discusse
above, a third error term now enters the picture:

J:or low-norm (large-margin) linear predictors, the esti-
mation error can be bounded t@(““’ “) (Bartlett &
Mendelson, 2003), yielding a sample complexitynof=

e Theoptimization error is the difference in general- O (” ik ) to get a desired generalization errorov ™) +
ization error between the actual minimizer of the train- ¢ (tighter bounds are possible under certain conditions, but
ing objective and the outpuw of the optimization al-  for simplicity and more general applicability, here we ktic
gorithm. The optimizatiorerror is controlled by the  with this simpler analysis).
optimizationaccuracyesec. The optimization accu-

racy is the difference in the training objectiyg(w) 3.2. The Data-L aden Regime

while the optimization error is the resulting difference . o ) ]
in generalization errof(w) — £(Ww). Another extreme regime is the regime in which we have vir-

tually unlimited data (we can obtain samples on-demand),
but computational resources are limited. This is captured

y the PAC framework (Valiant, 1984), in which we are
given unlimited, on-demand, access to samples, and con-
sider computationally tractable methods for obtaining a
predictor with low generalization error. Most work in the
'PAC framework focuses on the distinction between poly-
nomial and super-polynomial computation. Here, we are
Before investigating the balance between the data set sizaterested in understating the details of this polynomial
and runtime required to obtain a desired generalization erdependence—how does the runtime scale with the parame-
ror, we first consider two extreme regimes: one in whichters of interest? Discussing runtime as a function of ddta se
only a limited training set is available, but computational size is inappropriate here, since the data set size is unlim-
resources are not a concern, and the other in which thited. Rather, we are interested in understanding the rentim
training data available is virtually unlimited, but compu- as a function of the target error: How much runtime is re-
tational resources are bounded. quired to guarantee some desired error level.

This more complete error decomposition, also depicted i
Figure 1, was recently discussed by Bottou and Bousque
(2008). Since the end goal of optimizing the training er-
ror is to obtain a predicto# with low generalization error
¢(w), itis useful to consider the entire error decomposition
and the interplay of its different components.
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As the data-laden regime does capture many large data sebnstant we obtain that with arbitrary fixed probability:
situations, in which data is virtually unlimited, such an \ 1

analysis can be helpful in comparing different optimizatio U(wW) < U(wp) + 2€acc+ 3 ||W0H2 +0 (/\> 4)
approaches. We saw how traditional runtime guarantees m

of different approaches are sometimes seemingly incom- )

parable: One guarantee might scale poorly with the sampll! Order to obtain an upper bound 6fwo) + O(¢) on
size, while another scales poorly with the desired optimizath® generalization errai(w), each of the three remaining
tion accuracy. The analysis we perform here allows us t§€™MS on the right hand side of (4) must be bounded from

compare such guarantees and helps us understand whieROVe PYO(e), yielding:

methods are appropriate for large data sets. €ace < O(e) (5)

Recently, Bottou and Bousquet (2008) carried out such a \ < <#> (6)

“data-laden” analysis for unregularized learning of linea - Twoll”

separators in low dimensions. Here, we perform a similar m > Q (i) > 0 (Hvzig\lz) 7)

type of analysis for SVMs, i.e. regularized learning of a

linear separator in high dimensions. Using the above requirements on the optimization accuracy
€aco the regularization parametarand the working sam-

4. Data-L aden Analysis of SVM Solvers ple sizem, we can revisit the runtime of the various SVM

optimization approaches.
To gain insight into SVM learning in the data-laden regime
we perform the following “oracle” analysis: We assume
there is some good low-norm predictep, which achieves
a generalization error (expected hinge lossY(@f,) and
has normj|wy||. We train a SVM by minimizing the train-
ing objective fA(w) to within optimization accuracyace

Since we have access to an unrestricted amount of datgye can perform a similar analysis for SVM-Perf by substi-
we can choose what data set size to work with in order tqyting the requirements amc, X andm into its guaranteed

achieve the lowest possible runtime. runtime ofO (/\%w) We obtain a runtime of d‘|\:/40”4),
We will decompose the generalization error of the outputmatching that in the analysis of dual decomposition' meth-

As discussed in Section 2, dual decomposition approaches
require runtime(m?2d), with a very weak dependence
on the optimization accuracy. Substituting in the sample
size required for obtaining the target generalizationrerro

of £(wg) + ¢, we get a runtime of2 (‘”'%W)

predictorw as follows: ods above. It should be noted that SVM-Perf’s runtime has
(W) = £(wy) been reported to have only a logarithmic dependence on
0 1/eaccin practice (Smola et al., 2008). If that were the case,

i Eﬁgz)__f}i‘(’::ii) the runtime guarantee would drop(fb( ) perhaps

\ \ explaining the faster runtime of SVM-Perf on large data
+ 5 ||WO||2 N 5 ||W||2 (2) sets In practice.

. ) L As for the stochastic gradient optimizer PEGASOS, sub-
The degradation in the regularized generalization errorstituting in the requirements Omac and A into its

SA(w) — fa(w"), which appears in the second term, can g ;/(xe,.0) runtime guarantee yields a data-laden run-
be bounded by the empirical degradation: Forvallvith : £6 ( dlwol? h hat in the data-lad
[w]||* < 2/ (a larger norm would yield a worse SVM ob- tm_e ofO (T) We see, then, that in the _ata— a. en.
jective thanw =0, and so can be disqualified), with proba- regime, where we can choose a data set of arbitrary size in

bility at leastl — & over the training set (Sridharan, 2008); order to obtain some target generalization error, the meti
guarantee of PEGASOS dominates those of other methods,
log $ > including those with a much more favorable dependence on

Hw)=fir(w) <2 [fA(W) - fA(W*)LﬂLO <)\m the optimization accuracy.

where[z]. = max(z,0). Recalling thatw is an e The traditional and data-_lade!’l runtimes, ignoring .Iognarit
accurate minimizer of, (w), we have: mic factors, are summarized in the following table:

dllwoll*
€3

. . log + Method eaccaccurate £(w) < f(wp) + ¢
W) = AA(W7) < 2€ace+ O ( Am ) @) Dual decompositoin dm? (1”"6"74”“4
SVM-Perf dm diwoll”
Returning to the decomposition (2), the third term is non- PEGASOS *f;“ d”‘fm“z
positive due to the optimality of*, and regarding as a Acace 2
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5. The Intermediate Regime ) Dual Decomposition
We have so far considered two extreme regimes: one il é

which learning is bounded only by available data, but 2 ;

not by computational resources, and another where it i ;

bounded only by computational resources, but unlimitec SVM—Perf
data is available. These two analyzes tell us how man 2

samples are needed in order to guarantee some target « =

ror rate (regardless of computational resources), and hov 2

much computation is needed to guarantee this target errc !
rate (regardless of available data). However, if we have jus
enough samples to allow a certain error guarantee, the rut PEGASOS
time needed in order to obtain such an error rate might b
much higher than the runtime given unlimited samples. In
terms of the error decomposition, the approximation anc
estimation errors together would already account for the
target error rate, requiring the optimization error to be ex
tremely small. Only when more and more samples are
available might the required runtime decrease down to the

obtained in the data-laden regime. Figure 2.Descriptive behavior of the runtime needed to achieve

Accordingly, we study the runtime of a training method as gSome fixed error guarantee based on upper bounds for different
optimization approaches (solid curves). The dotted lines are the

decreasing function of the available training set size.rAs a ample-size requirement in the data-bounded regime (vertical)

gued ‘?a”'er' studied thlsdway,. the r(_alqgllred runtldeslhl?ul(ind the runtime requirement in the data-laden regime (horizon-
never increase as more data is available. We would like t‘i’al). In the top two panels (dual decomposition and SVM-Perf),

undgrstand how the excess data can be used to decrease {lminimum runtime is achieved for some finite training set size,
runtime. indicated by a dash-dotted line.

In many optimization methods, including dual decompo-curacy of PEGASOS after running for tirflg we obtain:
sition methods and SVM-Perf discussed earlier, the com-

putational cost of each basic step increases, sometimes [l woll
sharply, with the size of the data set considered. In such N
algorithms, increasing the working data set size in the hope

of being able to optimize to within a lower optimization ac- The above bound is minimized when= é( /W),
curacy is a double-edged sword. Although we can reduczieldingé(vv) < t(wo) + (T, m) with ’

the required optimization accuracy, and doing so reduce - ’

the required runtime, we also increase the computational -

cost of each basic step, which sharply increases the run- e(T,m) =0 (||W0|| ﬁ) + O (%) )

time.

Runtime

Training Set Size

d
Vi

£(w) < two) + O() + 5 Iwoll? +0() - (g)

However, in the case of a stochastic gradient descent ary_wertmg the above expression, we get the following bound

proach, the runtime to get some desired optimization acon the runtime required to attain generalization error

curacy does not increase as the sample size increases. 4fW) < Uwo) + € using a training set of size::
this case, increasing the sample size is a pure win: The

desired optimization accuracy decreases, with no counter ~ d

effect, yielding a net decrease in the runtime. T(m;e) = O . o1 2

In the following sections, we present a detailed theoreti- (“w"” (\/ﬁ))

cal analysis based on performance guarantees, as well as

(10)

GASOS runtime as more data is available. the available data set size, is depicted in the bottom panel
of Figure 2. The data-bounded (statistical learning the-
5.1. Theoretical Analysis ory) analysis describes the vertical asymptot® of ¢)—at

what sample size is it at all possible to achieve the desired
Returning to the “oracle” analysis of Section 4 and substi-error. The analysis of the data-laden regime of Section 4
tuting into equation (4) our bound on the optimization ac-described the minimal runtime using any amount of data,
and thus specifies the horizontal asymptote?’(m;e) =
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lim,, . T(m;¢€). The more detailed analysis carried out of the learned predictor on a (fixed) held-out test set. For
here bridges between these two extreme regimes. each training set size, we found the median number of it-
erations (over multiple runs with multiple training setsj) f

Before moving on to empirically observing this behavior, achievina some taraet average hinge loss. which was ver
let us contrast this behavior with that displayed by learn- 9 9 9 9 ' y

ing methods whose runtime required for obtaining a ﬁxed5|Ightly above the best “test” hinge loss that could be re-

T . : . V\)iably obtained by training on the entire available train-
optimization accuracy does increase with data set size. We o ) X
. . . Ing set. For each training set size we used the optimal
can repeat the analysis above, replacing the first term on thf for achieving the desired target hinge thssThe (me-
right hand side of (8) with the guarantee on the optimiza-

tion accuracy at runtime dF, for different algorithms. dian) required number of iterations is displayed in Figure

3. For easier interpretability and reproducibility, we oep
For SVM-Perf, we have,.. < O (dm/(AT)). The opti- the number of iterations. Since each PEGASOS iteration

mal choice of) is then) = © dm ) and the run- takes constant time, the actual runtime is proportional to

T|jwoll® i i
. oL the number of iterations.
time needed to guarantee generalization effery) + ¢
when running SVM-Perf onn samples isT'(m;e) = So far we have measured the generalization error only in
2 : . terms of the average hinge loés¥). However, our true
< _ (L '
0 (dm/<IIWoI O(\/ﬁ)) - The behavior of this goal is usually to attain low misclassification errB\(Y” #

guarantee is depicted in the middle panel of Figure 2. Asign (w,X)). The dashed lines in Figure 3 indicate the
the sample size increases beyond the statistical litgit= (median) number of iterations required to achieve a target
O(||wo|* /€?), the runtime indeed decreases sharply, un-misclassification error, which again is very slightly above
til it reaches a minimum, corresponding to the data ladernhe best that can be hoped for with the entire data set.
bound, precisely atm,, i.e. when the sample size is four

. - . These empirical results demonstrate that the runtime of
times larger than the minimum required to be able to reactévwI training using PEGASOS indeedbcreasess the
the desired target generalization error. Beyond this point_. 9 9

the other edae of the sword comes into plav. and the rund'2€ of the training set increases. It is important to note
. 9 piay, . that PEGASOS is the fastest published method for these
time (according to the performance guarantees) increas

i Gatasets (Shalev-Shwartz et al., 2007; Bottou, Web Page),
as more samples are included. : . S .
and so we are indeed investigating the best possible run-
The behavior of a dual decomposition method with runtimetimes. To gain an appreciation of this, as well as to ob-
©(m3dlog }) is given byT(m;e) = m2dlog(1/(e —  serve the runtime dependence on the training set size for
o stlll )) and depicted in the top panel of Figure 2. Here,Other methods, we repeated a limited version of the experi-

the optimal sample size is extremely close to the statisticg™eNts using SVM-Perf and the dual decomposition method

limit, and increasing the sample size beyond the minimumSVM'Light (:Joachims,_ 1998). Figure 4 and its capt_ion re-
increases the runtime quadratically. port the runtimes required by SVM-Perf and SVM-Light to

achieve the same fixed misclassification error using vary-

5.2. Empirical Analysis ing data set sizes. We can indeed verify that PEGASOS’s

.. . CV1 collection and Class 1 in the CoverType dataset of
The above analysis is based on upper bounds, and is ONackard, Jock & Dean. CCAT consists of 804,414 examples
descriptive, in that it ignores various constants and evewith 47,236 features of which 0.16% are non-zero. CoverType
certain logarithmic factors. We now show that this typehas 581,012 examples with 54 features of which 22% are non-
of behavior can be observed empirically for the stochasti@ero. We used 23,149 CCAT examples and 58,101 CoverType
subgradient optimizer PEGASOS. gxamples as test sets and sampled training sets from the remain-
er.

We trained PEGASO%on training sets of increasing size 4Selecting\ based on results on the test set seems like cheat-
taken from two large data sets, the Reuters CCAT and th#!9: and is indeed slightly cheating. However, the sameas

. chosen for multiple random training sets of the same size, and
CoverType datasetsWe measured the average hinge IOSSrepresents the optimal for the learning problem not for a spe-

2 . . : cific training set (i.e. we are not gaining here from random fluctu-
We used a variant of the method described by Shalev Shwar%tions in learning). The setup in which the optima “known”

ﬁagéﬁggi{/’vgggg sé?gilssiéggqggi;;e?ién 3?102;21‘%5}%2'0;7? common in evaluation of SVM runtime. ChoosiAdy proper
9 ge). ping P PN alidation involves many implementation choices that affect run-

dently at each iteration, a random permutation over the training S8 e such as the size of the holdout and/or number of rounds of

:Zrlljgggi p\:\é?rir&ttgtieozei;mdurf\/t\;ﬂn il&ﬁhuzuhsﬁ?s’ 3 ar:?;;’ O'S%i)izngg?:ross-validation, the range a6 considered, and the search strat-
) egy overhs. We therefore preferred a “knowwi setup, where we

m:itcgégietighneglr et{ﬁael ;E@fé% g pfgggﬁosnsggehﬂéZititerég pég?t'could obtain results that are cleaner, more interpretable, and less
.b h K ith P 21 < . P . .ppd ' affected by implementation details. The behavior displayed by

can be shown that even without fitw|” < 4/ is maintained. our results is still indicative of a realistic situation whevenust

The binary text classification task CCAT from the Reuters pg gelected.
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Figure 3.Number of PEGASOS iterations required to achieve theFigure 4.Runtime required to achieve average misclassification
desired hinge loss (solid lines) or misclassification error (dashe@rror of 5.25% on CCAT (top) and 23% on CoverType (bottom)
and dotted lines) on the test set. Top: CCAT. The minimumon a 2.4 GHz Intel Core2, using optimalsettings. SVM-Light
achievable hinge loss and misclassification errorat@2 and  runtimes for CCAT increased from 1371 seconds using 330k ex-
5.05%. Bottom: CoverType. The minimum achievable hinge lossamples to 4.4 hours using 700k examples. SVM-Light runtimes
and misclassification error aée536 and 22.3%. for CoverType increased to 552 seconds using 120k examples.

runtime is significantly lower than the optimal SVM-Perf error decreases whaitherruntime or training set size in-
and SVM-Light runtimes on the CCAT dataset. On thecrease. And so, fixing the error, we can trade off between
CoverType data set, PEGASOS and SVM-Perf have simthe runtime and data set size, decreasing one of them when
ilar optimal runtimes (both optimal runtimes were under athe other is increased.

second, and depending on the machine used, each method

was up to 50% faster or slower than the other), while svM-The hypothetical situation depicted in the insert occurs
Light's runtime is significantly higher (about 7 seconds).When runtime and dataset size each limit the attainable er-

We also clearly see the increase in runtime for large trainfO" independently. This corresponds to “L’-shaped con-

ing set sizes for both SVM-Light and SVM-Perf. On the tqurs: both a minimum 'runtime and a minimum dataset
CoverType dataset, we were able to experimentally observaiZ€ are required to attain each error level, and once both

the initial decrease in SVM-Perf runtime, when we are just€duirements are met, the error is attainable. In such a
past the statistical limit, and up to some optimal trainings'tuat'on’ the runtime doesot decrease as data set size

set size. On CCAT, and on both data sets for SVM-Light,Ncreases, but rather, as in the “L"-shaped graph, remains
the optimal data set size is the minimal size statisticaiy r constant once the statistical limit is passed. This happens
quired and any increase in data set size increases runtinfed-» If the optimization can be carried out with a singlespas

(since the theoretical analysis is just an upper bound, it iQVe" the data (or at least, if one pass is enough for getting

possible that there is no initial decrease, or that it is very€"Y €lose tol(w)). Although behavior such as this has
narrow and hard to detect experimentally). been reported usingecond-orderstochastic gradient de-

In order to gain a better understanding of the reductior
in PEGASOS'’s runtime, we show in Figure 5 the average
(over multiple training sets) generalization error achikv
by PEGASOS over time, for various data set sizes. I
should not be surprising that the generalization error de
creases with the number of iterations, nor that it is lower
for larger data sets. The important observation is that fol
smaller data sets the error decreases more slowly, even b o 1000000 2000000 3,000,000

fore the statistical limit for that data set is reached, as op Iterations

posed to the hypothetical behavior depicted in the insert of

Figure 5. This can also be seen in the dotted plots of Figurejg, re 5 Average misclassification error achieved by PEGASOS
3, which are essentially contour lines of the generalizatio on the CCAT test set as a function of runtime (#iterations), for

error as a function of runtime and training set size—thevarious training set sizes. The insert is a cartoon depicting a hy-
pothetical situation discussed in the text.

---m=300,00Q Hypothetical Behaviour
m = 400,000
—m = 500,000

Test misclassification error
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scent forunregularizedinear learning (Bottou & LeCun, We are looking forward to seeing methods that more ex-
2004), this is not the case here. Unfortunately we are noplicitly leverage large data sets in order to reduce runtime
aware of an efficient one-pass optimizer for SVMs. achieving stronger decreases in practice, and being able to
better leverage very large data sets. Although it seems that
not much better can be done theoretically given only the
simple oracle assumption of Section 4, a better theoretical
We suggest here a new way of studying and understandingnalysis of such methods might be possible using richer as-
the runtime of training: Instead of viewing additional trai  sumptions. We would also like to see practical methods
ing data as a computational burden, we view it as an assébr non-linear (kernelized) SVMs that display similar be-
that can be used to our benefit. We already have a fairljavior. Beyond SVMs, we believe that many other prob-
good understanding, backed by substantial theory, on holems in machine learning, usually studied computationally
additional training data can be used to lower the generalas optimization problems, can and should be studied using
ization error of a learned predictor. Here, we consider thehe type of analysis presented here.

situation in which we are satisfied with the error, and study

how additional data can be used to decrease training rurReferences
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