Learning All Optimal Policies with Multiple Criteria

Leon Barrett
Srini Narayanan

1947 Center St. Ste. 600, Berkeley, CA 94704

Abstract

We describe an algorithm for learning in the
presence of multiple criteria. Our technique
generalizes previous approaches in that it can
learn optimal policies for all linear preference
assignments over the multiple reward criteria
at once. The algorithm can be viewed as an
extension to standard reinforcement learning
for MDPs where instead of repeatedly back-
ing up maximal expected rewards, we back
up the set of expected rewards that are max-
imal for some set of linear preferences (given
by a weight vector, w). We present the algo-
rithm along with a proof of correctness show-
ing that our solution gives the optimal policy
for any linear preference function. The solu-
tion reduces to the standard value iteration
algorithm for a specific weight vector, w.

1. Introduction

In Reinforcement Learning (RL), an agent interacts
with the environment to learn optimal behavior. (Sut-
ton & Barto, 1998) Most RL techniques are based on
a scalar reward, i.e., they aim to optimize an objective
that is expressed as a function of a scalar reinforce-
ment. A natural extension to traditional RL tech-
niques is thus the case where there are multiple re-
wards. In many realistic domains, actions depend on
satisfying multiple objectives simultaneously (such as
achieving performance while keeping costs low, a robot
moving efficiently toward a goal while being close to
a recharging station, or a government funding both
military and social programs). Learning optimal poli-
cies in many real-world domains thus depends on the
ability to learn in the presence of multiple rewards.
However, the resulting policies depend heavily on the
preferences over these rewards, and they may change

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

BARRETTQ@ICSI.BERKELEY.EDU
SNARAYAN@ICSI.BERKELEY.EDU

swiftly as preferences vary. We present both an al-
gorithm for the general case of learning all optimal
policies under all assignments of linear priorities for
the reward components, and a proof showing the cor-
rectness of our algorithm.

We start with a motivating example of a simple task
with multiple rewards in Section 2. The paper then
proceeds to the main algorithm in Section 3. We ad-
dress related work in Section 4, and then Section 5
discusses the complexity of our algorithm including re-
alistic and tractable specializations of our algorithm.
Section 6 describes the application of this algorithm
to an example domain, and Section 7 discusses exten-
sions to this technique, such as implementations using
other RL methods (such as temporal difference meth-
ods) and applications of our algorithm to infer another
agent’s preferences based on observing their behavior.
Section 8 outlines the proof of the algorithm’s correct-
ness.

2. Explanation and Motivating
Example

We assume that instead of getting a single reward
signal, the agent gets a reward divided up into sev-
eral components, a reward vector. That is, we
decompose the reward signal r(s,a) (where s is a
state and a is an action) into a vector 7' (s,a) =
[r1(s,a),r2(s,a),...,mn(s,a)]. An agent could poten-
tially optimize many different functions of these re-
wards, but the simplest function is a weighted sum:
for every fixed weight vector w we obtain a total re-
ward scalar 74 (s,a) = W - 7 (s,a). There is thus an
optimal policy % for each weight vector w.

Consider, for example, a lab guinea pig running a fa-
miliar maze, shown in Figure 1. The guinea pig runs
through the maze to one of four stashes of food. Once
it has reached a stash and eaten the food, the ex-
perimenter takes it out of the maze and returns it
to its cage, so it can only hope to eat one of the
stashes per run of the maze. Assume that there are

Learning All Optimal Policies with Multiple Criteria

3W r=[0.6, 0.6] r=[1, 0] 1(W
4W r=[0.7, 0.4] r=10,1] | 2 @

Figure 1. An example maze with rewards, split into 2 com-
ponents, at 3 different locations

only 2 types of food provided (hay and carrot), so re-
ward vectors take the form [hay,carrot]. Location 1
contains hay (77 = [1,0]), location 2 contains carrot
(7 = [0,1]), and locations 3 and 4 contain a little of
both (7 = [0.6,0.6] and [0.7,0.4], respectively). Be-
cause the maze is familiar, the animal knows where the
food is placed and what sort of food is in each location.

The experimenter has several different guinea pigs and
has discovered that each has different tastes. For in-
stance, Chester likes only hay (w = [1,0]), and Milo
likes only carrot (w = [0,1]), but greedy Louis likes
both equally (w = [0.5,0.5]). (Without loss of gen-
erality, assume that all animals’ weight vectors sat-
isfy), w; = 1: they describe relative preferences, not
absolute utilities.) So, if Chester goes to location 4
(7 =[0.7,0.4]), then he gets reward r = w - 7 = 0.7.
Milo would get 0.4, and Louis would get a reward of
0.55.

Looking at the maze, we see that although there are
4 possible strategies (with rewards shown in Figure 2,
only 3 of them are optimal for any values of W. One
strategy occurs when the weight vector has wg > 0.6
(and hence w1 = 1 —wp < 0.4): then the guinea pig
should head straight for location 1, because the reward
elsewhere will be no more than 0.6. By the exact same
logic, when the weight vector has wy > 0.6 (and wg <
0.4), then the animal should go to location 2. In all
other cases (0.4 < wp < 0.6), it will optimize its reward
by going to location 3. Under no circumstances would
an optimal agent go to location 4! No matter what its
weight vector, some other location dominates location
4. We would like to determine exactly this: which
policies are viable and which are not (even without
knowing w).

Our method learns the set of optimal policies for all w
at the same time. Once the agent has learned all these
policies, it can change reward weights at runtime to
get a new optimal behavior, without having to do any

12
3
R2
)
1
0 R1 1

Figure 2. The potential reward vectors in the guinea pig
example

relearning. For a fixed priority scheme (fixed weight
vector w) over the multiple reward components, our
algorithm results in the standard recurrence for Q-
values that is analogous to the equation for the average
weighted reward case as in (Natarajan & Tadepalli,
2005):

Q% (s,a) =E [E) -7 (s,a) + ymax Q%(s/, a)ls,a
a/

In the general case, where we do not know the relative
priorities over the reward components, our algorithm
exploits the fact that the extrema of the set of Q-values
vectors (Q vectors that are maximal for some weight
setting) is the same as the convex hull of the Q-value
vectors. (The convex hull is defined as the smallest
convex set that contains all of a set of points. In this
case, we mean the points that lie on the boundary
of this convex set, which are of course the extreme
points—the ones that are maximal in some direction.
This is somewhat similar to the Pareto curve, since
both are maxima over trade-offs in linear domains.)
Now we can rewrite the general RL recurrence in terms
of operations on the convex hull of Q-values, and we
show this recurrence to be correct and convergent to
the value iteration algorithm in the fixed weight vector
case. Many standard RL algorithms in the literature
can be seen as limiting cases of our more general algo-
rithm. While the worst-case complexity of our general
algorithm is exponentially higher than that of fixed-w
cases, it not only solves all the fixed-w cases but also
determines which cases are worth solving. We also give
some constraints and techniques that can help reduce
the complexity.

3. Convex Hull Value Iteration

In this section, we introduce the problem definition
in the context of a traditional MDP setting and our
approach and algorithm.

Learning All Optimal Policies with Multiple Criteria

3.1. Preliminaries and Notation

Our approach is based on an MDP which is a tuple
(S, A, T,~,7), where S is a finite set of N states, A =
{a1,...,a;} is a set of k actions, T = {Psa(s')} is
the set of state transition probabilities (Pg,(s’) is the
transition probability of going to state s’ € S by taking
action a € A from state s € S), v € [0,1) is the
discount factor, and 7 : S x A — R is the reward
function giving d-component reward vector ?(s,a).
This differs from the standard formulation only in that
reward now comes as a vector.

A policy, 7, is the map S — A, and the value func-
tion for any policy 7, evaluated at some state s; is the
vector

—T

14 (Sz) = E[?(SZ, CLi) + ’}/?(Slqu, ai+1) + ... |7T] (1)

where the expectation is over the distribution of the
state and reward sequence (Si, T4, Sit1, T itls---),
that is obtained on executing the policy 7 starting
from the state s;. The Q-function is the vector

—T

—T
Q (87 a) = E?(s,a),s’fvpsa 7)(87 a) + /YV (8/)} (2)

where 7 (s,a),s’ ~ P,, means that the expectation
with respect to s’ and 7 (s,a) distributed according
to P,,. The optimal Q function for a weight w is

QL (s,a) = sup, W - @ (s,a).

3.2. Approach: Convex Hulls

Given some W, the resulting reward for taking an ac-
tion is r(s,a) = W - 7'(s,a). This gives us the follow-
ing recurrence for optimal Q-values, which is exactly
equivalent to the equation for a single reward compo-
nent:

Qu(s,0) = E[@ - 7 (5,0) + ymaxQz (s, s a

We can solve this recurrence directly, or we can use it
to get converging approximations to the optimal value
function—this gives rise to the value iteration method,
Q-learning, and so on.

An alternative view is that each possible policy gives a
different expected reward 5(3, a), and we simply want
to select a policy by maximizing the dot product of this
with w. For a fixed w, only one such C—j(s, a) can be
optimal, but in general we might care about any 55
that are maximal for some w. But this set of Q-values
that are extrema is exactly the convex hull of the Q-
values! This allows us to use standard convex hull
operations to pare down the set of points we consider
and gives rise to the following proposition.

Proposition 1. The convex hull over @Q-values con-
tains the optimal policy over the average expected re-
ward 7(s,a) = W - 7 (s,a) for any w.

To make this operational and derive an algorithm that
maintains all optimal policies for any weight vector w,
we need a few definitions for relevant operations on the
convex hull.

[e]
We write Q(s,a) to represent the vertices of the con-
vex hull of possible Q-value vectors for taking action
a at state s. We then define the following operations
on convex hulls which will be used to construct our
learning algorithm.

Definition 1. Translation and scaling operations
W) = (WbT:TEQ) ()
Definition 2. Summing two convex hulls

O+U = ml{T+7:TeQ@el} (4

Definition 3. Extracting the Q-value To extract
the best Q-value for a given w, we perform a simple
maximum.:

w-q (5)

Given these definitions, we are now ready to illustrate
the basic algorithm.

3.3. Convex Hull Value Iteration Algorithm

Our algorithm extends the single-w case (which is the
standard expected discounted reward framework (Bell-
man, 1957)) into the following recurrence:

o

Q(s,a) =E | F(s,a) + yhull| JQ(s',a)]s,a| (6)

That is, instead of repeatedly backing up maximal ex-
pected rewards, we back up the set of expected rewards
that are maximal for some w. While the expectation
over hulls looks awkward, it is the natural equivalent
of an expectation of maxima, and it arises for the same
reason. We must take an expectation over s’, but once
in s’, we can choose the best action, no matter what
our w. The expectation’s computation can be broken
down, in the usual way, into the scalings and sums we
have already defined.

This leads us to define Algorithm 1, which extends
the value iteration algorithm (Bellman, 1957) to learn
optimal Q-values for all possible wW. A proof of its
correctness is given in Section 8.

Learning All Optimal Policies with Multiple Criteria

Algorithm 1 Value iteration algorithm modified from
that of Bellman (1957)

Initialize Q(s,a) arbitrarily Vs, a
while not converged do
for all s € S,a€ Ado

Q(s,a) < E[7'(s,a)

+~hulll,, Q(s,ad’)|s, a
end for
end while

[e]
return @

4. Related Work

There is now a body of work addressing multi-reward
reinforcement learning. There have been algorithms
that assume a fixed ordering between different re-
wards, such as staying alive and not losing food (Gabor
et al., 1998), techniques based on formulating the mul-
tiple reward problem as optimizing a weighted sum of
the discounted total rewards for multiple reward types
(Feinberg & Schwartz, 1995), and techniques that de-
compose the reward function into multiple components
which are learned independently (with a single pol-
icy) (Russell & Zimdars, 2003). In all these cases, the
preference over rewards is assumed to be fixed and
time-invariant. In a slightly more flexible formulation,
Mannor and Shimkin (2004) take multiple reward com-
ponents and perform learning that results in expected
rewards lying in a particular region of reward space.

More recently, (Natarajan & Tadepalli, 2005) formu-
late the multiple reward RL problem as we do, using a
weighted expected discounted reward framework, and
they store both the currently best policy and its Q-
values as vectors. When priorities change dynamically
(as reflected in changes in the weight vector), the agent
can calculate new reward scalars from the vectors and
thus start from the Q-values of the best policy learned
so far rather than resetting entirely. As far as we are
aware, none of the techniques proposed tackle the gen-
eral case of learning optimal policies for all linear pref-
erence assignments over the multiple reward compo-
nents.

4.1. Relation to POMDPs

Our problem, and hence its solution, is closely related
to the standard partially observable Markov decision
process (POMDP) formulation. In a POMDP, we have
a model of both observed and unobserved variables
and use Bayesian reasoning to infer a joint distribution
over the hidden variables. Then, we must choose an

O’

\/
10

Figure 3. A POMDP formulation of multiple reward com-
ponents

optimal action based on both the observed state and
the continuous beliefs. (Kaelbling et al., 1998)

Consider the POMDP shown in Figure 3; here, the
reward depends on an unobserved multinomial ran-
dom variable, so E[r] = >, P(w = t)r;. If we define
P(w¢|wi—1) to be the identity, the distribution of w
will not change with ¢. Then, the expected reward de-
pends linearly on our prior distribution over w, and
the dual of the usual POMDP maximum-hyperplane
algorithm corresponds to a convex hull operation over
reward components. It is thus possible to write our
multiple-reward problem as a POMDP problem. This
suggests a natural route to extend our algorithm to op-
erate on POMDPs. It remains future work, however,
to see if the approximation algorithms used for solving
POMDPs can yield useful results in our domain.

5. Complexity

This algorithm relies on four convex hull operations,
whose complexity we will analyze in terms of the num-
ber of points on the hull, n; in the limit, this num-
ber converges to the number of optimal policies in the
environment. We must both scale (by probabilities
and discounts) and translate (by rewards) our con-
vex hulls; these operations only require touching every
point once, resulting in a complexity of O(n). We must
also merge two or more convex hulls. This takes time
at most O((kn)l9/2l) if d > 3, where k is the number
of hulls involved, n is the number of points in each
hull, and d is the dimension (number of reward com-
ponents) (Clarkson & Shor, 1989). Finally, we must
add two convex hulls. If done naively by adding all
pairs of points and taking a hull, this takes time at
most O(n?l%/21). All these operations must be per-
formed whenever we back up Q-values, so we multiply
the complexity of ordinary reinforcement learning by
O(n2l4/2). (However, in the d = 2 and d = 3 cases,
there are efficient ways to perform these operations.)

In the long run, the number of points on each convex
hull, n, must converge to a limit as the Q-values con-

Learning All Optimal Policies with Multiple Criteria

R1 | E2

El R2

Figure 4. A resource-collection domain

verge to their optimal values. Eventually, there will
be exactly one point on each convex hull for each opti-
mal policy. However, in the short term, the number of
short-range policies we might have to track might be
much lower or even higher. Also, the number of opti-
mal policies n depends on the environment in a com-
plicated way, with the worst case being that all policies
(|A['S! of them) may be optimal for some weight vec-
tor.

5.1. Reducing the Complexity

The complexity result of our algorithmic modifications
is an exponential blowup with the number of reward
components. There are a few main ways of tackling
this. The first is to simply restrict the number of re-
ward components; with only, say, 5 or fewer, this ad-
ditional computation is likely not to be an undue bur-
den. In practice, there are currently very few problems
studied with more reward components than this.

When we must handle a high-dimensional problem,
we can reduce the complexity by applying constraints
on the weight vectors that we might optimize for.
Given the geometric nature of our approach, if we have
knowledge about the directions of allowable vectors,
such as @ - w > 0, then we can simply take a partial
convex hull. This will, on average, reduce the com-
plexity of the convex hull computation by half. So, if
we know that all d elements of w must be positive,
then we can write that as d such constraints to divide
the convex hull complexity by 2¢.

In addition, the convergence of Q-values means that
we are essentially performing the same convex hull op-
erations again and again; this means that we might be
able to reuse the information from the last iteration.
The idea is to annotate each point with a “witness”, or
proof of its status: if a point is not on the convex hull,
then we note down a set of faces that enclose it, and
if it is on the hull, we note down a direction in which
it is the extremum. Then, on the next iteration, when
these points have moved slightly and we must compute
a convex hull again, we can simply check these proofs

R2

Figure 5. Optimal rewards in the resource-collection do-
main

R2

06 | —

02 3 4

0 0.2 0.4 0.6 0.8 1

(E) R1

Figure 6. Regions of preference space in which policies are
optimal. Axes are reward components R1 and R2; the
enemy weight is £ =1 — R1 — R2.

(in at most O(n?) time). If all the proofs are correct,
then our convex hull remains correct and the locations
of the points have moved only slightly. On the other
hand, if any proof is violated, we can simply rebuild
the convex hull in the ordinary, expensive way. In the
limit as the Q-values and policy converge, the policy
must stop changing, so this trick may greatly reduce
the complexity of refining Q-values.

policy

Go directly to R2, dodging Es

Go to both Rs, through both Es

Go to R1, through E1 both ways

Go to both Rs, dodging E1 but through E2
Go to R1, dodging all Es

Go to R1, going through E1 only once

o | ot| | ol nof —|Fk

Table 1. The optimal policies for the example domain

Learning All Optimal Policies with Multiple Criteria

6. Example Application: Resource
Gathering

In order to demonstrate the application of this
method, we have tested it on a resource-collecting
problem similar to that of many strategy games. We
model this as a resource-collecting agent moving (in
the 4 cardinal directions) around in a grid environ-
ment shown in Figure 4, starting from the home base,
labelled H. Its goal is to gather resources and take
them back to the home base. If it reaches location R1,
it then picks up resource 1, and at R2 it gets resource
2; it can carry both at the same time. When the agent
returns to H, it receives a reward for each resource it
brings back. Also, if it steps on one of the two enemy
spaces, labeled E1 and E2, with a 10% probability it
will be attacked, receiving a penalty and resetting to
the home space, losing all it carries. Its reward space
is then [enemy, resourcel, resource2], so it can get a
penalty of [-1,0,0] for being attacked, or a reward of
[0,1,0], [0,0,1], or [0,1,1] for bringing back one or both
resources. We use a discounting rate of v = 0.9.

Depending on the relative values of the resources and
attack, the agent may find different policies to be valu-

[e]
able. The convex hull of values starting at H, V(H),
is shown in Figure 5. The points on the hull corre-
spond to optimal policies, described in Table 1; each
policy is valid for some range of preferences w, which
are shown in Figure 6.

7. Extensions and Current Work

This same convex-hull technique can be used with
other RL algorithms, such as the temporal difference
learning algorithm. The critical thing to recall is that
because we are learning more than one policy at once,
we can use only off-policy learning algorithms.

Our solution can also be used for inferring the pref-
erence function from observation data. This is closely
related to the inverse reinforcement learning problem
(Ng & Russell, 2000; Abeel & Ng, 2004). The basic
idea behind inverse reinforcement learning is to use
observed behavior to infer weights from a user that
can then be used to find optimal policies. In our case,
the method for learning all policies at once can also
be used in reverse to learn the range of reward weights
that an agent must have. If we assume that an agent
we observe is rational and uses a policy that is opti-
mal for its reward weights, then we can use our obser-

We do not show the ranges of policies optimal where
the values of the rewards are less than 0 (w; < 0); these
policies, while sometimes interesting, are not valuable for
the task.

vations of the agent to infer its reward weights. We
simply repeatedly observe its choice of action a and

use our knowledge of Q(s,a) to identify which values
of W are consistent with that action. Then, we take
the intersection of the constraints.

The multi-criterion RL approach also allows us to ex-
amine reward at different time scales. Instead of hav-
ing a single discounting factor -, we could have a dis-
counting factor v; for each component. This allows
us to use a sum of exponentials with different time
constants to approximate non-exponential discounting
rates, which are helpful in explaining the preferences of
humans (Ainslie, 2001). With our convex hull method,
we can find what policies are optimal for a whole range
of discounting rates.

8. Appendix: Proof of Correctness

We prove that YV Algorithm 1 gives the optimal pol-
icy by reducing the recurrence to the standard value
iteration recurrence for any w. First, recall the basic
recurrence of our algorithm, Equation 6.

[e]

Q(s,a) «— E |7 (s,a) + 7hu11U 52(3’, a')ls, a]

Now apply Equation 5 to the both sides (to extract
the optimal value for w):

Qw(s,a) «— max{w-q:7q € E[?(s,a)

~+~ hull U C?)(s', a’)ls, a} }.

a
Next, apply the definition of an expectation

—max {W-q:qE¢€ Y5 T (s.a) P(s', 7 (s,a)|s,a)

: (?(87 a) + 'yhull Ua’ Q(Slu a/)> }7
then use Equations 3 and 4 and rewrite

— max{w-q:7q € hull{

> Pl T(sa)lsi0) (T (s,) 97)

0,7 (s,a)

: ?/5’1 IS hullUQ(s’l,a’),...}}.

Learning All Optimal Policies with Multiple Criteria

7;/1 € hullUQ(s'l, a),.. }
a/
Pull 7 (s,a) (added independently to the entire set)
and ~ (non-negative) out of the maximum.
— E[W-7(s,a)ls,a
+ max{ ZP(SHS, a)w - ?/S/ :
i
7;/1 € hullUQ(s'l,a'), . }
a/
But the max of a sum over different sets is the sum of
the sets” maxima, which we simplify.

— E[w-7(s,a)|s,a] +

’}/ZP(S“S, a) rnax{@> . E)/S; :
i

?; € hull U 6)02(5;, a’)}

i

+72P(3§|3, a) max{@> TR

7. € Qs d)d € A(s;>}

— =

— E[w -7 (s,a)|s,a]
— =/
+v g P(sils,a)max max W -7q

o k2
i q’, €Q(s},a)
i

But we re-order the maxima and rewrite an expecta-
. . —_—
tion, and so we recover our recurrence for a single w.

s,a]

o

Qw(s,a) — E[E} -7 (s,0) + ymax Qz (s, a’)

Given a w, at any point in the algorithm, this gives
the same Q-value as ordinary value iteration. There-
fore, the proof of convergence for the value iteration
algorithm applies to our method, and our method con-
verges exactly as quickly as ordinary value iteration
(for every w).

References

Abeel, P., & Ng, A. (2004). Apprentice learning via
inverse reinforcement learning. Proc. ICML-0/.

Ainslie, G. (2001). Breakdown of will. Cambridge,
Massachusetts: Cambridge University Press.

Bellman, R. E. (1957). Dynamic programming. Prince-
ton: Princeton University Press.

Clarkson, K. L., & Shor, P. W. (1989). Applications
of random sampling in computational geometry, II.
Discrete and Computational Geometry, 4, 387-421.

Feinberg, E., & Schwartz, A. (1995). Counstrained
markov decision models with weighted discounted
rewards. Mathematics of Operations Research, 20,
302-320.

Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998). Multi-
criteria reinforcement learning. Proc. ICML-98.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R.
(1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence.

Mannor, S., & Shimkin, N. (2004). A geometric
approach to multi-criterion reinforcement learning.
Journal of Machine Learning Research, 325-360.

Natarajan, S., & Tadepalli, P. (2005). Dynamic prefer-
ences in mult-criteria reinforcement learning. Proc.
ICML-05. Bonn, Germany.

Ng, A., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. Proc. ICML-00.

Russell, S., & Zimdars, A. (2003). Q-decomposition
for reinforcement learning agents. Proc. ICML-03.
Washington, DC.

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. Cambridge, Massachusetts:
The MIT Press.

