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Abstract

We show that the Brier game of prediction
is mixable and find the optimal learning rate
and substitution function for it. The result-
ing prediction algorithm is applied to predict
results of football and tennis matches. The
theoretical performance guarantee turns out
to be rather tight on these data sets, espe-
cially in the case of the more extensive tennis
data.

1. Introduction

The paradigm of prediction with expert advice was
introduced in the late 1980s (see, e.g., Littlestone
& Warmuth, 1994, Cesa-Bianchi et al., 1997) and
has been applied to various loss functions; see Cesa-
Bianchi and Lugosi (2006) for a recent book-length
review. An especially important class of loss functions
is that of “mixable” ones, for which the learner’s loss
can be made as small as the best expert’s loss plus
a constant (depending on the number of experts). It
is known (Haussler et al., 1998; Vovk, 1998) that the
optimal additive constant is attained by the “strong
aggregating algorithm” proposed in Vovk (1990) (we
use the adjective “strong” to distinguish it from the
“weak aggregating algorithm” of Kalnishkan & Vyu-
gin, 2005).

There are several important loss functions that have
been shown to be mixable and for which the optimal
additive constant has been found. The prime examples
in the case of binary observations are the log loss func-
tion and the square loss function. The log loss func-
tion, whose mixability is obvious, has been explored
extensively, along with its important generalizations,
the Kullback–Leibler divergence and Cover’s loss func-
tion.
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In this paper we concentrate on the square loss func-
tion. In the binary case, its mixability was demon-
strated in Vovk (1990). There are two natural direc-
tions in which this result could be generalized:

Regression: observations are real numbers (square-
loss regression is a standard problem in statistics).

Classification: observations take values in a finite set
(this leads to the “Brier game”, to be defined
below, a standard way of measuring the quality
of predictions in meteorology and other applied
fields: see, e.g., Dawid, 1986).

The mixability of the square loss function in the case
of observations belonging to a bounded interval of
real numbers was demonstrated in Haussler et al.
(1998); Haussler et al.’s algorithm was simplified in
Vovk (2001). Surprisingly, the case of square-loss
non-binary classification has never been analysed in
the framework of prediction with expert advice. The
purpose of this paper is to fill this gap. The full ver-
sion (Vovk & Zhdanov, 2008) of this paper is available
on arXiv.

2. Prediction Algorithm and Loss
Bound

A game of prediction consists of three components:
the observation space Ω, the decision space Γ, and the
loss function λ : Ω × Γ → R. In this paper we are
interested in the following Brier game (Brier, 1950):
Ω is a finite and non-empty set, Γ := P(Ω) is the set
of all probability measures on Ω, and

λ(ω, γ) =
∑

o∈Ω

(γ{o} − δω{o})2 ,

where δω ∈ P(Ω) is the probability measure concen-
trated at ω: δω{ω} = 1 and δω{o} = 0 for o 6= ω.
(For example, if Ω = {1, 2, 3}, ω = 1, γ{1} = 1/2,
γ{2} = 1/4, and γ{3} = 1/4, λ(ω, γ) = (1/2 − 1)2 +
(1/4− 0)2 + (1/4− 0)2 = 3/8.)
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The game of prediction is being played repeatedly by
a learner having access to decisions made by a pool of
experts, which leads to the following prediction proto-
col:

Protocol 1 Prediction with expert advice
L0 := 0.
Lk

0 := 0, k = 1, . . . ,K.
for N = 1, 2, . . . do

Expert k announces γk
N ∈ Γ, k = 1, . . . , K.

Learner announces γN ∈ Γ.
Reality announces ωN ∈ Ω.
LN := LN−1 + λ(ωN , γN ).
Lk

N := Lk
N−1 + λ(ωN , γk

N ), k = 1, . . . , K.
end for

At each step of Protocol 1 Learner is given K experts’
advice and is required to come up with his own deci-
sion; LN is his cumulative loss over the first N steps,
and Lk

N is the kth expert’s cumulative loss over the
first N steps. In the case of the Brier game, the deci-
sions are probability forecasts for the next observation.

An optimal (in the sense of Theorem 1 below) strat-
egy for Learner in prediction with expert advice for
the Brier game is given by the strong aggregating al-
gorithm. For each expert k, the algorithm maintains
its weight wk, constantly slashing the weights of less
successful experts.

Algorithm 1 Strong aggregating algorithm for the
Brier game

wk
0 := 1, k = 1, . . . ,K.

for N = 1, 2, . . . do
Read the Experts’ predictions γk

N , k = 1, . . . ,K.
Set GN (ω) := − ln

∑K
k=1 wk

N−1e
−λ(ω,γk

N ), ω ∈ Ω.
Solve

∑
ω∈Ω(s−GN (ω))+ = 2 in s ∈ R.

Set γN{ω} := (s−GN (ω))+/2, ω ∈ Ω.
Output prediction γN ∈ P(Ω).
Read observation ωN .
wk

N := wk
N−1e

−λ(ωN ,γk
N ).

end for

The algorithm will be derived in Section 5. The fol-
lowing result (to be proved in Section 4) gives a per-
formance guarantee for it that cannot be improved by
any other prediction algorithm.

Theorem 1. Using Algorithm 1 as Learner’s strategy
in Protocol 1 for the Brier game guarantees that

LN ≤ min
k=1,...,K

Lk
N + ln K (1)

for all N = 1, 2, . . . . If A < ln K, Learner does not

have a strategy guaranteeing

LN ≤ min
k=1,...,K

Lk
N + A (2)

for all N = 1, 2, . . . .

3. Experimental Results

In our first empirical study of Algorithm 1 we use his-
torical data about 6416 matches in various English
football league competitions, namely: the Premier
League (the pinnacle of the English football system),
the Football League Championship, Football League
One, Football League Two, the Football Conference.
Our data, provided by Football-Data, cover two full
seasons, 2005/2006 and 2006/2007, and part of the
2007/2008 season (which ends in May shortly after the
paper submission deadline). The matches are sorted
first by date and then by league. In the terminology
of our prediction protocol, the outcome of each match
is the observation, taking one of three possible values,
“home win”, “draw”, or “away win”; we will encode
the possible values as 1, 2, and 3.

For each match we have forecasts made by a range of
bookmakers. We chose eight bookmakers for which we
have enough data over a long period of time, namely
Bet365, Bet&Win, Gamebookers, Interwetten, Lad-
brokes, Sportingbet, Stan James, and VC Bet. (And
the seasons mentioned above were chosen because the
forecasts of these bookmakers are available for them.)

A probability forecast for the next observation is essen-
tially a vector (p1, p2, p3) consisting of positive num-
bers summing to 1. The bookmakers do not announce
these numbers directly; instead, they quote three bet-
ting odds, a1, a2, and a3. Each number ai is the
amount which the bookmaker undertakes to pay out
to a client betting on outcome i per unit stake in the
event that i happens (the stake itself is never returned
to the bettor, which makes all betting odds greater
than 1; i.e., the odds are announced according to the
“continental” rather than “traditional” system). The
inverse value 1/ai, i ∈ {1, 2, 3}, can be interpreted
as the bookmaker’s quoted probability for the obser-
vation i. The bookmaker’s quoted probabilities are
usually slightly (because of the competition with other
bookmakers) in his favour: the sum 1/a1+1/a2+1/a3

exceeds 1 by the amount called the overround (at most
0.15 in the vast majority of cases). We used

pi :=
1/ai

1/a1 + 1/a2 + 1/a3
, i = 1, 2, 3, (3)

as the bookmaker’s forecasts; it is clear that p1 + p2 +
p3 = 1.
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The results of applying Algorithm 1 to the football
data, with 8 experts and 3 possible observations, are
shown in Figure 1. Let Lk

N be the cumulative loss of
Expert k, k = 1, . . . , 8, over the first N matches and
LN be the corresponding number for Algorithm 1 (i.e.,
we essentially continue to use the notation of Theorem
1). The dashed line corresponding to Expert k shows
the excess loss N 7→ Lk

N − LN of Expert k over Al-
gorithm 1. The excess loss can be negative, but from
Theorem 1 we know that it cannot be less than − ln 8;
this lower bound is also shown in Figure 1. Finally,
the thick line (the positive part of the x axis) is drawn
for comparison: this is the excess loss of Algorithm 1
over itself. We can see that at each moment in time
the algorithm’s cumulative loss is fairly close to the
cumulative loss of the best expert (at that time; the
best expert keeps changing over the time).
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Figure 1. The difference between the cumulative loss of
each of the 8 bookmakers (experts) and of Algorithm 1
on the football data. The theoretical lower bound − ln 8
from Theorem 1 is also shown.

Figure 2 shows the results of another empirical study,
involving data about a large number of tennis tour-
naments in 2004, 2005, 2006, and 2007, with the to-
tal number of matches 10,087. The tournaments in-
clude, e.g., Australian Open, French Open, Wimble-
don, and US Open; the data is provided by Tennis-
Data. The matches are sorted by date, then by tourna-
ment. The data contain information about the winner
of each match and the betting odds of 4 bookmakers
for his/her win and for the opponent’s win. There-
fore, now there are two possible observations (player
1’s win and player 2’s win). There are four bookmak-
ers: Bet365, Centrebet, Expekt, and Pinnacle Sports.

The results in Figure 2 are presented in the same way
as in Figure 1. Typical values of the overround are
below 0.1.
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Figure 2. The difference between the cumulative loss of
each of the 4 bookmakers and of Algorithm 1 on the tennis
data. Now the theoretical bound is − ln 4.

In both Figure 1 and Figure 2 the cumulative loss
of Algorithm 1 is close to the cumulative loss of the
best expert, despite the fact that some of the experts
perform poorly. The theoretical bound is not hope-
lessly loose for the football data and is rather tight for
the tennis data. The pictures look exactly the same
when Algorithm 1 is applied in the more realistic man-
ner where the weights wk are not updated over the
matches that are played simultaneously.

Our second empirical study (Figure 2) is about binary
prediction, and so the algorithm of Vovk (1990) could
have also been used (and would have given similar re-
sults). We included it since we are not aware of any
empirical studies even for the binary case.

Other popular algorithms for prediction with expert
advice that could be used instead of Algorithm 1 in our
empirical studies are Kivinen and Warmuth’s (1999)
Weighted Average Algorithm (WAA) and Freund and
Schapire’s (1997) Hedge algorithm (HA). The perfor-
mance guarantees for these two algorithms are much
weaker than the optimal (1), especially in the case
of the HA (even if the loss bound given in Freund
& Schapire, 1997, is replaced by the stronger bound
given in Vovk, 1998, Example 7). The weak perfor-
mance guarantees show in the empirical performance
of the algorithms. For the football data the maxi-
mal difference between the cumulative loss of both the
WAA and the HA and the cumulative loss of the best
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expert is about twice as large as that for Algorithm 1
(and so is approximately equal to the optimal bound
ln K given by (1)). For the tennis data the maximal
difference for the WAA is about three times as large
as for Algorithm 1, and for the HA it is about twice
as large; therefore, both algorithms violate the opti-
mal bound ln K. For further details, see Vovk and
Zhdanov (2008).

The data used for producing Figures 1 and 2 can be
downloaded from http://vovk.net/ICML2008.

4. Proof of Theorem 1

This proof will use some basic notions of elementary
differential geometry, especially those connected with
the Gauss–Kronecker curvature of surfaces. (The use
of curvature in this kind of results is standard: see,
e.g., Vovk, 1990, and Haussler et al., 1998.) All defini-
tions that we will need can be found in, e.g., Thorpe,
1979.

A vector f ∈ RΩ (understood to be a function f :
Ω → R) is a superprediction if there is γ ∈ Γ such
that, for all ω ∈ Ω, λ(ω, γ) ≤ f(ω); the set Σ of all
superpredictions is the superprediction set. For each
learning rate η > 0, let Φη : RΩ → (0,∞)Ω be the
homeomorphism defined by

Φη(f) : ω ∈ Ω 7→ e−ηf(ω), f ∈ RΩ.

The image Φη(Σ) of the superprediction set will be
called the η-exponential superprediction set. It is
known that

LN ≤ min
k=1,...,K

Lk
N +

ln K

η

can be guaranteed if and only if the η-exponential su-
perprediction set is convex (part “if” for all K and
part “only if” for K → ∞ are proved in Vovk, 1998;
part “only if” for all K is proved by Chris Watkins,
and the details can be found in, e.g., Vovk, 2007, Ap-
pendix). Comparing this with (1) and (2) we can see
that we are required to prove that

• Φη(Σ) is convex when η ≤ 1;

• Φη(Σ) is not convex when η > 1.

Define the η-exponential superprediction surface to be
the part of the boundary of the η-exponential super-
prediction set Φη(Σ) lying inside (0,∞)Ω. The idea of
the proof is to check that, for all η < 1, the Gauss–
Kronecker curvature of this surface is nowhere vanish-
ing. Even when this is done, however, there is still un-
certainty as to in which direction the surface is bulging

(towards the origin or away from it). The standard ar-
gument (as in Thorpe, 1979, Chapter 12, Theorem 6)
based on the continuity of the smallest principal cur-
vature shows that the η-exponential superprediction
set is bulging away from the origin for small enough
η: indeed, since it is true at some point, it is true ev-
erywhere on the surface. By the continuity in η this is
also true for all η < 1. Now, since the η-exponential
superprediction set is convex for all η < 1, it is also
convex for η = 1.

Let us now check that the Gauss–Kronecker curvature
of the η-exponential superprediction surface is always
positive when η < 1 and is sometimes negative when
η > 1 (the rest of the proof, an elaboration of the
above argument, will be easy). Set n := |Ω|; without
loss of generality we assume Ω = {1, . . . , n}.
A convenient parametric representation of the η-
exponential superprediction surface is




x1

x2

...
xn−1

xn




=




e−η((u1−1)2+(u2)2+···+(un)2)

e−η((u1)2+(u2−1)2+···+(un)2)

...
e−η((u1)2+···+(un−1−1)2+(un)2)

e−η((u1)2+···+(un−1)2+(un−1)2)




, (4)

where u1, . . . , un−1 are the coordinates on the surface,
u1, . . . , un−1 ∈ (0, 1) subject to u1 + · · ·un−1 < 1, and
un is a shorthand for 1−u1−· · ·−un−1. The derivative
of (4) in u1 is

∂

∂u1




x1

x2

...
xn−1

xn




= 2η×




(un − u1 + 1)e−η((u1−1)2+(u2)2+···+(un−1)2+(un)2)

(un − u1)e−η((u1)2+(u2−1)2+···+(un−1)2+(un)2)

...
(un − u1)e−η((u1)2+(u2)2+···+(un−1−1)2+(un)2)

(un − u1 − 1)e−η((u1)2+(u2)2+···+(un−1)2+(un−1)2)




∝




(un − u1 + 1)e2ηu1

(un − u1)e2ηu2

...
(un − u1)e2ηun−1

(un − u1 − 1)e2ηun




,
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the derivative in u2 is

∂

∂u2




x1

x2

...
xn−1

xn



∝




(un − u2)e2ηu1

(un − u2 + 1)e2ηu2

...
(un − u2)e2ηun−1

(un − u2 − 1)e2ηun




,

and so on, up to

∂

∂un−1




x1

x2

...
xn−1

xn



∝




(un − un−1)e2ηu1

(un − un−1)e2ηu2

...
(un − un−1 + 1)e2ηun−1

(un − un−1 − 1)e2ηun




,

all coefficients of proportionality being equal and pos-
itive.

Let us set vi,j := (un − ui)e2ηuj

and wi := (un − ui),
for purely typographical reasons. A normal vector to
the surface can be found as

Z :=
∣∣∣∣∣∣∣∣∣∣

e1 · · · en−1 en

v1,1 + e2ηu1 · · · v1,n−1 v1,n − e2ηun

...
. . .

...
...

vn−1,1 · · · vn−1,n−1

+e2ηun−1
vn−1,n − e2ηun

∣∣∣∣∣∣∣∣∣∣

.

The coefficient in front of e1 is the (n − 1) × (n − 1)
determinant

∣∣∣∣∣∣∣∣∣∣

v1,2 · · · v1,n−1 v1,n − e2ηun

v2,2 + e2ηu2 · · · v2,n−1 v2,n − e2ηun

...
. . .

...
...

vn−1,2 · · · vn−1,n−1

+e2ηun−1
vn−1,n − e2ηun

∣∣∣∣∣∣∣∣∣∣

∝ e−2ηu1

∣∣∣∣∣∣∣∣∣

w1 · · · w1 w1 − 1
w2 + 1 · · · w2 w2 − 1

...
. . .

...
...

wn−1 · · · wn−1 + 1 wn−1 − 1

∣∣∣∣∣∣∣∣∣

= e−2ηu1

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 w1 − 1
2 1 · · · 1 w2 − 1
1 2 · · · 1 w3 − 1
...

...
. . .

...
...

1 1 · · · 2 wn−1 − 1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηu1

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 un − u1 − 1
1 0 · · · 0 u1 − u2

0 1 · · · 0 u1 − u3

...
...

. . .
...

...
0 0 · · · 1 u1 − un−1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηu1(
(−1)n(un − u1 − 1) + (−1)n+1(u1 − u2)

+ (−1)n+1(u1 − u3) + · · ·+ (−1)n+1(u1 − un−1)
)

= e−2ηu1
(−1)n×(

(u2 + u3 + · · ·+ un)− (n− 1)u1 − 1
)

= −e−2ηu1
(−1)nnu1 ∝ u1e−2ηu1

(5)

(with a positive coefficient of proportionality, e2η, in
the first ∝; the third equality follows from the expan-
sion of the determinant along the last column and then
along the first row).

Similarly, the coefficient in front of ei is propor-
tional (with the same coefficient of proportionality) to
uie−2ηui

for i = 2, . . . , n−1; indeed, the (n−1)×(n−1)
determinant representing the coefficient in front of ei

can be reduced to the form analogous to (5) by moving
the ith row to the top.

The coefficient in front of en is proportional to

e−2ηun

∣∣∣∣∣∣∣∣∣∣∣

w1 + 1 w1 · · · w1 w1

w2 w2 + 1 · · · w2 w2

...
...

. . .
...

wn−2 wn−2 · · · wn−2 + 1 wn−2

wn−1 wn−1 · · · wn−1 wn−1 + 1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηun

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 w1

0 1 · · · 0 w2

...
...

. . .
...

...
0 0 · · · 1 wn−2

−1 −1 · · · −1 wn−1 + 1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηun

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 un − u1

0 1 · · · 0 un − u2

...
...

. . .
...

...
0 0 · · · 1 un − un−2

0 0 · · · 0 nun

∣∣∣∣∣∣∣∣∣∣∣

= nune−2ηun

(with the coefficient of proportionality e2η(−1)n−1).

The Gauss–Kronecker curvature at the point with co-
ordinates (u1, . . . , un−1) is proportional (with a posi-
tive coefficient of proportionality, possibly depending
on the point) to ∣∣∣∣∣∣∣∣∣

∂ZT

∂u1

...
∂ZT

∂un−1

ZT

∣∣∣∣∣∣∣∣∣
(6)

(Thorpe, 1979, Chapter 12, Theorem 5, with T stand-
ing for transposition).

Set vi := (1 − 2ηui)e−2ηui

and wi = uie−2ηui

, again
for typographical reasons. A straightforward calcula-
tion allows us to rewrite determinant (6) (ignoring the
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positive coefficient ((−1)n−1ne2η)n) as

∣∣∣∣∣∣∣∣∣∣∣

v1 0 · · · 0 −vn

0 v2 · · · 0 −vn

...
...

. . .
...

...
0 0 · · · vn−1 −vn

w1 w2 · · · wn−1 wn

∣∣∣∣∣∣∣∣∣∣∣

∝

∣∣∣∣∣∣∣∣∣∣∣

1− 2ηu1 0 · · · 0 −1 + 2ηun

0 1− 2ηu2 · · · 0 −1 + 2ηun

...
. . .

...
...

0 0 · · · 1− 2ηun−1 −1 + 2ηun

u1 u2 · · · un−1 un

∣∣∣∣∣∣∣∣∣∣∣
= u1(1− 2ηu2)(1− 2ηu3) · · · (1− 2ηun)

+ u2(1− 2ηu1)(1− 2ηu3) · · · (1− 2ηun) + · · ·
+ un(1− 2ηu1)(1− 2ηu2) · · · (1− 2ηun−1) (7)

(with a positive coefficient of proportionality; to avoid
calculation of the parities of various permutations, the
reader might prefer to prove the last equality by in-
duction in n, expanding the last determinant along
the first column). Our goal is to show that the last
expression in (7) is positive when η < 1 but can be
negative when η > 1.

If η > 1, set u1 = u2 := 1/2 and u3 = · · · = un := 0.
The last expression in (7) becomes negative. There-
fore, the η-exponential superprediction set is not con-
vex (Thorpe, 1979, Chapter 13, Theorem 1).

It remains to consider the case η < 1. Set ti := 1 −
2ηui, i = 1, . . . , n; the constraints on the ti are

− 1 < 1− 2η < ti < 1, i = 1, . . . , n,

t1 + · · ·+ tn = n− 2η > n− 2. (8)

Our goal is to prove

(1− t1)t2t3 · · · tn + · · ·+ (1− tn)t1t2 · · · tn−1 > 0,

i.e.,

t2t3 · · · tn + · · ·+ t1t2 · · · tn−1 > nt1 · · · tn. (9)

This reduces to

1
t1

+ · · ·+ 1
tn

> n (10)

if t1 · · · tn > 0, and to

1
t1

+ · · ·+ 1
tn

< n (11)

if t1 · · · tn < 0. The remaining case is where some of
the ti are zero; for concreteness, let tn = 0. By (8) we

have t1 + · · ·+ tn−1 > n− 2, and so all of t1, . . . , tn−1

are positive; this shows that (9) is indeed true.

Let us prove (10). Since t1 · · · tn > 0, all of t1, . . . , tn
are positive (if two of them were negative, the sum
t1+· · ·+tn would be less than n−2; cf. (8)). Therefore,

1
t1

+ · · ·+ 1
tn

> 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

To establish (9) it remains to prove (11). Suppose,
without loss of generality, that t1 > 0, t2 > 0,. . . ,
tn−1 > 0, and tn < 0. Since the function t ∈ (0, 1] 7→
1/t is convex, we can also assume, without loss of gen-
erality, t1 = · · · = tn−2 = 1. Then tn−1 + tn > 0, and
so

1
tn−1

+
1
tn

< 0;

therefore,

1
t1

+ · · ·+ 1
tn−2

+
1

tn−1
+

1
tn

< n− 2 < n.

Finally, let us check that the positivity of the Gauss–
Kronecker curvature implies the convexity of the η-
exponential superprediction set, for η ≤ 1. Because
of the continuity of the η-exponential superprediction
surface in η we can and will assume, without loss of
generality, that η < 1. The η-exponential superpredic-
tion surface will be oriented by choosing the normal
vector field directed towards the origin; this can be
done since




x1

...
xn


 ∝




e2ηu1

...
e2ηun


 , Z ∝



−u1e−2ηu1

...
−une−2ηun


 , (12)

with the first coefficient of proportionality positive (cf.
(4) and the bottom row of the first determinant in (7)),
and the scalar product of the two vectors in (12) is
always negative.

Let us first check that the smallest principal curvature

k1 = k1(u1, . . . , un−1, η)

of the η-exponential superprediction surface is always
positive (among the arguments of k1 we list not only
the coordinates u1, . . . , un−1 of a point on the surface
(4) but also the learning rate η ∈ (0, 1)). At least at
some (u1, . . . , un−1, η) the value of k1(u1, . . . , un−1, η)
is positive: take a sufficiently small η and the point on
the surface (4) at which the maximum of x1 + · · ·+xn

is attained (the point of the η-exponential superpre-
diction set at which the maximum is attained will
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lie on the surface since the maximum is attained at
(x1, . . . , xn) = (1, . . . , 1) when η = 0). Therefore, for
all (u1, . . . , un−1, η) the value of k1(u1, . . . , un−1, η) is
positive: if k1 had different signs at two points in the
set

{
(u1, . . . , un−1, η) |u1 ∈ (0, 1), . . . , un−1 ∈ (0, 1),

u1 + · · ·+ un−1 < 1, η ∈ (0, 1)
}
, (13)

we could connect these points by a continuous curve ly-
ing completely inside (13); at some point on the curve,
k1 would be zero, in contradiction to the positivity of
the Gauss–Kronecker curvature k1 · · · kn−1.

Now it is easy to show that the η-exponential super-
prediction set is convex. Suppose there are two points
A and B on the η-exponential superprediction surface
such that the interval [A,B] contains points outside
the η-exponential superprediction set. The intersec-
tion of the plane OAB, where O is the origin, with
the η-exponential superprediction surface is a planar
curve; the curvature of this curve at the point between
A and B closest to the origin will be negative (with
the curve oriented by directing the normal vector field
towards the origin), contradicting the positivity of k1

at that point and Meusnier’s theorem (cf. (12)).

5. Derivation of the Prediction
Algorithm

To achieve the loss bound (1) in Theorem 1 Learner
can use, as discussed earlier, the strong aggregating al-
gorithm (see, e.g., Vovk, 2001, Section 2.1, (15)) with
η = 1. In this section we will find a substitution func-
tion for the strong aggregating algorithm for the Brier
game with η ≤ 1, which is the only component of
the algorithm not described explicitly in Vovk (2001).
Our substitution function will not require that its in-
put, the generalized prediction, should be computed
from the normalized distribution (wk)K

k=1 on the ex-
perts; this is a valuable feature for generalizations to
an infinite number of experts (as demonstrated in, e.g.,
Vovk, 2001, Appendix A.1).

Suppose that we are given a generalized prediction
(l1, . . . , ln)T computed by the aggregating pseudo-
algorithm from a normalized distribution on the
experts. Since (l1, . . . , ln)T is a superprediction (re-
member that we are assuming η ≤ 1), we are only
required to find a permitted prediction




λ1

λ2

...
λn


 =




(u1 − 1)2 + (u2)2 + · · ·+ (un)2

(u1)2 + (u2 − 1)2 + · · ·+ (un)2
...

(u1)2 + (u2)2 + · · ·+ (un − 1)2


 (14)

(cf. (4)) satisfying

λ1 ≤ l1, . . . , λn ≤ ln. (15)

Now suppose we are given a generalized prediction
(L1, . . . , Ln)T computed by the APA from an unnor-
malized distribution on the experts; in other words,
we are given 


L1

...
Ln


 =




l1 + c
...

ln + c




for some c ∈ R. To find (14) satisfying (15) we can first
find the largest t ∈ R such that (L1 − t, . . . , Ln − t)T

is still a superprediction and then find (14) satisfying

λ1 ≤ L1 − t, . . . , λn ≤ Ln − t. (16)

Since t ≥ c, it is clear that (λ1, . . . , λn)T will also
satisfy the required (15).
Proposition 1. Define s ∈ R by the requirement

n∑

i=1

(s− Li)+ = 2. (17)

The unique solution to the optimization problem t →
max under the constraints (16) with λ1, . . . , λn as in
(14) will be

ui =
(s− Li)+

2
, i = 1, . . . , n, (18)

t = s− 1− (u1)2 − · · · − (un)2. (19)

There exists a unique s satisfying (17) since the left-
hand side of (17) is a continuous, increasing (strictly
increasing when positive) and unbounded above func-
tion of s. The substitution function is given by (18).

Proof of Proposition 1. Let us denote the ui and t de-
fined by (18) and (19) as ui and t, respectively. To see
that they satisfy the constraints (16), notice that the
ith constraint can be spelt out as

(u1)2 + · · ·+ (un)2 − 2ui + 1 ≤ Li − t,

which immediately follows from (18) and (19). As a
by-product, we can see that the inequality becomes an
equality, i.e.,

t = Li − 1 + 2ui − (u1)2 − · · · − (un)2, (20)

for all i with ui > 0.

We can rewrite (16) as




t ≤ L1 − 1 + 2u1 − (u1)2 − · · · − (un)2,
...

t ≤ Ln − 1 + 2un − (u1)2 − · · · − (un)2,
(21)
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and our goal is to prove that these inequalities imply
t < t (unless u1 = u1, . . . , un = un). Choose ui (neces-
sarily ui > 0 unless u1 = u1, . . . , un = un; in the latter
case, however, we can, and will, also choose ui > 0)
for which εi := ui − ui is maximal. Then every value
of t satisfying (21) will also satisfy

t ≤ Li − 1 + 2ui −
n∑

j=1

(uj)2

= Li − 1 + 2ui − 2εi −
n∑

j=1

(uj)2 + 2
n∑

j=1

εju
j −

n∑

j=1

ε2j

≤ Li − 1 + 2ui −
n∑

j=1

(uj)2 −
n∑

j=1

ε2j ≤ t,

with the last ≤ following from (20) and becoming <
when not all uj coincide with uj .

The detailed description of the resulting prediction al-
gorithm was given as Algorithm 1 in Section 2. As
discussed, that algorithm uses the generalized predic-
tion GN (ω) computed from unnormalized weights.

6. Conclusion

In this paper we only considered the simplest predic-
tion problem for the Brier game: competing with a
finite pool of experts. In the case of square-loss regres-
sion, it is possible to find efficient closed-form predic-
tion algorithms competitive with linear functions (see,
e.g., Cesa-Bianchi & Lugosi, 2006, Chapter 11). Such
algorithms can often be “kernelized” to obtain predic-
tion algorithms competitive with reproducing kernel
Hilbert spaces of prediction rules. This would be an
appealing research programme in the case of the Brier
game as well.
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