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Abstract

The ν-support vector classification (ν-SVC)
algorithm was shown to work well and pro-
vide intuitive interpretations, e.g., the pa-
rameter ν roughly specifies the fraction of
support vectors. Although ν corresponds to
a fraction, it cannot take the entire range be-
tween 0 and 1 in its original form. This prob-
lem was settled by a non-convex extension
of ν-SVC and the extended method was ex-
perimentally shown to generalize better than
original ν-SVC. However, its good generaliza-
tion performance and convergence properties
of the optimization algorithm have not been
studied yet. In this paper, we provide new
theoretical insights into these issues and pro-
pose a novel ν-SVC algorithm that has guar-
anteed generalization performance and con-
vergence properties.

1. Introduction

Support vector classification (SVC) is one of the most
successful classification algorithms in modern machine
learning (Schölkopf & Smola, 2002). SVC finds a hy-
perplane that separates training samples in different
classes with maximum margin (Boser et al., 1992).
The maximum margin hyperplane was shown to min-
imize an upper bound of the generalization error ac-
cording to the Vapnik-Chervonenkis theory (Vapnik,
1995). Thus the generalization performance of SVC is
theoretically guaranteed.

SVC was extended to be able to deal with non-
separable data by trading the margin size with the
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data separation error (Cortes & Vapnik, 1995). This
soft-margin formulation is commonly referred to as C-
SVC since the trade-off is controlled by the parameter
C. C-SVC was shown to work very well in a wide
range of real-world applications (Schölkopf & Smola,
2002).

An alternative formulation of the soft-margin idea is ν-
SVC (Schölkopf et al., 2000)—instead of the parameter
C, ν-SVC involves another trade-off parameter ν that
roughly specifies the fraction of support vectors (or
sparseness of the solution). Thus, the ν-SVC formula-
tion provides us richer interpretation than the original
C-SVC formulation, which would be potentially useful
in real applications.

Since the parameter ν corresponds to a fraction, it
should be able to be chosen between 0 and 1. How-
ever, it was shown that admissible values of ν are ac-
tually limited (Crisp & Burges, 2000; Chang & Lin,
2001). To cope with this problem, Perez-Cruz et al.
(2003) introduced the notion of negative margins and
proposed extended ν-SVC (Eν-SVC) which allows ν
to take the entire range between 0 and 1. They also
experimentally showed that the generalization perfor-
mance of Eν-SVC is often better than that of original
ν-SVC. Thus the extension contributes not only to elu-
cidating the theoretical property of ν-SVC, but also to
improving its generalization performance.

However, there remain two open issues in Eν-SVC.
The first issue is that the reason why a high general-
ization performance can be obtained by Eν-SVC was
not completely explained yet. The second issue is that
the optimization problem involved in Eν-SVC is non-
convex and theoretical convergence properties of the
Eν-SVC optimization algorithm have not been stud-
ied yet. The purpose of this paper is to provide new
theoretical insights into these two issues.

After reviewing existing SVC methods in Section 2, we
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elucidate the generalization performance of Eν-SVC in
Section 3. We first show that the Eν-SVC formulation
could be interpreted as minimization of the conditional
value-at-risk (CVaR), which is often used in finance
(Rockafellar & Uryasev, 2002; Gotoh & Takeda, 2005).
Then we give new generalization error bounds based
on the CVaR risk measure. This theoretical result jus-
tifies the use of Eν-SVC.

In Section 4, we address non-convexity of the Eν-SVC
optimization problem. We first give a new optimiza-
tion algorithm that is guaranteed to converge to one
of the local optima within a finite number of itera-
tions. Based on this improved algorithm, we further
show that the global solution can be actually obtained
within finite iterations even though the optimization
problem is non-convex.

Finally, in Section 5, we give concluding remarks and
future prospects. Proofs of all theorems and lemmas
are sketched in Appendix unless mentioned.

2. Support Vector Classification

In this section, we formulate the classification problem
and briefly review support vector algorithms.

2.1. Classification Problem

Let us address the classification problem of learning a
decision function h from X (⊂ IRn) to {±1} based on
training samples (xi, yi) (i ∈ M := {1, ...,m}). We
assume that the training samples are i.i.d. following
the unknown probability distribution P (x, y) on X ×
{±1}.

The goal of the classification task is to obtain a clas-
sifier h that minimizes the generalization error (or the
risk):

R[h] :=

∫
1

2
|h(x)− y|dP (x, y),

which corresponds to the misclassification rate for un-
seen test samples.

For the sake of simplicity, we generally focus on linear
classifiers, i.e.,

h(x) = sign(〈w,x〉+ b), (1)

where w (∈ IRn) is a non-zero normal vector, b (∈ IR)
is a bias parameter, and sign(ξ) = 1 if ξ ≥ 0 and −1
otherwise.

Most of the discussions in this paper can be directly
applicable to non-linear kernel classifiers (Schölkopf &
Smola, 2002). Thus we may not lose generality by
restricting ourselves to linear classifiers.

2.2. Support Vector Classification

The Vapnik-Chervonenkis theory (Vapnik, 1995)
showed that a large margin classifier has a small gen-
eralization error. Motivated by this theoretical result,
Boser et al. (1992) developed an algorithm for finding
the hyperplane (w, b) with maximum margin:

min
w,b

1

2
‖w‖2 s.t. yi(〈w,xi〉+ b) ≥ 1, i ∈M. (2)

This is called (hard-margin) support vector classifica-
tion (SVC) and valid when the training samples are
linearly separable. In the following, we omit “i ∈ M”
in the constraint for brevity.

2.3. C-Support Vector Classification

Cortes and Vapnik (1995) extended the SVC algo-
rithm to non-separable cases and proposed trading the
margin size with the data separation error (i.e., “soft-
margin”):

min
w,b,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0,

where C (> 0) controls the trade-off. This formulation
is usually referred to as C-SVC, and was shown to work
very well in various real-world applications (Schölkopf
& Smola, 2002).

2.4. ν-Support Vector Classification

ν-SVC is another formulation of soft-margin SVC
(Schölkopf et al., 2000):

min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

m

m∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0,

where ν (∈ IR) is the trade-off parameter.

Schölkopf et al. (2000) showed that if the ν-SVC solu-
tion yields ρ > 0, C-SVC with C = 1/(mρ) produces
the same solution. Thus ν-SVC and C-SVC are equiv-
alent. However, ν-SVC has additional intuitive inter-
pretations, e.g., ν is an upper bound on the fraction
of margin errors and a lower bound on the fraction of
support vectors (i.e., sparseness of the solution). Thus,
the ν-SVC formulation would be potentially more use-
ful than the C-SVC formulation in real applications.

2.5. Eν-SVC

Although ν has an interpretation as a fraction, it can-
not always take its full range between 0 and 1 (Crisp
& Burges, 2000; Chang & Lin, 2001).
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2.5.1. Admissible Range of ν

For an optimal solution {αC
i }

m
i=1 of dual C-SVC, let

ζ(C) :=
1

Cm

m∑

i=1

αC
i ,

νmin := lim
C→∞

ζ(C) and νmax := lim
C→0

ζ(C).

Then, Chang and Lin (2001) showed that for ν ∈
(νmin, νmax], the optimal solution set of ν-SVC is the
same as that of C-SVC with some C (not necessarily
unique). In addition, the optimal objective value of
ν-SVC is strictly negative. However, for ν ∈ (νmax, 1],
ν-SVC is unbounded, i.e., there exists no solution; for
ν ∈ [0, νmin], ν-SVC is feasible with zero optimal ob-
jective value, i.e., we end up with just having a trivial
solution (w = 0 and b = 0).

2.5.2. Increasing Upper Admissible Range

It was shown by Crisp and Burges (2000) that

νmax = 2min(m+,m−)/m,

where m+ and m− are the number of positive and
negative training samples. Thus, when the training
samples are balanced (i.e., m+ = m−), νmax = 1
and therefore ν can reach its upper limit 1. When
the training samples are imbalanced (i.e., m+ 6= m−),
Perez-Cruz et al. (2003) proposed modifying the opti-
mization problem of ν-SVC as

min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

m+

∑

i:yi=1

ξi +
1

m−

∑

i:yi=−1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0,

i.e., the effect of positive and negative samples are bal-
anced. Under this modified formulation, νmax = 1
holds even when training samples are imbalanced.

For the sake of simplicity, we assume m+ = m− in the
rest of this paper; when m+ 6= m−, all the results can
be simply extended in a similar way as above.

2.5.3. Decreasing Lower Admissible Range

When ν ∈ [0, νmin], ν-SVC produces a trivial solution
(w = 0 and b = 0) as shown in Chang and Lin (2001).
To prevent this, Perez-Cruz et al. (2003) proposed
allowing the margin ρ to be negative and enforcing
the norm of w to be unity:

min
w,b,ξ,ρ

−νρ +
1

m

m∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ‖w‖2 = 1. (3)

By this modification, a non-trivial solution can be ob-
tained even for ν ∈ [0, νmin]. This modified formula-
tion is called extended ν-SVC (Eν-SVC).

The Eν-SVC optimization problem is non-convex due
to the equality constraint ‖w‖2 = 1. Perez-Cruz et al.
(2003) proposed the following iterative algorithm for
computing a solution. First, for some initial w̃, solve
the problem (3) with ‖w‖2 = 1 replaced by 〈w̃,w〉 =
1. Then, using the optimal solution ŵ, update w̃ by

w̃ ←− γw̃ + (1− γ)ŵ (4)

for γ = 9/10, and iterate this procedure until conver-
gence.

Perez-Cruz et al. (2003) experimentally showed that
the generalization performance of Eν-SVC with ν ∈
[0, νmin] is often better than that with ν ∈ (νmin, νmax],
implying that Eν-SVC is a promising classification al-
gorithm. However, it is not clear how the notion of
negative margins influences on the generalization per-
formance and how fast the above iterative algorithm
converges. The goal of this paper is to give new theo-
retical insights into these issues.

3. Justification of the Eν-SVC Criterion

In this section, we give a new interpretation of Eν-SVC
and theoretically explain why it works well.

3.1. New Interpretation of Eν-SVC as CVaR
minimization

Let f(w, b;x, y) be the margin error for a sample
(x, y):

f(w, b;x, y) := −
y(〈w,x〉+ b)

‖w‖
.

Let us consider the distribution of margin errors over
all training samples:

Φ(α|w, b) := P{(xi, yi) | f(w, b;xi, yi) ≤ α}.

For β ∈ [0, 1), let αβ(w, b) be the 100β-percentile of
the margin error distribution:

αβ(w, b) := min{α | Φ(α|w, b) ≥ β}.

Thus only the fraction (1 − β) of the margin error
f(w, b;xi, yi) exceeds the threshold αβ(w, b) (see Fig-
ure 1). αβ(w, b) is commonly referred to as the value-
at-risk (VaR) in finance and is often used by security
houses or investment banks to measure the market risk
of their asset portfolios (Rockafellar & Uryasev, 2002;
Gotoh & Takeda, 2005).
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Figure 1. An example of the distribution of margin er-
rors f(w, b; xi, yi) over all training samples. αβ(w, b) is
the 100β-percentile called the value-at-risk (VaR), and the
mean φβ(w, b) of the β-tail distribution is called the con-
ditional VaR (CVaR).

Let us consider the β-tail distribution of f(w, b;xi, yi):

Φβ(α|w, b) :=

{
0 for α < αβ(w, b),
Φ(α|w,b)−β

1−β
for α ≥ αβ(w, b).

Let φβ(w, b) be the mean of the β-tail distribution of
f(w, b;xi, yi) (see Figure 1 again):

φβ(w, b) := EΦβ
[f(w, b;xi, yi)],

where EΦβ
denotes the expectation over the distri-

bution Φβ . φβ(w, b) is called the conditional VaR
(CVaR). By definition, the CVaR is always larger than
or equal to the VaR:

φβ(w, b) ≥ αβ(w, b). (5)

Let us consider the problem of minimizing the CVaR
φβ(w, b) (which we refer to as minCVaR):

min
w,b

φβ(w, b). (6)

Then we have the following theorem.

Theorem 1 The solution of the minCVaR problem
(6) is equivalent to the solution of the Eν-SVC problem
(3) with

ν = 1− β.

Theorem 1 shows that Eν-SVC actually minimizes
the CVaR φ1−ν(w, b). Thus, Eν-SVC could be in-
terpreted as minimizing the mean margin error over
a set of “bad” training samples. In contrast, the hard-
margin SVC problem (2) can be equivalently expressed
in terms of the margin error as

min
w,b

max
i∈M

f(w, b;xi, yi).

Thus hard-margin SVC minimizes the margin error
of the single “worst” training sample. This analysis
shows that Eν-SVC can be regarded as an extension
of hard-margin SVC to be less sensitive to an outlier
(i.e., the single “worst” training sample).

Non-convex Convex

Figure 2. A profile of the CVaR φ1−ν(w∗, b∗) as a function
of ν. As shown in Section 4, the Eν-SVC optimization
problem can be cast as a convex problem if ν ∈ (ν, νmax],
while it is essentially non-convex if ν ∈ (0, ν).

3.2. Justification of Eν-SVC

We have shown the equivalence between Eν-SVC and
minCVaR. Here we derive new bounds of the general-
ization error based on the notion of CVaR and try to
justify the use of Eν-SVC.

When training samples are linearly separable, the mar-
gin error f(w, b;xi, yi) is negative for all samples.
Then, at the optimal solution (w∗, b∗), the CVaR
φ1−ν(w∗, b∗) is always negative. However, in non-
separable cases, φ1−ν(w∗, b∗) could be positive par-
ticularly when ν is close to 0. Regarding the CVaR,
we have the following lemma.

Lemma 2 φ1−ν(w∗, b∗) is continuous with respect to
ν and is strictly decreasing when ν is increased.

Let ν be such that

φ1−ν(w∗, b∗) = 0

if such ν exists; we set ν = νmax if φ1−ν(w∗, b∗) > 0
for all ν and we set ν = 0 if φ1−ν(w∗, b∗) < 0 for all
ν. Then we have the following relation (see Figure 2):

φ1−ν(w∗, b∗) < 0 for ν ∈ (ν, νmax],

φ1−ν(w∗, b∗) > 0 for ν ∈ (0, ν).

Below, we analyze the generalization error of Eν-SVC
depending on the value of ν.

3.2.1. Justification When ν ∈ (ν, νmax]

Theorem 3 Let ν ∈ (ν, νmax]. Suppose that support
X is in a ball of radius R around the origin. Then,
for all (w, b) such that ‖w‖ = 1 and φ1−ν(w, b) < 0,
there exists a positive constant c such that the following
bound hold with probability at least 1− δ:

R[h] ≤ ν + G(α1−ν(w, b)), (7)

where

G(γ) =

√
2

m

(
4c2(R2 + 1)2

γ2
log2(2m)− 1 + log

2

δ

)
.
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The generalization error bound in (7) is furthermore
upper-bounded as

ν + G(α1−ν(w, b)) ≤ ν + G(φ1−ν(w, b)).

G(γ) is monotone decreasing as |γ| increases. Thus,
the above theorem shows that when φ1−ν(w, b) < 0,
the upper bound ν + G(φ1−ν(w, b)) is lowered if the
CVaR φ1−ν(w, b) is reduced. Since Eν-SVC minimizes
φ1−ν(w, b) (see Theorem 1), the upper bound of the
generalization error is also minimized.

3.2.2. Justification When ν ∈ (0, ν]

Our discussion below depends on the sign of
α1−ν(w, b). When α1−ν(w, b) < 0, we have the fol-
lowing theorem.

Theorem 4 Let ν ∈ (0, ν]. Then, for all (w, b) such
that ‖w‖ = 1 and α1−ν(w, b) < 0, there exists a posi-
tive constant c such that the following bound holds with
probability at least 1− δ:

R[h] ≤ ν + G(α1−ν(w, b)).

A proof of the above theorem is omitted since the proof
follows a similar line to the proof of Theorem 3. This
theorem shows that when α1−ν(w, b) < 0, the up-
per bound ν + G(α1−ν(w, b)) is lowered if α1−ν(w, b)
is reduced. On the other hand, Eq.(5) shows that
the VaR α1−ν(w, b) is upper-bounded by the CVaR
φ1−ν(w, b). Therefore, minimizing φ1−ν(w, b) by Eν-
SVC may have an effect of lowering the upper bound
of the generalization error.

When α1−ν(w, b) > 0, we have the following theorem.

Theorem 5 Let ν ∈ (0, ν]. Then, for all (w, b) such
that ‖w‖ = 1 and α1−ν(w, b) > 0, there exists a posi-
tive constant c such that the following bound hold with
probability at least 1− δ:

R[h] ≥ ν −G(α1−ν(w, b)).

Moreover, the lower bound of R[h] is bounded from
above as

ν −G(α1−ν(w, b)) ≤ ν −G(φ1−ν(w, b)).

A proof of the above theorem is also omitted since
the proof resembles to Theorem 3. Theorem 5 implies
that the lower bound ν −G(α1−ν(w, b)) of the gener-
alization error is upper-bounded by ν−G(φ1−ν(w, b)).
On the other hand, Eq.(5) and α1−ν(w, b) > 0 yields
φ1−ν(w, b) > 0. Thus minimizing φ1−ν(w, b) by Eν-
SVC may contribute to lowering the lower bound
ν −G(α1−ν(w, b)) of the generalization error.

4. New Optimization Algorithm

As reviewed in Section 2.5, Eν-SVC involves a non-
convex optimization problem. In this section, we give
a new efficient optimization procedure for Eν-SVC.
Our proposed procedure involves two optimization al-
gorithms depending on the value of ν. We first de-
scribe the two algorithms and then show how these
two algorithms are chosen for practical use.

4.1. Optimization When ν ∈ (ν, νmax]

Lemma 6 When ν ∈ (ν, νmax], the Eν-SVC problem
(3) is equivalent to

min
w,b,ξ,ρ

−νρ +
1

m

m∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ‖w‖2 ≤ 1. (8)

This lemma shows that the equality constraint ‖w‖2 =
1 in the original problem (3) can be replaced by
‖w‖2 ≤ 1 without changing the solution. Due to the
convexity of ‖w‖2 ≤ 1, the above optimization prob-
lem is convex and therefore we can easily obtain the
global solution by a standard optimization software.

4.2. Optimization When ν ∈ (0, ν]

If ν ∈ (0, ν], the Eν-SVC optimization problem is es-
sentially non-convex and therefore we need a more
elaborate algorithm.

4.2.1. Local Optimum Search

Here, we propose the following iterative algorithm for
finding a local optimum.

Algorithm 7 (The Eν-SVC local optimum
search algorithm for ν ∈ (0, ν])

Step 1: Initialize w̃.
Step 2: Solve the following linear program:

min
w,b,ξ,ρ

−νρ +
1

m

m∑

i=1

ξi (9)

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, 〈w̃,w〉 = 1,

and let the optimal solution be (ŵ, b̂, ξ̂, ρ̂).
Step 3: If w̃ = ŵ, terminate and output w̃. Oth-
erwise, update w̃ by w̃ ←− ŵ/‖ŵ‖.
Step 4: Repeat Steps 2–3.

The linear program (9) is the same as the one pro-
posed by Perez-Cruz et al. (2003), i.e., the equality
constrained ‖w‖2 = 1 of the original problem (3) is
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replaced by 〈w̃,w〉 = 1. The updating rule of w̃ in
Step 3 is different from the one proposed by Perez-
Cruz et al. (2003) (cf. Eq.(4)).

We define a “corner” (or “0-dimensional face”) of Eν-
SVC (3) as the intersection of an edge of the polyhedral
cone formed by linear constraints of (3) and ‖w‖2 =
1. Under the new update rule, the algorithm visits a
corner of Eν-SVC (3) in each iteration. Since Eν-SVC
has finite corners, we can show that Algorithm 7 with
the new update rule terminates in a finite number of
iterations, i.e., less than or equal to the number of
corners of Eν-SVC.

Theorem 8 Algorithm 7 terminates within a finite
number of iterations of Steps 2–3. Furthermore, a
solution of the modified Eν-SVC algorithm is a local
minimizer if it is unique and non-degenerate.

4.2.2. Global Optimum Search

Next, we show that the global solution can be actu-
ally obtained within finite iterations, despite the non-
convexity of the optimization problem.

A naive approach to searching for the global solution
is to run the local optimum search algorithm many
times with different initial values and choose the best
local solution. However, there is no guarantee that this
naive approach can find the global solution. Below, we
give a more systematic way to find the global solution
based on the following lemma.

Lemma 9 When ν ∈ (0, ν], the Eν-SVC problem (3)
is equivalent to

min
w,b,ξ,ρ

−νρ +
1

m

m∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ‖w‖2 ≥ 1. (10)

Lemma 9 could be proved in a similar way as Lemma 6,
so we omit the proof. This lemma shows that the
equality constraint ‖w‖2 = 1 in the original Eν-SVC
problem (3) can be replaced by ‖w‖2 ≥ 1 without
changing the solution if ν ∈ (0, ν].

The problem (10) is called a linear reverse convex pro-
gram (LRCP), which is a class of non-convex prob-
lems consisting of linear constraints and one concave
inequality (‖w‖2 ≥ 1 in the current case). The feasi-
ble set of the problem (10) consists of a finite num-
ber of faces. For LRCPs, Horst and Tuy (1995)
showed that the local optimal solutions correspond to
0-dimensional faces (or corners). This implies that all
the local optimal solutions of the Eν-SVC problem (10)
can be traced by checking all the faces.

(a)

(b)

Concavity cut

Facial cut

Figure 3. A 0-dimensional face (a) and three proper faces

(bold solid lines) of D are identified in eD. If the corner (a)
is found in Step 2, a concavity cut is constructed. If the
corner (b) is found, a facial cut is constructed. If these two

cuts are added to eD, the remaining area includes no face
of D.

Let D be the feasible set of Eν-SVC (3). Below, we
summarize the Eν-SVC training algorithm based on
the cutting plane method, which is an efficient method
of tracing faces.

Algorithm 10 (The Eν-SVC global optimum
search algorithm for ν ∈ (0, ν])

Step 1: D̃ ←− D.
Step 2: Find a local solution by Algorithm 7.
Step 3: Identify a face of D in D̃ that corresponds
the local solution.
Step 4a: If the face is a corner, construct a “con-
cavity cut”.
Step 4b: If the face is a proper face, construct a
“facial cut”.
Step 5: Add the cut to the problem (9) and D̃.

Step 6: Repeat Steps 2–5 until D̃ includes no face
of D.
Step 7: Output the best local optimal solution as
the global solution.

If the local solution obtained in Step 2 is a corner of D
(i.e., the local solution is not on any cutting plane as
(a) in Figure 3), a concavity cut (Horst & Tuy, 1995) is
constructed. The concavity cut has a role of removing
the local solution, i.e., a 0-dimensional face of D and
its neighborhood. Otherwise, a facial cut (Majthay &
Whinston, 1974) is constructed to eliminate the proper
face (see (b) in Figure 3).

Since the total number of distinct faces of D is finite in
the current setting and a facial cut or a concavity cut
eliminates at least one face at a time, Algorithm 10 is
guaranteed to terminate within finite iterations (pre-
cisely, less than or equal to the number of all dimen-
sional faces of Eν-SVC). Furthermore, since the addi-
tion of a concavity cut or a facial cut does not remove
local solutions which are better than the best local
solution found so far, Algorithm 10 is guaranteed to
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trace all sufficient local solutions. Thus we can always
find a global solution within finite iterations by Algo-
rithm 10. A more detailed discussion on the concavity
cut and the facial cut is shown in Horst and Tuy (1995)
and Majthay and Whinston (1974), respectively.

4.3. Choice of Two Algorithms

We have two convergent algorithms when ν ∈ (ν, νmax]
and ν ∈ (0, ν]. Thus, choosing a suitable algorithm
depending on the value of ν would be an ideal proce-
dure. However, the value of the threshold ν is difficult
to explicitly compute since it is defined via the opti-
mal value φ1−ν(w∗, b∗) (see Figure 2). Therefore, it is
not straightforward to choose a suitable algorithm for
a given ν.

When we use Eν-SVC in practice, we usually com-
pute the solutions for several different values of ν and
choose the most promising one based on, e.g., cross-
validation. In such scenarios, we can properly switch
two algorithms without explicitly knowing the value of
ν—our key idea is that the solution of the problem (8)
is non-trivial (i.e., w 6= 0) if and only if ν ∈ (ν, νmax].
Thus if the solutions are computed from large ν to
small ν, the switching point can be identified by check-
ing the triviality of the solution. The proposed algo-
rithm is summarized as follows.

Algorithm 11 (The Eν-SVC algorithm for
(νmax ≥) ν1 > ν2 > · · · > νk > 0)

Step 1: i←− 1.
Step 2: Compute (w∗, b∗) for νi by solving (8).
Step 3a: If w∗ 6= 0, accept (w∗, b∗) as the solution
for νi, increment i, and go to Step 2.
Step 3b: If w∗ = 0, reject (w∗, b∗).
Step 4: Compute (w∗, b∗) for νi by Algorithm 10.
Step 5: Accept (w∗, b∗) as the solution for νi,
increment i, and go to Step 4 unless i > k.

5. Conclusions

We characterized the generalization error of Eν-SVC in
terms of the conditional value-at-risk (CVaR, see Fig-
ure 1) and showed that a good generalization perfor-
mance is expected by Eν-SVC. We then derived a glob-
ally convergent optimization algorithm even though
the optimization problem involved in Eν-SVC is non-
convex.

We introduced the threshold ν based on the sign of
the CVaR (see Figure 2). We can check that the prob-
lem (8) is equivalent to ν-SVC in the sense that they
share the same negative optimal value in (ν, νmax] and
(νmin, νmax], respectively (Gotoh & Takeda, 2005). On

the other hand, the problem (8) and ν-SVC have the
zero optimal value in (0, ν] and [0, νmin], respectively.
Thus, although the definitions of ν and νmin are differ-
ent, they would be essentially the same. We will study
the relation between ν and νmin in more detail in the
future work.
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A. Sketch of Proof of Theorem 1

Let (w∗, b∗, α∗) be the optimal solution of

min
w,b,α

Fβ(w, b, α), (11)

where, for [X]+ := max{X, 0},

Fβ(w, b, α) := α +

P
i∈M

[f(w, b; xi, yi) − α]+

(1 − β)m
. (12)
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Then Rockafellar and Uryasev (2002) showed that

Fβ(w∗, b∗, α∗) = φβ(w∗, b∗) = min
w,b

φβ(w, b), (13)

i.e, the problems (6) and (11) are equivalent.

Introducing slack variables ξi, imposing ‖w‖2 = 1 (which
does not change the solution essentially; only the scale is
changed), and letting ν = 1 − β and ρ = −α in Eq.(11),
we establish the theorem.

B. Sketch of Proof of Lemma 2

Since Eq.(11) only involves continuous functions, conti-
nuity of Fβ(w∗, b∗, α∗) with respect to β is clear. From
Eq.(13), φβ(w∗, b∗) is also continuous. Let (w∗

βi
, b∗βi

, α∗
βi

)
be the optimal solutions of Eq.(11) for 0 < β1 < β2 < 1.
Then we have

φβ1
(w∗

β1
, b∗β1

) = Fβ1
(w∗

β1
, b∗β1

, α∗

β1
) ≤ Fβ1

(w∗

β2
, b∗β2

, α∗

β2
)

< Fβ2
(w∗

β2
, b∗β2

, α∗

β2
) = φβ2

(w∗

β2
, b∗β2

),

where the first inequality is due to optimality of
(w∗

β1
, b∗β1

, α∗
β1

) and the second strict inequality is clear
from Eq.(12). Thus φβ(w∗, b∗) is strictly increasing with
respect to β, implying that φ1−ν(w∗, b∗) is strictly decreas-
ing with respect to ν.

C. Sketch of Proof of Theorem 3

For a homogeneous classifier h(ex) = sign(〈ew, ex〉), the fol-
lowing lemma holds:

Lemma 12 (Schölkopf et al., 2000) Suppose that support

X of ex is in a ball of radius eR around the origin. Then, for
all ew such that ‖ew‖ = 1, there exists a positive constant c
such that the following bound holds with probability at least
1 − δ:

R[h] ≤|{i | yi〈ew, exi〉 < eγ}|
m

+

vuut 2

m

 
4c2 eR2

eγ2
log2(2m) − 1 + log

2

δ

!
.

Let ew = (w>,b)>√
1+b2

and ex = (x>, 1)>. Then our classifier (1)

can be regarded as homogeneous. The assumption that all
the data points x live in a centered ball of radius R implies
that all the data points ex live in a centered ball of radius

eR =
p

R2 + 1.

The assumption ‖w‖ = 1 implies ‖ew‖ = 1. Then we can
apply Lemma 12 to the current setting. The condition
yi〈ew, exi〉 < eγ results in

yi(〈w, xi〉 + b) < eγ
p

1 + b2 := γ.

When all the data points x live in a centered ball of radius
R, we can assume without loss of generality that |b| ≤ R.
Then we have

1

eγ2
=

1 + b2

γ2
≤ 1 + R2

γ2
.

Now let us set
γ = −α1−ν(w, b).

Then we can show that

1
m
|{i | yi(〈w, xi〉 + b) < −α1−ν(w, b)}| ≤ ν.

We omit its proof due to lack of space. Then we obtain
the upper bound ν + G(α1−ν(w, b)); the upper bound ν +
G(φ1−ν(w, b)) is clear from Eq.(5).

D. Sketch of Proof of Lemma 6

Since the difference between the problems (3) and (8) is
only the norm constraint of w, it is enough to show that
for ν ∈ (ν, νmax], ‖w∗‖2 = 1 holds at the optimal so-
lution (w∗, b∗, ξ∗, ρ∗) of the problem (8). For such ν,
φ1−ν(w∗, b∗) < 0 holds, i.e., the optimal value of Eν-SVC
is negative. If we suppose ‖w∗‖2 < 1, another feasible solu-
tion (w∗, b∗, ξ∗, ρ∗)/‖w∗‖ achieves a smaller optimal value
than (w∗, b∗, ξ∗, ρ∗). This contradicts to the optimality of
(8), and hence ‖w∗‖2 = 1 is proved.

E. Sketch of Proof of Theorem 8

Let (bwk,bbk,bξk, bρk) be an optimal solution of the linear
program (9) in the k-th iteration. Then, a feasible solution
of Eν-SVC (3) is given by

(ewk,ebk,eξk, eρk) = (bwk,bbk,bξk, bρk)/‖bwk‖.

Since (bwk,bbk,bξk, bρk) is at a corner of the feasible set of the

linear program (9), (ewk,ebk,eξk, eρk) is also a corner of the
feasible set of Eν-SVC (3).

Let q(·) be the objective function of Eν-SVC (3), which is
also the objective function of the linear program (9). Then
we have

q(eξk−1, eρk−1) > q(bξk, bρk) ≥ q(eξk, eρk) = q(bξk, bρk)/‖bwk‖,
where the first inequality comes from the optimality of

(bξk, bρk) of the linear program (9). The second inequality
comes from ‖bwk‖ > 1, which is ensured by 〈ewk−1, bwk〉 = 1.
Thus the algorithm finds a distinct corner of Eν-SVC (3) in
each iteration. Since the number of corners of Eν-SVC (3)
is finite, the algorithm terminates within finite iterations.

Let ∆d = (∆w> ∆b> ∆ρ> ∆ξ>)> be a perturbation from
the solution d∗ = (w∗, b∗, ρ∗, ξ∗) of Algorithm 7. Note
that d∗ is an optimal solution of the linear program (9)
with ew = w∗. Using the Karush-Kuhn-Tucker (KKT)
optimality conditions, we can express the increase ∆q of
the objective value as

∆q := −ν∆ρ +
1

m

X

i∈M

∆ξi

= ∆d
>

0
B@

y1x1 . . . ymxm O
y1 . . . ym 0
1 . . . 1 0

I I

1
CA
„

λ∗

µ∗

«
− δ∗∆w

>
w

∗,

where λ∗ ∈ IRm
+ , µ∗ ∈ IRm

+ , and δ∗ ≤ 0 are KKT mul-
tipliers. If ∆d is a feasible perturbation (i.e., d∗ + ∆d is
feasible), we can show that ∆q > 0 (we omit its proof due
to lack of space), which implies that d∗ is locally optimal.


