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Abstract
Compressive sensing (CS) is an emerging £eld
that, under appropriate conditions, can signi£-
cantly reduce the number of measurements re-
quired for a given signal. In many applications,
one is interested in multiple signals that may
be measured in multiple CS-type measurements,
where here each signal corresponds to a sensing
“task”. In this paper we propose a novel multi-
task compressive sensing framework based on a
Bayesian formalism, where a Dirichlet process
(DP) prior is employed, yielding a principled
means of simultaneously inferring the appropri-
ate sharing mechanisms as well as CS inversion
for each task. A variational Bayesian (VB) infer-
ence algorithm is employed to estimate the full
posterior on the model parameters.

1. Introduction
Over the last two decades researchers have considered
sparse signal representations in terms of orthonormal basis
functions (e.g., the wavelet transform). For example, con-
sider anm-dimensional real-valued signalu and assume an
m ×m orthonormal basis matrix Ψ; we may then express
u = Ψθ, where θ is an m-dimensional column vector of
weighting coef£cients. For most natural signals there ex-
ists an orthonormal basisΨ such that θ is sparse. Consider
now an approximation to u, û = Ψθ̂, where θ̂ approxi-
mates θ by retaining the largest N coef£cients and setting
the remaining m−N coef£cients to zero; due to the afore-
mentioned sparseness properties, ||u−û||2 is typically very
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small even for N ¿ m. Conventional techniques require
one to measure the m-dimensional signal u but £nally dis-
card m − N coef£cients (Charilaos, 1999). This sample-
then-compress framework is often wasteful since the sig-
nal acquisition is potentially expensive, and only a small
amount of data N is eventually required for the accurate
approximation û. One may therefore consider the follow-
ing fundamental question: Is it possible to directly measure
the informative part of the signal? Recent research in the
£eld of compressive sensing shows that this is indeed pos-
sible (Candes, 2006)(Donoho, 2006).

Exploiting the same sparseness properties of u employed
in transform coding (u = Ψθ with θ sparse), in com-
pressive sensing one measures v = Φθ, where v is an
n-dimensional vector with n < m, and Φ is the n × m
sensing matrix. There are several ways in which Φ may
be constituted, with the reader referred to (Donoho, 2006)
for details. In most cases Φ is represented as Φ = TΨ,
where T is an n ×m matrix with components constituted
randomly (Tsaig & Donoho, 2006); hence, the CS mea-
surements correspond to projections of u with the rows
of T : v = Tu = TΨθ = Φθ, which is an under-
determined problem. Assuming the signal u is N -sparse
inΨ, implying that the coef£cients θ only have N nonzero
values (Candes, 2006) (Donoho, 2006), Candès, Romberg
and Tao in (Candes et al., 2006) show that, with over-
whelming probability, θ (and hence u) is recovered via

min ||θ||l1 , s.t., v = Φθ, (1)

if the number of CS measurements n > C ·N ·logm (C is a
small constant); if N is small (i.e., if u is highly compress-
ible in the basis Ψ) then n ¿ m. In practice the signal
u is not exactly sparse, but a large number of coef£cients
in the basis Ψ may be discarded with minimal error in re-
constructing u; in this practical case the CS framework has
also been shown to operate effectively.
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The problem in (1) may be solved by linear program-
ming (S. Chen & Saunders, 1999) and greedy algo-
rithms (Tropp & Gilbert, 2005) (Donoho et al., 2006). A
Bayesian compressive sensing (BCS) methodology is pro-
posed in (Ji et al., 2007b), by posing the CS inversion prob-
lem as a linear-regression problem with a sparseness prior
on the regression weights θ. One advantage of BCS is that
this framework may be extended to multi-task compressive
sensing (Ji et al., 2007a), in which each CS measurement
vi = Φiθi represents a sensing “task” and the objective is
to jointly invert for all {θi}i=1,M , through an appropriate
sharing of information between the M data collections. In
multi-task CS, one may potentially reduce the number of
measurements required for each task by exploiting the sta-
tistical relationships among the tasks, for example, “Dis-
tributed Compressed Sensing” (DCS) (Baron et al., 2005),
an empirical Bayesian strategy “Simultaneous Sparse Ap-
proximation” in (Wipf & Rao, 2007), and a hierarchical
Bayesian model for multi-task CS (Ji et al., 2007a). How-
ever, these multi-task algorithms assume all tasks are ap-
propriate for sharing, which may not be true in many prac-
tical applications. In this paper we introduce a Dirichlet
process (DP) prior (West et al., 1994) to the hierarchical
BCS model, which can simultaneously perform the inver-
sion of the underlying signals and infer the appropriate
sharing/clustering structure across the M tasks.

As detailed below, an important property of DP for the
work presented here is that it provides a tool for semi-
parametric clustering (i.e., the number of clusters need
not be set in advance). The DP-based hierarchical model
is employed to realize the desired property of simultane-
ously clustering and CS inversion of the M measurements
{vi}i=1,M . A variational Bayes (Blei & Jordan, 2004) in-
ference algorithm is considered, yielding a full posterior
over the model parameters θi.

2. Multi-Task CS Modeling with DP Priors
2.1. Multi-Task CS Formulation for Global Sharing

Let vi represent the CS measurements associated with task
i, and assume a total of M tasks. The i-th CS measurement
may be represented as

vi = Φiθi + εi, (2)

where the CS measurements vi are characterized by an ni-
dimensional real vector, the sensing matrixΦi correspond-
ing to task i is of size ni ×m, and θi is the set of (sparse)
transform coef£cients associated with task i. The j th co-
ef£cient of θ i is denoted θi,j . The residual error vector
εi ∈ Rni is modeled as ni i.i.d. draws from a zero-mean
Gaussian distribution with an unknown precision α0 (vari-
ance 1/α0); the residual corresponds to the error imposed
by setting the small transform coef£cients exactly to zero

when performing the CS inversion.

We impose a hierarchical sparseness prior on the parame-
ters θi, the lower level of which is

p(θi|αi) =
m
∏

j=1

N (θi,j |0, α
−1
i,j ), (3)

where αi,j is the j th component of the vector αi. To im-
pose sparseness, on a layer above a Gamma hyperprior is
employed independently on the precisions αi,j . The likeli-
hood function for the parameters θi and α0, given the CS
measurements vi, may be expressed as

p(vi|θi, α0) = (
2π

α0

)−
ni
2 exp(−

α0

2
‖vi −Φiθi‖

2
2). (4)

Concerning the aforementioned hyperprior, for the multi-
task CS model proposed in (Ji et al., 2007a), the parame-
ters αi = α, for i = 1, · · · ,M , and α ∼

∏m
j=1

Ga(c, d).
In this framework the CS data from all M tasks are used
to jointly infer the hyper-parametersα (global processing).
However, the assumption in such a setting is that it is ap-
propriate to employ all of the M tasks jointly to infer the
hyper-parameters. One may envision problems for which
the M tasks may be clustered into several sets of tasks
(with the union of these sets constituting the M tasks),
and data sharing may only be appropriate within each clus-
ter. Through use of the Dirichlet process (DP) (Escobar &
West, 1995) employed as the prior over αi, we simultane-
ously cluster the multi-task CS data, and within each cluster
the CS inversion is performed jointly. Consequently, we no
longer need assume that all CS data from the M tasks are
appropriate for sharing.

2.2. Dirichlet Process for Clustered Sharing

The Dirichlet process, denoted asDP (λ,G0), is a measure
on measures, and is parameterized by a positive scaling pa-
rameter λ and the base distribution G0. Assume we have
{αi}i=1,M and eachαi is drawn identically fromG, andG
itself is a random measure drawn from a Dirichlet process,

αi|G
iid
∼ G, i = 1, · · · ,M,

G ∼ DP (λ,G0), (5)

where G0 is a non-atomic base measure.

Sethuraman (Sethuraman, 1994) provides an explicit char-
acterization of G in terms of a stick-breaking construction.
Consider two in£nite collections of independent random
variables πk and α∗

k, k = 1, 2, · · · ,∞, where the πk are
drawn i.i.d. from a Beta distribution, denoted Beta(1, λ),
and the α∗

k are drawn i.i.d. from the base distribution G0.
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The stick-breaking representation of G is then de£ned as

G =

∞
∑

k=1

wkδα∗
k
, with (6)

wk = πk

k−1
∏

i=1

(1− πi), (7)

where πk|λ
iid
∼ Beta(1, λ) and α∗

k|G0
iid
∼ G0. This repre-

sentation makes explicit that the random measure G is dis-
crete with probability one and the support of G consists of
an in£nite set of atoms located at α∗

k, drawn independently
fromG0. The mixing weights wk for atomα∗

k are given by
successively breaking a unit length “stick” into an in£nite
number of pieces, with 0 ≤ wk ≤ 1 and

∑∞

k=1
wk = 1.

2.3. Multi-Task CS with DP Priors

We employ a DP prior with stick-breaking representation
for αi in the model in (3), which assumes that αi|G ∼ G
and G =

∑∞

k=1
wkδα∗

k
. The base distribution G0 cor-

responds to the sparseness promoting representation dis-
cussed in Sec 2.1. To facilitate posterior computation we
introduce an indicator variable zi with zi = k indicating
αi = α∗

k. Therefore the DP multi-task CS model is ex-
pressed as

vi|θi, α0 ∼ N (Φiθi, α
−1
0 I),

θi,j |zi, {α
∗

k}k=1,K ∼ N (0, α∗zi,j
−1),

zi|{wk}k=1,K
iid
∼ Multinomial({wk}k=1,K),

wk = πk

k−1
∏

l=1

(1− πl),

πk
iid
∼ Beta(1, λ),

λ|e, f ∼ Ga(e, f),

α∗

k|c, d
iid
∼

m
∏

j=1

Ga(c, d),

α0 ∼ Ga(a, b), (8)

where i = 1, · · · ,M , j = 1, · · · ,m, k = 1, · · · ,K,
1 ≤ K ≤ ∞, and αi,j is the j-th element of αi. For
convenience, we denote the model in (8) as DP-MT CS.
In practice K is chosen as a relatively large integer (e.g.,
K = M if M is relatively large) which yields a negligi-
ble difference compared to the true DP (Ishwaran & James,
2001), while making the computation practical.

The choice of G0 here is consistent with the sparseness-
promoting hierarchical prior discussed in Section II-A.
Consider task i and assume αi takes value α∗

k; the prior

distribution over θi is then

p(θi|c, d) =
m
∏

j=1

∫

N (θi,j |0, α
∗

k,j
−1)Ga(α∗k,j |c, d)dα

∗

k,j .

(9)
Equation (9) is a type of automatic relevance determination
(ARD) prior which enforces the sparsity over θi (Tipping,
2001). We usually set c and d very close to zero (e.g., 10−4)
to make a broad prior over α∗

k, which allows the posteriors
on many of the elements of α∗

k to concentrate at very large
values, consequently the posteriors on the associated ele-
ments of θi concentrate at zero, and therefore the sparse-
ness of θi is achieved (MacKay, 1994) (Neal, 1996). Since
these posteriors have “heavy tails” compared to a Gaussian
distribution, they allow for more robust shrinkage and bor-
rowing of information. Similarly, hyper-parameters a, b, e,
and f are all set to a small value to have a non-informative
prior over α0 and λ respectively.

3. Variational Bayesian Inference
One may perform inference via MCMC (Gilks et al., 1996),
however this requires vast computational resources and
MCMC convergence is often dif£cult to diagnose (Gilks
et al., 1996). Variational Bayes inference is therefore in-
troduced as a relatively ef£cient method for approximating
the posterior. From Bayes’ rule, we have

p(H|V,Υ) =
p(V|H)p(H|Υ)

∫

p(V|H)p(H|Υ)dH
, (10)

where V = {vi}i=1,M are CS measurements from
M CS tasks, H = {α0, λ,π, {zi}i=1,M , {θi}i=1,M ,
{α∗

k}k=1,K} are hidden variables (with π = {πk}k=1,K)
and Υ = {a, b, c, d, e, f} are known hyper-parameters.
The integration in the denominator of (10), called the
marginal likelihood, or “evidence” (Beal, 2003), is gener-
ally intractable to compute analytically. Instead of directly
estimating p(H|V,Υ), variational methods seek a distri-
bution q(H) to approximate the true posterior distribution
p(H|V,Υ). Consider the log marginal likelihood

log p(V|Υ) = F(q(H)) +DKL(q(H)||p(H|V,Υ)),
(11)

where

F(q(H)) =

∫

q(H) log
p(V|H|,Υ)p(H,Υ)

q(H)
dH, (12)

and DKL(q(H)||p(H|V,Υ)) is the KL divergence be-
tween q(H) and p(H|V,Υ). The approximation of
p(H|V,Υ) using q(H) can be achieved by maximizing
F(q(H)), which forms a strict lower bound on log p(V|Υ).
In this way estimation of q(H) may be made computation-
ally tractable. In particular, for computational convenience,
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q(H) is expressed in a factorized form, with the same func-
tional form as the priors p(H|Υ). For the model in (8), we
assume

q(H) = q(α0)q(λ)q(π)

M
∏

i=1

q(zi)

M
∏

i=1

q(θi)

K
∏

k=1

q(α∗

k),

(13)
where q(α0) ∼ Ga(ã, b̃), q(λ) ∼ Ga(ẽ, f̃), q(π) ∼
∏K−1

k=1
Beta(τ1k, τ2k), q(zi) ∼ Multinomial(w),

q(θi) ∼ N (µi,Γi), q(α∗

k) ∼
∏m

j=1
Ga(α∗k,j |c̃k,j , d̃k,j),

with w = {wk}k=1,K .

By substituting (13) and (8) into (12), the lower bound
F(q) is readily obtained. The optimization of the lower
bound F(q) is realized by taking functional derivatives
with respect to each of the q(·) distributions while £xing
the other q distributions, and setting ∂F(q)/∂q(·) = 0 to
£nd the distribution q(·) that increases F (Beal, 2003). The
update equations for the variational posteriors are summa-
rized in the Appendix. The convergence of the algorithm is
monitored by the increase of the lower bound F . One prac-
tical issue of the variational Bayesian inference is that the
VB algorithm converges to a local maximum of the lower
bound of the marginal log-likelihood since the true poste-
rior usually is multi-modal. Therefore the average of multi-
ple runs of the algorithm from different starting points may
avoid this issue and yield better performance.

4. Experimental Results
4.1. Synthetic data

In the £rst set of examples we consider synthesized data to
examine the sharing mechanisms associated with the DP-
MT CS inversion. In the £rst example we generate data
with 10 underlying clusters. Figure 1 shows ten “tem-
plates”, each corresponding to a 256-length signal, with 30
non-zero components (the values of those non-zero com-
ponents are randomly drawn from N (0, 1)). The non-zero
locations are chosen randomly for each template such that
the correlation between these sparse templates is zero. For
each template, £ve sparse signals (each with 256 samples)
are generated by randomly selecting three non-zero ele-
ments from the associated template and setting the coef-
£cients to zero, and three zero-amplitude points in the tem-
plate are randomly now set to be non-zero (each of these
three non-zero values again drawn from N (0, 1)). In this
manner the sparseness properties of the £ve signals gener-
ated from a given template are highly related, and the ten
clusters of sparse signals have distinct sparseness proper-
ties. For each sparse signal a set of CS random projections
are performed, with the components of each projection vec-
tor drawn randomly from N (0, 1)(Donoho, 2006). The re-
construction error is de£ned as ||û − u||2/||u||2, where û
is the recovered signal and u is the original one.
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Figure 1. Ten template signals for 10-cluster case.
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Figure 2. Multi-task CS inversion error (%) for DP-MT and MT∗

CS for the ten-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

Figure 2 shows the reconstruction errors of the CS inver-
sion by DP-MT CS as well as the global-sharing MT CS
discussed in Sec 2.1 (denoted as MT∗ CS for simplicity), as
a function of the number of CS measurements. Both CS al-
gorithms are based on the VB DP-MT algorithm described
in Sec 3, however for MT∗, we set κi,1 = 1, and κi,k = 0
for k > 1 for all tasks and £x the values of κi,k in each it-
eration without update. The experiment was run 100 times
(with 100 different random generations of random projec-
tion as well as initial membership), and the error bars in
Figure 2 represent the standard deviation about the mean.
From Figure 2 the advantage of the DP-based formulation
is evident. In Figure 2 we also present histograms for the
number of different clusters inferred by the DP-MT CS. It
is clear from Figure 2 that the algorithm tends to infer about
10 clusters, but there is some variation, with the variation in
the number of clusters increasing with decreasing number
of CS measurements.

To further examine the impact of the number of underlying
clusters, we now consider examples for which the data are
generated for 5, 3, 2 and 1 underlying. For each of tem-
plates, £ve sparse signals are generated randomly, in the
manner discussed above for the ten-cluster case. In Fig-
ures 3-6 are shown results in the form considered in Fig-
ure 2, for the case of 5, 3, 2 and 1 underlying clusters for
data generation. One notes the following phenomenon: As
the number of underlying clusters diminishes, the differ-
ence between DP-MT and MT∗ CS algorithms diminishes,
with almost identical performance witnessed for the case
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Figure 3. Multi-task CS inversion error (%) for DP-MT and MT∗

CS for the £ve-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

of three and two clusters; this phenomenon is particularly
evident as the number of CS measurements increases. As
an aside, we also note that the DP-based inference of the
number of underlying clusters adapts well to the underly-
ing data generation.

We now provide an explanation for the relationships be-
tween the DP-MT and MT∗ CS algorithms. For two sparse
signals like those in Figure 1, they have distinct non-zero
coef£cients and therefore one would typically infer that
they have dissimilar sparseness properties. However, they
share many zero-amplitude coef£cients. If we consider M
sparse signals, and if all of the M signals share the same
large set of zero-amplitude coef£cients, then they are ap-
propriate for sharing even if the associated (small number
of) non-zero coef£cients are entirely distinct. For the 10-
cluster case, because of the large number of clusters, the
templates do not cumulatively share the same set of zero-
amplitude coef£cients; in this case global sharing for CS
inversion is inappropriate, and the same is true for the 5-
cluster case. However, for the 3 and 2 cluster cases, the
templates share a signi£cant number of zero-amplitude co-
ef£cients, and therefore global sharing is appropriate. This
underscores that global sharing across M tasks is appro-
priate when there is substantial sharing of zero-amplitude
coef£cients, even when all of the non-zero-amplitude coef-
£cients are distinct. However, one typically does not know
a priori if global sharing is appropriate (as it was not in
Figures 2 and 3), and therefore the DP-based formulation
offers generally high-quality results when global sharing is
appropriate and when it is not.

We consider the sharing mechanisms manifested for two
examples from the three-cluster case considered in Figure
4. The truncation level K can be set either to a large num-
ber or be estimated in principle by increase the number of
sticks included until the log-marginal likelihood (the lower
bound) in the VB algorithm starts to decrease. In this exam-
ple we choose the number of sticks in the DP formulation
toK = 8 which corresponds to the upper bound of the log-
marginal likelihood, and we show the stick (cluster) with
which each of the 15 tasks were grouped at the end of the
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Figure 4. Multi-task CS inversion error (%) for DP-MT and MT∗

CS for the three-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.
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Figure 5. Multi-task CS inversion error (%) for DP-MT and MT∗

CS for the two-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

90 100 110 120 130 140 150
0  

0.1

0.2

0.3

0.4

0.5

# of measurements

A
vg

. 
re
co

n
. 
e
rr
o
r 
(%

)

DP MT CS

MT* CS
0 1 2 3 4 5

0
50

100
# of Measurements=100

0 1 2 3 4 5
0

50
100

# of Measurements=110

0 1 2 3 4 5
0

50
100

# of Measurements=120

0 1 2 3 4 5
0

50
100

# of Measurements=130

0 1 2 3 4 5
0

50
100

# of Measurements=140

# of clusters

   (a)                                            (b)

Figure 6. Multi-task CS inversion error (%) for DP-MT and MT∗

CS for the one-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

inference process. These examples were selected because
they both yielded roughly the same average CS inversion
accuracy across the 15 CS inversions (0.40% and 0.38%
error), but these two runs yield distinct clusterings. This ex-
ample emphasizes that because the underlying signals are
very sparse and they have signi£cant overlap in the set of
zero-amplitude coef£cients, the particular clustering mani-
fested by the DP formulation is not particularly important
for the £nal CS-inversion quality.

4.2. Real images

In the following examples, applied to imagery, we perform
comparisons between DP-MT, MT∗, and also a single-task
Bayesian CS (ST), in which the CS inversion is performed
independently on each of the tasks. ST CS is realized with



Multi-Task Compressive Sensing with Dirichlet Process Priors

(a)                                                   (b)

Task index

C
lu
s
te
r 
in
d
e
x

5 10 15

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1

Task index

C
lu
s
te
r 
in
d
e
x

5 10 15

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1

Figure 7. 2 example runs of the DP-MT CS clustering for the 3-
cluster case (100 CS measurements). The grey scale denotes the
probability that a given task is associated with a particular cluster.
(a) Reconstruction error was 0.40%, (b) reconstruction error of
0.38%.

the same algorithm as DP-MT and MT∗, but set κi,1 = 1,
and κi,k = 0 for k > 1, and consider only one CS task at a
time (M = 1)..

We conduct two examples on CS reconstruction of typical
imagery from “natural” scenes. All the images in these ex-
amples are of size 256 × 256 and are highly compressible
in a wavelet basis. We choose the “Daubechies 8” wavelet
as our orthonormal basis, and the sensing matrix Φ is con-
structed in the same manner as in Sec 4.1. In this exper-
iment we adopt a hybrid CS scheme, in which using CS
we measure only £ne-scale wavelet coef£cients, while re-
taining all coarse-scale coef£cients (no compression in the
coarse scale) (Tsaig & Donoho, 2006). We also assume all
the wavelet coef£cients at the £nest scale are zero and only
consider (estimate) the other 4096 coef£cients. In both ex-
amples, the coarsest scale is j0 = 3, and the £nest scale is
j1 = 6. We use the mean of the posterior over θ to per-
form the image reconstruction. The reconstruction error is
de£ned as ||û − u||2/||u||2, where û is the reconstructed
image and u is the original one.

In the £rst example, we choose 12 images from three differ-
ent scenes. To reconstruct the image, we perform an inverse
wavelet transform on the CS-estimated coef£cients. In Fig-
ure 8 (a) we show the reconstructed images with all 4096
measurements using linear reconstruction (θ = Φ

Tv),
which is the best possible performance. Figure 8 (b)-(d)
represent the reconstructed images by the DP-MT, MT∗,
and the ST algorithms, respectively, with the number of
CS measurements n = 1764 (1700 measurements in the
£ne scales and 64 in the coarse scale) for each task. The
reconstruction errors for these four methods are compared
in Table 1. We notice that the DP-MT algorithm reduces
the reconstruction error compared to the ST method, which
indicates that the multi-task CS inversion shares informa-
tion among tasks and therefore requires less measurements
than the single task learning does to achieve the same per-
formance. In addition to the CS inversion, the DP-MT also
yield task clustering, with this inferred simultaneously with
the CS inversion; while this clustering is not the £nal prod-
uct of interest, it is informative, with results shown in Fig-
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Figure 8. CS recon., (a) Linear, (b) DP-MT, (c) MT∗, (d) ST
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Figure 9. Sharing mechanism for 12 tasks in Figure 8 yielded by
DP-MT CS.

ures 9. Note that the algorithms infer three clusters, each
corresponding to a particular class of imagery. By con-
trast the MT∗ algorithm imposes complete sharing among
all tasks, and the results in Table I indicate that this under-
mines performance.
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Table 1. Reconstruction error (%) for the example in 8.
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12

DP-MT 8.79 7.89 9.69 8.04 14.33 13.22 15.18 14.54 15.51 16.71 16.11 15.19
MT∗ 10.19 9.14 11.49 9.18 16.94 15.59 17.46 16.50 18.62 19.82 19.34 18.03
ST 10.28 10.37 12.81 10.28 18.37 16.18 18.65 17.67 20.77 22.24 21.19 19.59

Linear 6.66 6.20 7.08 6.14 12.41 11.70 12.43 11.99 13.83 14.41 14.10 13.53

In the second example we consider 11 images from three
scenes. The reconstructed images are shown in Figure 10
by the linear reconstruction, DP-MT, MT∗ and ST algo-
rithms; the reconstruction errors are listed in Table 2 for
all four methods. As expected, the multi-task CS inversion
algorithm yields smaller reconstruction error than the sin-
gle task algorithm. The clustering result is shown in Figure
11, in which images 1-4 and 9-11 are clustered together by
DP-MT. However, recall the simple example considered in
Figure 7. The DP-based algorithm seeks to share the un-
derlying sparseness of the images, even though the images
themselves may appear distinct. In fact, the results in Fig-
ure 11 motivated the simple example considered in Figure
7.

5. Conclusions
Hierarchical Dirichlet process (DP) priors are considered
for the imposition of sparseness on the transform coef-
£cients in the context of inverting multiple CS measure-
ments. An independent zero-mean Gaussian prior is placed
on each transform coef£cient of each CS task and the task-
dependent precision parameters are assumed drawn from
a distribution G, where G is drawn from a Dirichlet pro-
cess (DP); the base distribution of the DP is a product of
Gamma distributions. The DP framework imposes the be-
lief that many of the tasks may share underlying sparseness
properties, and the objective is to cluster the CS measure-
ments, where each cluster constitutes a particular form of
sparseness. The DP formulation is non-parametric, in the
sense that the number of clusters is not set a priori and is
inferred from the data. A computationally ef£cient varia-
tional Bayesian inference has been considered on all model
parameters. For all examples considered, the DP-MT CS
inversion performed at least as well as ST CS inversion
and CS inversion based on global sharing. Especially when
global sharing was inappropriate, the DP-based inversion is
signi£cantly better.

In future research, we may consider correlation between
spatially and spectrally adjacent transformation coef£cients
and remove the assumption of exchangeability employed
within the DP, which in practice may not be true.

Appendix: Update Equations in VB DP MT
The updated hyperparameters for all q(·) in Sec 3 are
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Figure 10. CS recon. (a) Linear, (b) DP-MT, (c) MT∗, (d) ST

• ã = a + 1

2

∑M
i=1

ni and b̃ = b +
1

2

∑M
i=1

[

tr(ΦiΓ
−1
i Φ

T
i )+(Φiµi−vi)

T (Φiµi−vi)
]

.

• ẽ = e+K−1 and f̃ = f−
∑K−1

k=1

[

ψ(τ2k)−ψ(τ1k+

τ2k)
]

, where ψ(x) = ∂
∂x

logΓ(x).
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Table 2. Reconstruction Error (%) for the example in Figure 10
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11

DP-MT 6.50 6.41 6.89 6.86 15.81 15.09 15.91 14.74 7.74 8.05 8.50
MT∗ 7.79 7.76 8.12 8.32 18.17 17.70 18.66 17.13 8.87 9.16 9.97
ST 8.31 8.23 8.81 9.23 19.79 19.74 20.36 18.88 8.77 9.58 9.62

Linear 4.78 4.77 5.01 5.15 15.39 14.49 15.18 14.06 6.10 5.72 6.72
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Figure 11. Sharing mechanism for 11 tasks in Figure 10 yielded
by DP-MT

• τ1k = 1 +
∑M

i=1
κi,k and τ2k = ẽ

f̃
+

∑M
i=1

∑K
l=k+1

κi,k , where κi,k = q(zi = k).

• c̃k,j = c + 1

2

∑M
i=1

κi,k and d̃k,j = d +
1

2

∑M
i=1

κi,k(σi,j + µ2
i,k,j), where [σi,1, · · · , σi,m] is

the diagonal elements of Γ−1
i and µi,k,j is the j th ele-

ment of vector µi.

• Γi =
∑K

k=1
κi,kΛk+

ã

b̃
Φ

T
i Φi andµi =

ã

b̃
Γ
−1
i Φ

T
i vi,

where Λk = diag(c̃k,1/d̃k,1, · · · , c̃k,m/d̃k,m) is a di-
agonal matrix of m×m.

• κi,k = e
λi,k

∑

K
l=1 e

λi,l
, where λi,k =

∑k−1

l=1

[

ψ(τ2l) −

ψ(τ1l + τ2l)
]

+
[

ψ(τ1k) − ψ(τ1k + τ2k)
]

−
1

2

{

∑m
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[
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}

.
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