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Abstract

Temporal text data is often generated by a
time-changing process or distribution. Such a
drift in the underlying distribution cannot be
captured by stationary likelihood techniques.
We consider the application of local likeli-
hood methods to generative and conditional
modeling of temporal document sequences.
We examine the asymptotic bias and vari-
ance and present an experimental study us-
ing the RCV1 dataset containing a temporal
sequence of Reuters news stories.

1. Introduction

Time stamped documents such as news stories often
cannot be accurately modeled by a single time invari-
ant distribution. An alternative is to assume that the
concepts underlying the distribution generating the
data drift with time. In other words, the data is gen-
erated by a time dependent process z(®) ~ pe(z),t €
I C R whose approximation {p; : t € I} becomes
the main objective of the learning task. We assume
that the time ¢ is a continuous quantity, even in cases
where the realized time points form a discrete sample.
For example, assuming that the time stamps repre-
sent the days of the year when the documents were
authored, we assume that the set {1,...,365} is a
discrete sample from a underlying continuous interval
[1,365]. We further assume that the data samples z(*),
sampled from p;, correspond to pairs z(*) = (z,y) con-
stituting a document x and a categorial-valued label .
Such pairs (z,y) appear often in practice, for example
with y corresponding to the document topic (Lewis
et al., 2004), sentiment (Pang & Lee, 2005), author
(Mosteller & Wallace, 1964) or Email spam/no-spam
(Mulligan, 1999).

Assuming that our data is a set of time stamped doc-
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uments and labels (¢, (z,y)), the drift p,(z,y) can be
characterized by considering the temporal transition of
the joint distribution p:(x, y), the conditionals p:(y|z),
pt(x|y), or the marginals p:(z), pt(y). The choice of
which of the distributions above to model depends
on the application at hand. For example, modeling
pt(y|x) is usually sufficient for document classification
purposes while modeling p.(z|y) is necessary for lan-
guage modeling which is an important component in
speech recognition, machine translation, and IR.

We demonstrate the presence of concept drift in prac-
tice by considering the Reuters RCV1 dataset (Lewis
et al., 2004) which contains over 800,000 news sto-
ries gathered in a period spanning 365 consecutive
days and categorized according to topic. Figure 1 dis-
plays the temporal change in the relative frequency
(number of appearance in a document divided by
document length) of three words: million, common,
and Handelsgesellschaft (German trade unions) for
documents in the most popular RCV1 category titled
CCAT. It is obvious from these plots that the relative
frequency of these words vary substantially in time.
For example, the word Handelsgesellschaft appear
in 8 distinct time regions, representing time points
in which German trade unions were featured in the
Reuters news archive.

The temporal variation in relative frequencies illus-
trated by Figure 1 corresponds to a drift in the dis-
tribution generating the data. Since the drift is rather
pronounced, standard estimation methods based on
maximum likelihood are not likely to accurately model
the data. In this paper, we consider instead estimat-
ing {p:(z,y) : t € I} based on the the local likelihood
principle. Local likelihood is a locally weighted ver-
sion of the loglikelihood with the weights determined
by the difference between the time points associated
with the sampled data and a the time at which the
inference takes place.

After presenting a more formal discussion of concept
drift in Section 3 and the definition of local likelihood
in Section 4 we turn to examine in detail the case of
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Figure 1. Estimated relative frequency (number of appearances in a document divided by document length) of three words
from the most popular category in RCV1 as a function of time. The three panels correspond to the words million, common,
and Handelsgesellschaft (German trade unions). The displayed curves were smoothed to remove sampling noise.

modeling p;(z|y) with local likelihood for n-grams and
modeling p;(y|z) with local likelihood for logistic re-
gression. In the case of 1-grams or the naive Bayes
model, we provide a precise as well as asymptotic de-
scription of the bias and variance which illuminates
certain facts concerning the selection of weights and
the difference between the online and offline scenarios.
Experiments conducted on the RCV1 dataset demon-
strates the local likelihood estimation in practice and
contrasts it with more standard non-local alternatives.

2. Related Work

Concept drift or similar phenomena under different
names have been studied in a number of communi-
ties. It has recently gained interest primarily due to
an increase in the need to model large scale temporal
data streams.

Early machine learning literature on the concept drift
problem involved mostly computational learning the-
ory tools (Helmbold & Long, 1994; Kuh et al., 1990).
Hulten et al. (2001) studied the problem in the context
of datamining large scale streams whose distribution
change in time. More recently, Forman (2006) studied
the concept drift phenomenon in the context of infor-
mation retrieval in large textual databases. Sharan
and Neville (2007) consider the modeling of temporal
changes in relational databases and its application to
text classification.

Overall, the prevailing techniques have been to train
standard methods on examples obtained by filtering
the data through a sliding window. Tibshirani and
Hastie (1987) developed the local likelihood idea in
the statistics community within the context of non-
parametric smoothing and regression. More details on
local likelihood can be found in (Loader, 1999).

3. The Concept Drift Phenomenon and
its Estimation

Formally, the concept drift phenomenon may be
thought of as a smooth flow or transition of the joint
distribution of a random vector. We will focus on the
case of a joint distribution of a random vector X and
a random variable Y representing predictor and re-
sponse variables. We will also restrict our attention to
temporal or one dimensional drifts.

Definition 1. Let X and Y be two discrete random
vectors taking values in X and ). A smooth temporal
drift of X,Y is a smooth mapping from I C R to a
family of joint distributions

te pe(a,y) = p(X =2,Y =y).

By restricting ourselves to discrete random variables
we can obtain a simple geometrical interpretation of
concept drift. Denoting the simplex of all distributions
over the set S by

El
reRE: Vir >0, Y =1y (1)
i=1

def

Py &

we have that Definition 1 is equivalent to a smooth
parameterized curve in the simplex Py y.

The drift in the joint distribution can be decomposed
in several ways. The first decomposition p:(x,y) =
pe(x|y)pe(y) is useful for generative modeling and the
second decomposition pi(z,y) = pi(y|z)p:(z) is useful
for conditional modeling. In the generative case we will
focus on modeling p¢(x|y) since modeling p(y) is typi-
cally an easier problem due to its lower dimensionality
(in most cases involving text documents |Y| < |X]).
In the case of conditional modeling, we focus on mod-
eling p;(y|x) and we ignore the drift in the marginal
pt(x) since it is irrelevant for discriminative tasks.
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In both cases we assume that our data is a set of time-
stamped labeled documents sampled from p;(z,y)
where the time points ¢ are sampled from a distribu-
tion g(t). If g is a continuous density, the number of
samples at time ¢, denoted by N, is no greater than
1 with probability 1. In practice, however, we allow
N, to be larger than 1 in order to account for the dis-
cretization of time. We thus have the data

D:{(.Itj,ytj)teICR,j:l,,Nt} (2)

where the time points are sampled from g(t) and
(@, yt5) ~ pe(@, ).

To illustrate these concepts in the context of the RCV1
dataset, we display in Figure 2 the total number of
words per day (left) and the total number of docu-
ments per day (right) corresponding to the most pop-
ular category in RCV1. As is evident from the right
panel, g(¢) is a highly non-uniform density correspond-
ing to varying amount of news content in different
dates.

It is easy to come up with two simple solutions to
the problem of concept drift modeling. The first so-
lution, called the extreme global model, is to simply
ignore the temporal drift and use all of the samples
in D regardless of their time stamp. This approach
results in a single global model p which serves as an
estimate for the entire flow {p;,t € I'} effectively mod-
eling the concept drift as a degenerate curve equiva-
lent to a stationary point in the simplex. The second
simple alternative, called the extreme local model, is
to model p; using only data sampled from time ¢ i.e.
{(x¢j,y15) : 3 = 1,...,N;}. This alternative decom-
poses the concept drift estimation into a sequence of
disconnected estimation problems.

The extreme local model has the benefit that if the
individual estimation problems are unbiased, the esti-
mation of the concept drift is unbiased as well. The
main drawback of this method is the high estimation
variance resulting from the relatively small number of
daily samples N; used to estimate the individual mod-
els. Furthermore, assuming D is finite we can only
estimate the drift in the finite number of time points
appearing in the dataset D (since we have no train-
ing data for the remaining time points). On the other
hand, the extreme global model enjoys low variance
since it uses all data points to estimate p;. Its main
drawback is that it is almost always heavily biased due
to the fact that samples from one distribution p;, are
used to estimate a different distribution py, .

It is a well known fact that the optimal solution in
terms of minimizing the mean squared estimation er-
ror usually lies between the extreme local and extreme

global models. An intermediate solution can trade-
off increased bias for reduced variance and can signif-
icantly improve the estimation accuracy. Motivated
by this principle, we employ local smoothing in form-
ing a local version of the maximum likelihood principle
which includes as special cases the two extreme models
mentioned above. The intuition behind local smooth-
ing in the present context is that due to the similar-
ity between p; and pyy., it makes sense to estimate
pe using samples from neighboring time points ¢ + e.
However, in contrast to the global model the contribu-
tion of points sampled from p;y. towards estimating
pt should decrease as € increases.

4. Local Likelihood and Concept Drift

The local likelihood principle extends the ideas of non-
parametric regression smoothing and density estima-
tion to likelihood-based inference. We concentrate
on using the local likelihood principle for estimating
pt(x]y) and p:(y|z) which are described next.

4.1. Local Likelihood for n-Gram Estimation

We apply local likelihood to the problem of estimating
p+(x]y) by assuming the naive Bayes assumption i.e.
that x|y is generated by a multinomial distribution or
its m-gram extensions. Assuming documents contain
words belonging to a finite dictionary of size V, the
naive Bayes assumption may be stated as

pi(aly) o< T 050,
weV

0 € Py (3)

where ¢(w, x) represents the number of times word w
appears in document x. Similarly, the n-gram model
extends naive Bayes (3) by considering n-order Markov
dependency. The naive Bayes and n-gram are a main-
stay of statistical text processing (Manning & Schutze,
1999) and usually lead to accurate language modeling,
especially when appropriate smoothing is used (Chen
& Goodman, 1998). For notational simplicity we con-
sider the problem of estimating p;(z) rather than the
equivalent p;(z]y) and we concentrate on naive Bayes
i.e. 1-gram. Extending the discussion to n-grams with
n > 1 is relatively straightforward and is omitted due
to lack of space.

Applied to the concept drift problem, the local log-
likelihood at time ¢ is a smoothed or weighted ver-
sion of the loglikelihood of the data D in (2) with the
amount of smoothing determined by a non-negative
smoothing kernel K : R — R

N,
GID) = > Ki(t—1)> logp(wrisn).  (4)
rel’ j=1
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Figure 2. Total number of words per day (left) and documents per day (right) for the most popular category in RCV1.
The displayed curves were smoothed to remove sampling noise.

We assume that the kernel function is a normalized
density concentrated around 0 and parameterized by
a scale parameter h > 0 reflecting its spread and
satisfying the relation Kj(r) = h='K(r/h) for some
K : R — R referred to as the base kernel form.
We further assume that K has bounded support and
Ju"K(u)du < oo for < 2. Wand and Jones (1995)
provide more details on the formal requirements of a
smoothing kernel.

Three popular kernel choices are the tricube, tri-
angular and uniform kernels, defined as Kjp(r) =
h=1K(r/h) where the K(-) functions are respectively

K(r)= (1 —1[r[*)? 1gr<yy (5)
K(r)=1—1r]) - 1gr<yy (6)
K(r)=2""1( <1 (7)

The uniform kernel is the simplest choice and leads to
a local likelihood (4) equivalent to filtering the data
by a sliding window i.e. 0, is computed based on data
from adjacent time points with uniform weights. Un-
fortunately, it can be shown that the uniform kernel is
suboptimal in terms of its statistical efficiency or rate
of convergence to the underlying distribution (Wand
& Jones, 1995). Surprisingly, the triangular kernel has
a higher statistical efficiency than the Gaussian kernel
and is the focus of our experiments in this subsection.
We use the tricube kernel in the next subsection.

The scale parameter h is central to the bias-variance
tradeoff. Large h represents more uniform kernels
achieving higher bias and lower variance. Small & rep-
resents a higher degree of locality or lower bias but
higher variance. Since limy_.g K} approaches Dirac’s
delta function and limy_, ., K} approaches a constant
function the local log-likelihood (4) interpolates be-

tween the loglikelihoods of the extreme local model
and the extreme global model mentioned in Section 3
as h ranges from 0 to +oo.

Solving the maximum local likelihood problem for each
t provides an estimation of the entire drift {0 : ¢t €
R} with 0, = argmax, cg £:(7|D). In the case of the
naive Bayes or n-gram model we obtain a closed form
expression for the local likelihood maximizer 6; as well
as convenient expressions for its bias and variance. In
general, however, there is no closed form maximizer
and iterative optimization algorithms are needed in
order to obtain ¢; = argmax, g £:(n|D) for all ¢.

We denote the length of a document in (2) by
|z = & > wev C(wij,v) and the total number of
words in day t in (2) by |z % Zjvztl |5

Y wev Z;V:tl c(v,z¢;). We assume that the length of
documents z;; is independent of ¢ and is drawn from
a distribution with expectation .

Under the above assumptions, the local likelihood (4)
of the naive Bayes model becomes

l(n|D) = ZKht—T ZZ c(w, z-;) log Ny

Tel’ j=lweV

where 1 € Py. The local likelihood has a single global
maximum whose closed form is obtained by setting to
0 the gradient of the Lagrangian

(wu :E‘rj) + )\w

w‘rGI j=1
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to obtain

[é o = Zrel Kn(t—7) Zj\gl c(w, ;)
e > orer Kn(t — 1)l

The estimator ét is a normalized linear combination
of word counts where the combination coefficients are
determined by the kernel function and normalized by
the number of words in different days. We note that
6, in (8) is different from a weighted averaging of the
relative frequencies c(w, z,;)/ >, c(w', z+;).

(®)

We distinguish between two fundamental scenarios for
predicting the drift 6,.

Offline scenario: The goal is to estimate the drift
{6, : t € R} given the entire dataset D. In this
case we will consider symmetric kernels K(r) =
K(—r) which will achieve an increased conver-
gence rate of 0, — 0, as indicated by Proposi-
tion 2.

Online scenario: The goal is estimate a model for
the present distribution 6, using training data
from the past i.e. a dataset whose time stamps
are strictly smaller than ¢. This corresponds to
situations where the data arrives sequentially as a
temporal stream and at each time point a model
for the present is estimated using the available
stream at that time. We realize this restriction
by constraining K to satisfy K(r) = 0,7 < 0.

As with other statistical estimators, the accuracy of 0,
may be measured in terms of its mean squared error
E (6;—6,)? which decomposes as the sum of the squared
bias and variance of ;. Examining these quantities
allow us to study the convergence rate of 6, — 6 and
its leading coefficient .

Proposition 1. The bias vector bias (ét) e, — 0,
and variance matriz of 0y in (8) are

. AN ZrelKh(t_TMx‘rHeT —0;)

bias (0;) = S Kt — )]

_ ZTEI K%(t — 7_)lx‘r| (diag(@T) - 97'6.:)
(e Knlt = 7)lar])*

)

Var (ét)

(10)

where diag(z) is the diagonal matriz [diag(z)])i; =
5”—21-.

Proof. The random variable (RV) c(w,z,;) is dis-
tributed as a sum of multivariate Bernoulli RVs, or sin-
gle draws from multinomial distribution. The expec-
tation and variance of the estimator are that of a lin-
ear combination of iid multinomial RVs. To conclude

the proof we note that for Y ~ Mult(1,0), EY = 6,
Var () = diag(d) — 067. O

Examining Equations (9)-(10) reveals the expected de-
pendency of the bias on h and 6;. The contribution to
the bias of the terms (0, — 6;), for large |7 — t|, will
decrease as h decreases since the kernel becomes more
localized and will reduce to 0 as h — 0. Similarly, for
slower drifts, |0, — 6:]|,t = 7 will decrease and reduce
the bias.

Despite the relative simplicity of Equations (9)-(10),
it is difficult to quantitatively capture the relationship
between the bias and variance, the sample size, h, A,
and the smoothness of 6;, g. Towards this goal we de-
rive the following asymptotic expansions.

Proposition 2. Assuming (i) 0,9 are smooth in t,
(i1) h — 0,hn — oo, (%i) g > 0 in a neighborhood of
t, and (iv) document lengths do not depend on t and
have expectation A, we have in the offline case

g'(t)
g(t)

bias(ét|l) = h2/1,21 (K) (9,5 + %9,5) + Op(h2)
(11)

Var (6,|1) = M(dmg(et) —0,0]) + op((nh)™Y)

(nh)g(t)A
and in the online case
bias (0;|1) = hy11 (K)0; + op(h) (12)

pro2(K)
nhg(t)A

p12(K)g'(t)
ng?(t)A

var ) = ( ) (aias(6) - 007

pi2(K), .. . : : _
+ o) (diag(8;) — 0,0 —6.07) 4+ op((nh)™1)

def

where pp(K) = [uFK!'(u)du is assumed to be finite
and 0; is the vector [9,5]1 = %[6‘,5]1-.

The proof is somewhat similar to the derivation of the
asymptotic bias and variance of the Nadaraya-Watson
local regression (Wand & Jones, 1995) and is omit-
ted due to space limitations. The notation g, = f
represents convergence in probability of g, to f i.e.
Ve > 0,P(lgn — f| > €) — 0, and g, = op(f,) repre-
sents g/ fn — 0.

Corollary 1. Under the assumptions in Proposi-
tion 2, and in particular h — 0,nh — oo, the esti-
mator ét is consistent i.e. ét 2 0, in both the offline
and online settings.

Proposition 2 specifies the conditions for consistency
as well as the rate of convergence. In particular, the
bias of online kernels converges at a linear rather than
quadratic rate. In either cases, the estimator is biased
and inconsistent unless h — 0,n — oo and nh~! —
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oo. Expressions (11)-(12) reveal the performance gain
associated with a slower drift and sampling density g
indicated by 6, and ¢/(t) and with more (represented
by n) and longer (represented by A) documents.

Figure 3 displays the RCV1 per-word test set loglikeli-
hood for the online and offline scenarios as a function
of the (triangular) kernel’s bandwidth. As expected,
offline kernels performs better than online kernels with
both achieving the best performance for a bandwidth
approximately 25 which corresponds to a support of 25
days in the online scenario and 50 days in the offline
scenario. Note that in addition to obtaining higher ac-
curacy than the global model corresponding to h — oo,
the local model enjoys computational efficiency as it
ignores a large portion of the training data.

A central issue in local likelihood modeling is select-
ing the appropriate bandwidth h. A practical solu-
tion is to use cross validation or some other automatic
bandwidth selection mechanism. On RCV1 data, the
performance of such cross validation schemes is very
good and the estimated bandwidth possesses test set
loglikelihood that is almost identical to the optimal
bandwidth (see Figure 4, left).

Allowing the kernel scale to vary over time results in a
higher modeling accuracy than using fixed bandwidth
for all dates (see Figure 4, right). A time-dependent
cross validation procedure may be used to approx-
imate the time-dependent optimal bandwidth which
performs slightly better than the fixed-date cross val-
idation estimator. Note that the accuracy with which
the cross validation estimator approximates the opti-
mal bandwidth is lower in the time-dependent or vary-
ing bandwidth situation due the fact that much less
data is available in each of the daily cross validation
problems.

From a theoretical perspective, the asymptotic bias
and variance can be used to characterize the optimal
bandwidth and study its properties. Minimizing the
(offline) leading term of sum of component-wise MSE
with respect to h we obtain the bandwidth estimator

g = (13)
po2 (K )tr(diag(0;) — 0:0,")
A\, (K) X2, (101]; ' (8)/3/90) + V/o@Id; /2)

As expected, the optimal bandwidth decreases as
n, A, ||, [|0]] increases. Intuitively this makes sense
since in these cases the variance decreases and bias
either increases or stays constant. In practice, ét,ét
may vary significantly with time which leads to the
conclusion that a single bandwidth selection for all ¢
may not perform adequately. These changes are illus-

trated in Figure 5 (left) which demonstrates the tem-
poral change in the gradient norm.

Perhaps more interesting than the dependency of the
optimal bandwidth on n, A, 9t, 0, is its dependency on
the time sampling distribution g¢(¢). Equation (13)
reveals an un-expected non-monotonic dependency of
the optimal bandwidth in g(t). The dependency, ex-
pressed by Ay o ( > 1 (c15//9(t)+cai/g( —1/5 ig
illustrated in Figure 6 (left) where we assume for sim-
plicity that 017,02J do not Change with j resulting in
ht x (e1//g(t) + car/g 2/5 The key to under-
standlng this relatlonshlp is the increased asymptotic
bias due to the presence of the term ¢'(¢)/g(t) in Equa-
tion (11). Intuitively, the variations in g(t) expressed
by ¢'(t) introduce a bias component which alters the
otherwise monotonic role of the optimal bandwidth
and bias-variance tradeoff. Since g(¢) is highly non-
uniform (as illustrated in Figure 2), this dependency
of hy on g(t) is likely to play a significant role.

We finally point out that different words w have dif-
ferent parameters [0;],, and parameter derivatives [;].,
which indicates that it is unlikely that a single band-
width will work best for all words. Frequent words are
likely to benefit more from narrow kernel smoothing
than rare words which almost never appear. As a re-
sult, a lower bandwidth should be used for frequent
words while a high bandwidth should be used for rare
words. A systematic investigation of these topics is
beyond the scope of this paper.

4.2. Local Likelihood for Logistic Regression

Often, the primary goal behind modeling the drift is
conditional modeling i.e. predicting the value of y
given z. In this case, drift modeling should focus on
estimating the conditional p;(y|z) since modeling the
marginal p;(x) becomes irrelevant. In contrast to the
modeling of the conditional by Bayes rule p;(y|z)
p(x|y)p:(y) described in the previous section, we ex-
plore here direct modeling of {p;(y|x) : ¢t € I} using
local likelihood for logistic regression.

By direct analogy to Equation (4) the conditional local
likelihood estimator p:(y|x) is the maximizer of the
locally weighted conditional loglikelihood

77|D ZKht_T Zlogp y‘rj|x‘r]7 ) 7766'
Tel

As in the generative case, the kernel parameter h bal-
ances the degree of the kernel’s locality and controls
the bias-variance tradeoff.

Denoting by f(x) the vector of relative frequencies
in the document =z, the logistic regression model
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Figure 3. Per-word log-likelihood of held out test set as a function of the triangular kernel’s bandwidth for the two largest
RCV1 categories (CCAT (left) and GCAT (right)). In all four cases, the optimal bandwidth seems to be approximately
25 which indicates a support of 25 days for the online kernels and 50 days for the offline kernels.
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Figure 4. Per-word log-likelihood over held-out test set for various bandwidths as a function of the daily training set size.
Left: The extreme global model corresponding to h — oo performs worst. Selecting the bandwidth by cross validation
results in an accurate estimate and test-set loglikelihood almost identical to that of the optimal slope. Right: Allowing
the kernel scale to vary over time results in a higher modeling accuracy than using fixed bandwidth for all dates.
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Figure 5. Left: Estimated gradient norm for the most popular category in RCV1 as a function of ¢. The derivatives were
estimated using local smoothing. To avoid running into boundary effects we ignore the first and last 50 days. Right:
Classification error rate over a held-out test set for the local logistic regression model as a function of the train set size.
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log% (0, f(z)), & € RY leads to the fol-

lowing local conditional likelihood

t(n|D) = ZKh t—1) Zlog (1+e_ym(wmn>)

Tel

In contrast to the naive Bayes model in the previous
section, the local likelihood does not have a close form
maximizer. However, it can be shown that under mild
conditions it is a concave problem exhibiting a single
global maximum (for each t) (Loader, 1999). Most
of the standard iterative algorithms for training logis-
tic regression can be modified to account for the local
weighting introduced by the smoothing kernel. More-
over, recently popularized regularization techniques
such as the penalty c||n]|%,¢ = 1,2 may be added to
the local likelihood to obtain a local regularized ver-
sion equivalent to maximum posterior estimation.

Figure 5 (right) displays classification error rate over a
held-out test set for local logistic regression as a func-
tion of the train set size. The classification task was
predicting the most popular class vs the second most
popular class in RCV1. The plots in the figure con-
trast the performance of the online and offline tricube
kernels with optimal and infinite bandwidths, using Lo
regularization. The local model achieved a relative re-
duction of error rate over the global model by about
8%. As expected, the online kernel generally achieve
worse error rates than the offline kernels. In all the
experiments mentioned above we averaged over mul-
tiple random samplings of the training set to remove
sampling noise.

5. Discussion

A large number of textual datasets such as emails,
webpages, news stories, etc. contain time stamped
documents. For such datasets, considering a drifting
rather than a stationary distribution is often appropri-
ate. The local likelihood framework provides a natu-
ral extension for many standard likelihood models to
the concept drift scenario. As the drift becomes more
noticeable and the data size increases the potential
benefits of local likelihood methods over their extreme
global or local counterparts increase.

In this paper we illustrate the drift phenomenon and
examine the properties of the local likelihood estima-
tor including the asymptotic bias and variance tradeoff
and optimal bandwidth. Experiments conducted on
the RCV1 dataset demonstrate the validity of the lo-
cal likelihood estimators in practice and contrast them
with more standard non-local alternatives.
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Figure 6. Inverse of the optimal bandw1dth derived from
Equation (13) as a function of g(t): (h:)~ o (e1/4/g(t) +
ca/g(£)?/° (we take ¢; = ¢ = 1). The graph show the
non-monotonic dependency between h°P* and g(t).
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