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Abstract

In high-dimensional classification problems it is
infeasible to include enough training samples to
cover the class regions densely. Irregularities in
the resulting sparse sample distributions cause
local classifiers such as Nearest Neighbors (NN)
and kernel methods to have irregular decision
boundaries. One solution is to “fill in the holes”
by building a convex model of the region spanned
by the training samples of each class and classi-
fying examples based on their distances to these
approximate models. Methods of this kind based
on affine and convex hulls and bounding hyper-
spheres have already been studied. Here we pro-
pose a method based on the bounding hyper-
disk of each class — the intersection of the affine
hull and the smallest bounding hypersphere of its
training samples. We argue that in many cases
hyperdisks are preferable to affine and convex
hulls and hyperspheres: they bound the classes
more tightly than affine hulls or hyperspheres
while avoiding much of the sample overfitting
and computational complexity that is inherent in
high-dimensional convex hulls. We show that the
hyperdisk method can be kernelized to provide
nonlinear classifiers based on non-Euclidean dis-
tance metrics. Experiments on several classifica-
tion problems show promising results.

1. Introduction

Nearest neighbours (NN) — assigning the query to the class
with the nearest training sample(s) under some suitable dis-
tance metric — is one of the simplest methods for multi-
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class classification. Asymptotically it makes at most twice
as many errors as the optimal Bayes rule classifier, but
this result assumes dense sampling which requires train-
ing sets that are exponentially large in the dimensionality
of the underlying feature space class distributions. In high-
dimensional problems such as text, gene or visual object
classification, tractable training sets are necessarily much
smaller than this, and the performance of NN can often be
poor. The main problem is the sparse and irregular distribu-
tion of the training samples, which often leaves “holes” in
the input space — regions that have few or no nearby train-
ing samples from the relevant class. Equivalently, local
density estimates in high dimensions are intrinsically noisy
because any region with a radius significantly smaller than
that of the class has such a small volume relative to that of
the class that it typically contains few or no samples. These
effects make the inter-class decision boundaries of high di-
mensional NN and local kernel based methods erratic, thus
leading to classification errors.

One way to circumvent this problem is to approxi-
mate each class with a point set that “fills in the
holes” between the examples. In particular, any
convex set containing the examples has this prop-
erty. Several approximations of this kind have already
been studied including the affine hulls, convex hulls,
bounding hyperspheres and bounding hyperellipsoids of
the examples (Gulmezoglu et al., 2001, Laaksonen, 1997,
Nalbantov et al., 2007, Vincent & Bengio, 2001). Despite
the simplicity of their geometry, such approximations are
useful in high dimensions because in any case fine local de-
tails can not be resolved with practical numbers of samples.
Queries are classified to the class whose convex approxi-
mation is closest to the query point — a convex nearest-point
problem that can be solved reasonably efficiently with stan-
dard methods. This is equivalent to NN in which additional
points are fantasized to fill in the set of each class.

Affine hulls (i.e. spanning linear subspaces that have
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been shifted to pass through the centroid of the
class) were first used for global classifiers of isolated
words and hand-written digits in (Gulmezoglu et al., 2001,
Laaksonen, 1997), giving good classification performance.
Similarly, (Nalbantov et al., 2007) used convex hulls for
global classifiers on some of the UCI and SlatLog prob-
lems, comparing these to Support Vector Machines (SVMs)
both theoretically and empirically. Such global convex
approximations may fail to capture the decision bound-
aries of classes with nonlinear boundaries and one can
also build more local approximations, or even build a
separate approximation for each query sample based on
convex approximations of its k£ nearest neighbours from
each class. Again the query is classified to the (lo-
cally) nearest hull. Although this is not immune to the
hole problem, (Vincent & Bengio, 2001) reported signifi-
cant improvements over traditional NN for affine and con-
vex hull methods of this kind in handwritten digit clas-
sification. Another way to handle complex boundaries is
via nonlinear mapping to a high-dimensional feature space
(e.g. via a kernel) followed by a global convex set approxi-
mation of the kind described below.

Besides classification, approximations based on affine or
convex hulls have also been used for dimensionality reduc-
tion. Mixtures of Principal Component Analyzers can be
used to approximate nonlinear data manifolds under local
linearity assumptions (Hinton et al., 1997). Locally Lin-
ear Embedding (Roweis & Saul, 2000) approximates the
nonlinear structure of high-dimensional data by exploit-
ing local affine/convex reconstructions. (Verbeek, 2006)
combined several locally valid linear manifolds to obtain
a global nonlinear mapping between the high-dimensional
sample space and a low-dimensional manifold. In
(Cevikalp et al., 2008), we proposed a margin based dis-
criminative dimensionality reduction method based on con-
vex models of classes.

The current paper presents a new convex approximation
based classifier that models each class with its bounding
hyperdisk — the intersection of the affine hull and the min-
imal bounding hypersphere of its training examples. Hy-
perdisks are attractive primitives because they maintain the
stability of the affine hull and hypersphere methods while
providing better localization of the training samples and
hence potentially better discrimination. Convex hull ap-
proximations tend to be unrealistically tight (for practical
training set sizes, classes typically extend considerably be-
yond the convex hull of the training samples) while affine
hull and hypersphere ones tend to be too loose in comple-
mentary senses (one too “broad”, the other too “deep”).
The hyperdisk approach to some extent captures the best
aspects of each method. It can be applied both globally and
locally and it is simple enough to be expressible in terms of
dot products and hence to allow kernelization.

The paper is organized as follows. In section 2 we recall the
affine and convex hull based methods. Section 3 introduces
the hyperdisk method. Section 4 describes our experiments
and data sets. Finally, section 5 presents conclusions and
future directions.

2. Background on Related Methods
2.1. Nearest Affine Hull (NAH) Classification

Let the training samples be x.; € R, wherec=1,...,C
indexes the C classes and ¢ = 1,..., N, indexes the N,
samples of class c. We suppose that the affine hull of the
samples from each class is a proper subset of IRY of dimen-
sion less than d (which certainly holds when N, < d). The
affine hull is the affine span of the training samples, i.e. the
smallest affine subspace containing them

aff _ N,
H = {X = Zizl QG X

Ziai:1}. (1)

The affine hull gives a rather loose approximation to the
class region because it does not constrain the position of
the training points within the affine subspace. The distance
from a query point x,, to an affine hull H2" is the norm of
the displacement from x, to the closest point on the hull,
which can be expressed as the orthogonal projection of x,
normal to the subspace (see, e.g., (Cevikalp et al., 2007) for
derivations):

d(xg, HY") = ||(I=P¢) (xg— )| = [PExg—p || ()

Here: I is the identity matrix, P is the orthogonal projec-
tion onto the spanning subspace (the range of the covari-
ance matrix) of the class-c training samples, and P} =
I — P, is the orthogonal projection onto the null space
of the covariance — i.e. the orthogonal complement of
the spanning subspace, called the indifference subspace in
(Gulmezoglu et al., 2001, Cevikalp et al., 2005). p. can be
any reference point in H3 — e.g. one of the samples x.;,
or their mean — and put = Pl p,, the residual of p, un-
der the projection, encodes the orthogonal displacement of
H from the origin.

As its name suggests, the NAH classifier assigns the query
to the class whose affine hull is the closest:

9(xq) = min_(d(xg, Hgﬁ)) 3)
c=1,...,C

Equivalently, NAH chooses the class that provides the
best (smallest ||error||) reconstruction of the query using
an affine combination of training samples. The decision
boundaries of NAH are piecewise quadratic. Numerically,
point projections can be computed on the fly without ex-
plicitly evaluating and storing the d X d projection matrices
P, and P} by using P, = Q. Q[ where Q_ is the U ma-
trix of the thin SVD (or equivalently the Q matrix of the
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thin QR decomposition) of the matrix of centred class-c
training examples [X.1 — K, - -, XeN, — M-

In practice the training data is often somewhat noisy. This
can harm the classification performance owing to the inclu-
sion of spurious ‘noise’ dimensions in the affine hulls. To
reduce this we suppress dimensions of the SVD (and hence
of Q.) that correspond to overly small singular values.

For nonlinear classes that lie on smooth manifolds, NAH
can also be applied locally by finding the k-nearest samples
to the query from each class, building local affine hulls us-
ing these nearest neighbors, and assigning the query to the
class with the closest hull (Vincent & Bengio, 2001). This
can reproduce complex nonlinear decision boundaries.

2.2. Nearest Convex Hull (NCH) Classification

The affine hull gives a rather loose approximation to the
class region. Alternatively, we can take a maximally tight
bound by approximating the class with the convex hull of
its training samples. For this, we include non-negativity
constraints «; > 0,7 = 1,..., N, in (1) and replace all of
the affine hull distance computations with convex hull ones.
The distance from a query x, to the convex hull of class ¢
is the norm of the displacement from x, to the closest point
on the hull. This reduces to solving the following quadratic
programming problem

o1
rglcn §qu - Xca0||2

Ne “4)
st > g =1, @ >0, i=1,... N,

i=1
where X is a matrix whose columns are the class-c train-
ing samples. Given the optimal «; coefficients, the dis-
tance from x, to the convex hull of the class c is ||x, —
X, af||. This is repeated for each class and the query is
assigned to the class with the closest convex hull.

Finding the maximum margin between two classes is
equivalent to finding the closest points on their convex
hulls (Bennett & Bredensteiner, 2000) so convex distances
can also be computed by using a classical hard-margin
SVM algorithm to find the margin (convex distance) sep-
arating each class from the given query point.

NAH and NCH are “one class” methods in the sense that
we do not explicitly calculate the decision boundaries dur-
ing the training phase. Instead they remain implicit and the
decisions are made on-line for each test sample. However
both approaches can be viewed as large margin classifiers
closely related to hard-margin linear SVM’s. In particular,
the piecewise linear/quadratic decision boundary of NCH
contains the SVM boundary as one facet, and generalizes it
to use distance to the convex hull rather than linear separa-
tion as the decision criterion.

Classification is by distance
to nearest hyperdisk

Classes are modelled by their
minimal enclosing hyperdisks
(intersection of affine hull and
bounding hypersphere)

Figure 1. The principle of the proposed nearest bounding hyper-
disk method. Classes are modelled by the bounding hyperdisk
of their training examples and new examples are classified to the
class with the closest hyperdisk.

3. Nearest Bounding Hyperdisk (NHD)
Classification

In high-dimensional spaces, classes often extend well be-
yond the convex hulls of their training samples. For ex-
ample, any individual simplex spanned by points sampled
from a high-dimensional hypersphere can include only a
negligible fraction of the volume of the sphere even if the
vertices themselves are well spaced and close to the sur-
face of the sphere. Conversely, affine hulls often give a
rather loose approximation to the class as they do not con-
strain the positions of the training points within the affine
subspace. This is problematic if the classes have similar or
intersecting affine hulls but very different distributions of
samples within their hulls. In such cases the classification
performance will be poor if the affine projections of the
queries onto the affine hulls are too far from training sam-
ples (e.g. as indicated by large values of the «; coefficients
for the constructed affine projections). The “soft margin”
approach to handling this is to allow negative weights in
(4) but to penalize over-large values by including upper and
lower bounds in the quadratic program. However this dete-
riorates the run-time efficiency of NAH because the affine
hull parameters of classes can no longer be computed in
advance.

Instead, we can keep both a simpler geometric interpre-
tation and good run-time efficiency by approximating the
class samples with their bounding hyperdisk, i.e. the in-
tersection of their affine hull and their minimal bounding
hypersphere.

3.1. Global Nearest Hyperdisk Method

We will only describe the basic global Nearest Hyper-
disk (NHD) classifier, but local application is also pos-
sible in the same way as for NAH and NCH. NHD ap-
proximates each class with the smallest bounding hyper-
disk of its training samples — the set formed by inter-
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Figure 2. Computing distances from queries to a hyperdisk. The
affine projection of the query on the left lies outside the hyper-
sphere so it needs to be projected along the affine hull onto the
hypersphere before the query-hyperdisk distance can be calcu-
lated. The affine projection of the query at the top already lies
within the hypersphere so no adjustment is necessary.

secting their affine hull and their smallest bounding hy-
persphere. Such hyperdisks can be computed economi-
cally and they support rapid nearest point computations.
There are already a number of methods based on affine
hulls or bounding hyperspheres — for example hyperspheres
have been used for outlier detection (Tax & Duin, 2004,
Shawe-Taylor & Cristianini, 2004) and binary classifica-
tion (Wang et al., 2005) — but we are not aware of any pre-
vious machine learning method based on hyperdisks. The
bounding hypersphere of class c is characterized by its cen-
ter s. and radius r.. These can be found by solving the
following quadratic program

+ ;
min, 7 725 )

st ||Xei —sc||2 < rf +&,1=1,...,N,

or its dual

mln E ;0 (Xeiy Xej)

§ Qg Xcuxm
,J

N, (6)
s.t. Zaizl, 0<a; <~v, t=1,...,N..
i=1

Here «; are Lagrange multipliers and € [0, 1] is a ceiling
parameter that can be set to a finite value to eliminate over-
distant points as outliers. Given the solution, the center
of the hypersphere is s, = Zi\’:@l a;X.; and the radius is
re = ||Xei — se| for any x.; with 0 < a; < 7.

To compute the distance from a query to the hyperdisk of
a class, we find the affine projection of the query onto the
affine hull by x¥ = Po(x, — p.) + p. = Pexg + p.
If the projection lies outside the bounding hypersphere we
move it along the line joining it to the center of the sphere
until it touches the sphere. The distance from the query
to the disk is the distance from it to the (possibly moved)

projection — see fig. 2. Formally, the distance is

Ay HEX) = manx([x3—s. | — 7e,0)2 + x|,

3.2. Kernelization of the Hyperdisk Method

We now show that the hyperdisk method can be kernelized,
allowing it to be used in implicit high dimensional feature
spaces induced by Mercer kernels. This brings all of the
usual advantages and disadvantages of kernelization, no-
tably scope for a richer choice of distance functions and
highly nonlinear decision boundaries that can aid data sep-
arability in return for the need to work with an implicit
model defined by a large set of training samples.

The kernel trick can be used to map the data into an implicit
feature space as in Kernel PCA (Scholkopf et al., 1998).
Let ¢(-) be the implicit feature space embedding and
k(x,y) = ¢"(x)d(y) be the corresponding kernel func-
tion. Suppose that we want to project a sample x onto the
affine hull of a given set of samples {x;|i = 1,...,m}.
Let ® = [¢(x1),...,¢(xm)] be their feature space em-
bedding matrix, K = ®" ® = [k(x;,x;)| be their m x m
kernel matrix and ky = ®" ¢(x) = [k(x;,x)] be the m x 1
kernel vector of x against the samples. The feature space
mean of the samples is p = %{) 1,, where 1,, is an m-
vector of 1’s. The explicit approach detailed below (3) is
based on the thin SVD UDVT of the matrix of centered
sample features [p(x1) — i,...,d(xm) — p] = ®II,
where II = T — % 1,,1;, is an orthogonal projection in
sample space that implements subtraction of the mean on
®. Given this, the projection of x onto the affine hull of
the mapped samples is then UU"(¢(x) — p) + p, and
the squared residual of this projection is ||¢(x) — u||? —
lUT((x) — w)||?. Also, we are free to use any origin
and linear basis that we choose for computations within the
affine hull so long as we do so consistently. In particular,
if we choose the orthogonal basis given by U centred at
pt = (I—UU")p, the projection of x onto the affine hull
is represented simply by U ¢p(x).

Noting that the D matrices of thin SVDs (i.e. taking only
the significantly non-zero singular values) are invertible,
wehave U=®IIVD™" =® A" where A =D V'II.
In the kernelized case we can not evaluate the SVD of
® IT explicitly because this would require numerical com-
putations in feature space, but we can work implicitly in
sample-space in terms of the eigendecomposition VAVT
of the centred kernel matrix K = (®II)(®II) =
ITKII. Here, V is the same matrix as in the SVD of & I1
and A =D?sothat A = A~Y/2VTIL

Putting all of these pieces together and noting that
lp(x)]|? = k(x,x), we find that the squared residual error
of the projection of x onto the affine hull of the examples
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Y

Hyper-disk of the
2nd class

Hyper-disk of the
1st class

Figure 3. The kernelized NAH/NCH/NHD classifiers are based
on distances between query samples and affine, efc., hulls of
classes within the subspace spanned by the complete training data.
These distances produce the same class assignments as the origi-
nal classifiers.

is

kE(x,x) —k, ATAky, — (2kyx — K%)T(I — ATAK)%”"

(N
and the sample-space representative of the feature-space
projection of x into the affine hull of the samples is sim-
ply A kyx. We can use the representation vectors A ky for
any affine computation within the feature space affine hull,
including calculations of hyperspheres and convex hulls,
projections of new samples onto these, and within-hull dis-
tance computations. To calculate the overall squared dis-
tance from the example to the desired convex set within the
hull, the squared residual error of the projection onto the
hull (7) needs to be added to the squared within-hull dis-
tance.

In retrospect the obvious way to perform the above com-
putations would be to use a separate feature subspace (P,
K, kx, A, etc.) for each class, but in the experiments be-
low we actually worked in a global feature subspace based
on the combined training samples of all classes. This sub-
space contains the affine hulls of all of the classes so the
projections of test samples onto classes can be done in two
stages, first projecting the sample onto the global affine
hull, then projecting the result onto the class hull within
the global one. The first projection is class-independent so
it simply adds a sample-dependent constant residual to all
of the sample-class distances. For decisions based on rela-
tive sample-class distances, these constants can be ignored.
As a result, it suffices to perform all computations with
the global A kx vectors as though they were the original
affine input points. In particular, the kernelized versions of
NAH, NHD and NCH simply apply the corresponding lin-
ear method to the A ky vectors of the global feature sub-
space. This process is illustrated in fig. 3. It only provides

Recoghnition rates on synthetic 4-class dataset
100 T T T T T T
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90 | —6— NAH
—¢— NCH

80

701

recognition rate (%)

60

sdl

40
50 100 150 200 250 300 350 400 450 500

number of training samples

Figure 4. Top: the first two dimensions of the four disk dataset.
Bottom: overall test-set recognition rates for NHD, NAH and
NCH on this dataset for varying numbers of training points.

relative distances, so k(x,x) is never needed.

4. Experiments

We compared the proposed hyperdisk method (NHD) to
Nearest Neighbour (NN), Nearest Affine Hull (NAH),
Nearest Convex Hull (NCH) and Nearest Sphere Center!
(NSC) classifiers in two regimes: high-dimensional prob-
lems where the dimensionality of the input space is much
larger than the size of the training sets and the native (un-
kernelized) classifier is used; and low-dimensional prob-
lems where the training sets are larger than the dimension-
ality of the input space and a kernelized classifier is needed.
We tested the methods on three tasks from multi-class vi-
sual recognition in the high-dimensional regime, and on
five tasks from the UCI collection in the low-dimensional
one. In each case, we optimized the algorithm parameters
using global coarse-to-fine search, with random partitions
of the training data into training and validation sets.

4.1. Experiments on Synthetic Data

Before starting, we illustrate some properties of the meth-
ods on a simple synthetic data set with four classes.
This was produced by creating four unit-radius spheres
(one for each class) in 300 dimensions with centres
(+0.2,£0.2,0,...,0), sampling test and training points
uniformly within each sphere, then compressing 200 of the

dimensions including the second one by a factor of 10 — see

INSC computes bounding hyperspheres for each class and as-
signs the query to the class whose sphere center is nearest.



Nearest Hyperdisk Methods for High-Dimensional Classification

fig. 4 (top). This produces a high dimensional data set with
100D-disk like classes and many irrelevant variables. The
classes are fairly well separable but the data has somewhat
suboptimal scaling. For the NAH and NHD methods we
estimated the affine dimension using an eigenvalue gap de-
tector that reliably gave the correct result (100) for all runs
with more than about 120 training points.

Fig. 4 (bottom) shows the resulting recognition rates for
NAH, NHD and NCH with varying numbers of training
samples. The hyperdisk method predominates, particu-
larly for larger numbers of training samples. The exam-
ple is somewhat idealized — the data is quite clean and the
classes have a form that is well adapted to the hyperdisk
model — but it illustrates several advantages of the hyper-
disk method. Firstly, NCH performs poorly. It separates
classes {4, B} from {C, D} almost perfectly, but it is not
much better than random (around 55-60% correct) at sepa-
rating A from B and C' from D. This happens because the
interclass spacing is small and the convex hulls of the train-
ing samples fill so little of the volume of the 100-D class
disks that test samples are almost as likely to lie close to
the hull of the wrong class as to that of the right one — i.e.
even though the hulls “fill in the gaps” between the train-
ing samples, they are still very poor estimates of the actual
class boundaries. NCH is also much slower than NAH and
NHD at run time because it needs to solve a quadratic pro-
gram for each test sample to find the nearest point on the
hull. Both problems are endemic to the convex hull formu-
lation.

Secondly, NAH does surprisingly well, especially when
one considers that it has an asymptotic error rate of 50%:
for exact estimates of the 100-D affine hulls of the classes,
A and C (and similarly, B and D) are indistinguishable be-
cause they have identical affine hulls. Empirically NAH
does much better than this because the estimates of the
affine hulls are noisy: being estimated from examples of
class A, the hull for class A always passes close to the
centre of class A, but its random tilt typically makes it
pass somewhat further from the centre of class C, and vice
versa. Hence, empirical NAH estimates indirectly incor-
porate some information about the relative positions of the
classes within their affine hyperplanes. This may explain
why the performances of NAH and NHD are often simi-
lar in the below experiments on real data. However, as the
above results suggest, it is often advisable to incorporate
the position information explicitly by using NHD.

4.2. Experiments on Image Datasets

ORL Face Dataset.” The Olivetti-Oracle Research Lab
face dataset contains 10 upright 92 x 112 frontal face im-
ages per person of C' = 40 individuals, taken at different

2ywww.cl.cam.ac.uk/research/dig/attarchive/facedatabase.html

Figure 5. Some examples from the Birds dataset.

times with slightly different lighting conditions, image po-
sitions, facial expressions and facial details. For this ex-
periment we used the raw image pixels as input features
without applying any visual preprocessing. For training we
randomly selected N = 3, 5,7 images of each individual,
keeping the remaining 10 — NN for testing. The results are
summarized in table 4.1 (top left). The NHD and NAH
classifiers were equal best among the methods tested, fol-
lowed by NCH, then NN, with NSC coming last.

Coil100 Objects Dataset.> The Coill100 dataset includes

72 views each of 100 different objects taken on a turntable
at orientations spaced at 5 degree intervals. We chose 40
objects randomly for the experiments. We used the raw
grayscale pixels of the 128 x 128 images as input features,
without applying any further visual preprocessing. For
training we randomly selected N = 18, 36, 54 images of
each object, keeping the remaining 72 — NV for testing. The
results are given in table 4.1 (top right). NHD and NAH
again give very similar results with NHD having a slight
edge. NHD achieves the best accuracy for N = 18,54
while for N = 36 NCH is preferred to NHD and NAH.
NSC again produced the worst results.

Birds Dataset. This contains six categories, each with 100
images (Lazebnik et al., 2005). It is a challenging visual
object recognition task with the birds appearing against
highly cluttered backgrounds and the images having large
intra-class, scale, and viewpoint variability. Some exam-
ple images are shown in fig. 5. We use a “bag of fea-
tures” representation for the images as they are too di-
verse to allow simple geometric alignment of their objects.
In this method, patches are sampled from the image at
many different positions and scales, either densely, ran-
domly or based on the output of some kind of salient re-
gion detector. Here we used a dense grid of patches. Each
patch was described using the robust visual descriptor SIFT
(Lowe, 2004) and vector quantized using nearest neighbor
assignment against a 2000 word visual dictionary learned
from the complete set of training patches. For training we
randomly selected N = 25,50, 75 images of each class,
keeping the remaining 100 — N for testing.

The results are given in table 4.1 (bottom left). For N =
50,75, NCH achieves the best recognition rates whereas

Sywwwl.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Table 1. Classification Rates (%) and their standard deviations on respectively the ORL Face data set (top left), the COIL data set (top
right), and the Birds data set (bottom left). The recognition rates are averages over 15 random training/test splits. (Bottom right)

Classification Rates (%) on selected UCI data sets.

[ORL] N=3 | N=5 | N=7 | [COIL| N=18 | N=36 [ N=54 |
NHD | 88.50 £2.2 | 9530+ 1.5 [ 97.00 £ 1.8 NHD [ 97.384+0.3 | 99.35+£0.4 | 99.93+0.1
NAH | 88.50 £2.2 | 9530 + 1.5 [ 97.00 £ 1.8 NAH [97.334+0.3 | 99.32£0.5 | 99.93+0.1
NCH [ 88.47+2.2 | 9497415 [ 96.72+1.6 NCH [97.354+0.3 | 9941£0.3 | 99.41+0.4
NSC [ 86.50+£2.8 | 91.77 £ 1.5 [ 93.61 £ 2.0 NSC [82.81+33[8294+1.2|83.98+1.2
NN [87.74+2.3 [ 9430+£15 [ 96.11+1.7 NN  [96.56+0.5 | 98.84+0.4 | 99.72+0.3

[Birds | N=25 | N =50 N =715 [UCI | Iris | IS | MF | Wine | WDBC
NHD | 86.62+1.6 [ 90.51+1.2 | 92.14+138 NHD | 96.7 | 96.0 | 984 | 96.7 | 96.3
NAH | 86.62+1.6 [ 90.51+1.2 | 92.14+138 NAH | 96.7 | 957 | 984 | 96.7 | 95.3
NCH | 86.60 +1.6 [ 90.91+1.4 | 92.67 +1.7 NCH | 96.0 | 957 | 98.2 | 97.8 | 97.7
NSC |84.43+23 [87.82+1.8 | 87.85+1.38 NSC [ 96.0 | 935979 | 96.1 [ 95.1
NN | 53.38+4.1 [ 60.51 8.3 | 64.05+2.6 NN ]96.0 | 963 | 97.6 | 94.5 | 96.0

Table 2. The key parameters of the low-dimensional datasets se-
lected from the UCI Repository.

Data set | # Classes | # Examples | Dim. |

Iris 3 150 4
IS 7 2310 19
MF 10 2000 256
Wine 3 178 13
WDBC 2 569 30

NHD and NAH are equal best for N = 25. All of the con-
vex approximation based methods significantly outperform
Nearest Neighbours.

4.3. Experiments with UCI Datasets

In the second group of experiments we tested the kernelized
versions of the methods on five lower-dimensional datasets
from the UCI repository: Iris, Image Segmentation (IS),
Multiple Features (MF) - pixel averages, Wine, and Wis-
consin Diagnostic Breast Cancer (WDBC). The key param-
eters of the datasets are summarized in table 2 and the re-
sults are presented in table 4.1 (bottom right).

In each case the dimensionality of the input space is smaller
than the number of samples in each class. It follows that
the native NAH classifier cannot be used directly because
the affine hull of each class typically spans the entire input
space. However kernelized versions of all of the classi-
fiers can still be applied. The NCH and NSC formulations
directly support kernelization while for NAH and NHD
we used the Kernel PCA projection method described in
section 3.2. We used Gaussian kernels and 5-fold cross-
validation for all experiments.

NHD and NAH were the equal best classifiers for the Iris
and MF databases while NCH came first for Wine and
WDBC, and NN for IS. In all of the cases tested the
proposed NHD classifier either matches or outperforms
the NAH classifier. The convex approximation based ap-
proaches typically outperformed NN, but the difference
was not as high as in the Birds database.

4.4. Discussion

The NHD and NAH classifiers often had almost identical
performance but when there were differences NHD usually
dominated. This suggests that NHD’s tighter bounds on
the classes are sometimes useful, but that they are often
inactive, either because the affine hull projections of most
queries already lie within the class hyperspheres or because
the additional projections onto the hyperspheres do not add
useful new discriminant information.

NHD and NAH often outperformed NCH in both the high-
dimensional native experiments and the low-dimensional
kernelized ones. As mentioned above, in high dimensions
the convex hulls of the training samples typically signifi-
cantly underestimate the extents of the classes unless the
number of samples is exponential in the dimension of the
class. Thus, despite the simplicity of their underlying ap-
proximations, the affine hulls and hyperdisks may often
turn out to be better guides to the region spanned by the
class than the convex hulls.

In the low-dimensional problems, NN (and related kernel
methods) often perform relatively well, perhaps because
hole artifacts are not so prevalent in low dimensions. Sim-
ilarly, as the dimension decreases, NCH progressively im-
proves relative to NAH because it provides tighter bounds
on the class regions. NHD seems to offer a useful compro-
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mise here.

In terms of run-time efficiency NAH and NHD are to be
preferred as the affine hull and bounding hyperdisk param-
eters can be computed off-line. When there are large num-
bers of training samples, NCH often becomes prohibitively
slow at run-time because it needs to solve a quadratic pro-
gram for each sample-hull distance computation.

5. Summary and Conclusions

We have introduced a new method for high-dimensional
classification based on approximating each class with the
minimal bounding hyperdisk of its training samples — the
intersection of their affine hull and their bounding hyper-
sphere — and assigning test samples to the class with the
nearest hyperdisk. For robustness, the algorithm uses PCA
to suppress over-small “noise” dimensions in the affine hull
and it removes outliers from the hypersphere calculation by
bounding their Lagrange multipliers. In practice the hy-
perdisk approximation offers a useful middle ground be-
tween the loose approximation provided by the affine hull
of the samples and the over-tight one given by their con-
vex hull. It can also be kernelized to allow it to be used in
lower-dimensional problems that require complex decision
boundaries.

Future work. We are currently working on large-margin
classifiers that calculate explicit decision boundaries during
the training phase by maximizing the separation between
the affine hull or hyperdisk approximations of the classes.
These may be useful alternatives to SVMs, which maxi-
mize the separation between the convex hulls of the classes.
Given that the affine hull and hyperdisk methods were often
more accurate than the convex hull ones in the experiments,
the new methods may yield more efficient classifiers than
SVM in terms of both accuracy and computational com-
plexity.
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