
Efficient MultiClass Maximum Margin Clustering

Bin Zhao zhaobinhere@hotmail.com

Fei Wang feiwang03@mails.tsinghua.edu.cn

Changshui Zhang zcs@mail.tsinghua.edu.cn

State Key Laboratory of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information
Science and Technology (TNList), Department of Automation, Tsinghua University, Beijing 100084, China

Abstract

This paper presents a cutting plane algorithm
for multiclass maximum margin clustering
(MMC). The proposed algorithm constructs
a nested sequence of successively tighter re-
laxations of the original MMC problem, and
each optimization problem in this sequence
could be efficiently solved using the con-
strained concave-convex procedure (CCCP).
Experimental evaluations on several real
world datasets show that our algorithm con-
verges much faster than existingMMC meth-
ods with guaranteed accuracy, and can thus
handle much larger datasets efficiently.

1. Introduction

Clustering (Duda et al., 2001; Shi & Malik, 2000; Ding
et al., 2001) aims at dividing data into groups of sim-
ilar objects, i.e. clusters. Recently, motivated by the
success of large margin methods in supervised learn-
ing, (Xu et al., 2004) proposed maximum margin clus-
tering (MMC), which borrows the idea from the sup-
port vector machine theory and aims at finding the
maximum margin hyperplane which can separate the
data from different classes in an unsupervised way.

Technically, what MMC does is to find a way to label
the samples by running an SVM implicitly, and the
SVM margin obtained would be maximized over all
possible labelings (Xu et al., 2004). However, unlike
supervised large margin methods which are usually for-
mulated as convex optimization problems, maximum
margin clustering is a non-convex integer optimization
problem, which is much more difficult to solve.

Several attempts have been made to solve the maxi-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

mum margin clustering problem in polynomial time.
(Xu et al., 2004) and (Valizadegan & Jin, 2007) made
several relaxations to the original MMC problem and
reformulated it as a semi-definite programming (SDP)
problem. However, even with the recent advances in
interior point methods, solving SDPs is still computa-
tionally very expensive. Consequently, the algorithms
can only handle very small datasets containing several
hundreds of samples. More recently, Zhang et al. uti-
lized alternating optimization techniques to solve the
MMC problem (Zhang et al., 2007), in which the max-
imum margin clustering result is obtained by solving
a series of SVM training problems. However, there is
no guarantee on how fast it can converge and the algo-
rithm is still time demanding on large scale datasets.
Moreover, the methods described above can only han-
dle binary clustering problems (Zhao et al., 2008), and
there are significant complications to deriving an effec-
tivemaximum margin clustering approach for the mul-
ticlass scenario1. Therefore, how to efficiently solve the
multiclass MMC problem to make it capable of clus-
tering large scale dataset is a very challenging research
topic.

In this paper, we propose a cutting plane multi-
class maximum margin clustering algorithm CPM3C.
Specifically, the algorithm constructs a nested se-
quence of successively tighter relaxations of the origi-
nal multiclass MMC problem, and each optimization
problem in this sequence could be efficiently solved us-
ing the constrained concave-convex procedure (CCCP).
Moreover, we show that the computational time of
CPM3C scales roughly linearly with the dataset size.
Our experimental evaluations on several real world
datasets show that CPM3C performs better than ex-
isting MMC methods, both in efficiency and accuracy.

1It should be noted that (Xu & Schuurmans, 2005) pro-
posed a multiclass extension for MMC, however, their al-
gorithm has a time complexity of O(n7), which renders it
impractical for real world datasets.

Efficient MultiClass Maximum Margin Clustering

The rest of this paper is organized as follows. Section
2 will show the CPM3C algorithm in detail, and the
time complexity analysis of CPM3C will be presented
in section 3. Section 4 presents the experimental re-
sults on several real world datasets, followed by the
conclusions in section 5.

2. Cutting Plane Multiclass Maximum

Margin Clustering

We will formally present the cutting plane multiclass
maximum margin clustering (CPM3C) algorithm in
this section.

2.1. Multiclass Maximum Margin Clustering

Maximum margin clustering (MMC) extends the the-
ory of support vector machine (SVM) to the un-
supervised scenario. Specifically, given a point set
X = {x1, · · · ,xn} and their labels y = (y1, . . . , yn) ∈
{1, . . . , k}n, SVM defines a weight vector wp for
each class p ∈ {1, . . . , k} and classifies sample x by
y∗=argmaxy∈{1,...,k} wT

y x with the weight vectors ob-
tained as follows 2(Crammer & Singer, 2001)

min
w1,...,wk,ξ

1

2
β

k
∑

p=1

||wp||
2+

n
∑

i=1

ξi (1)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

w
T
yi
xi+δyi,r−w

T
r xi≥1−ξi

where the data samples in X are mapped into a high
(possibly infinite) dimensional feature space, and by
using the kernel trick, this mapping could be done im-
plicitly. However, in those cases where kernel trick
cannot be applied, it is possible to compute the co-
ordinates of each sample in the kernel PCA basis
(Schölkopf et al., 1999) according to kernel K. There-
fore, throughout the rest of this paper, we use xi to
denote the sample mapped by the kernel function.

Instead of finding a large margin classifier given labels
on the data as in SVM, MMC targets to find a label-
ing that would result in a large margin classifier (Xu
et al., 2004). That is to say, if we subsequently run an
SVM with the labeling obtained from MMC, the mar-
gin would be maximal among all possible labelings.
multiclass MMC could be formulated as follows:

min
w1,...,wk,ξ,y

1

2
β

k
∑

p=1

||wp||
2+

1

n

n
∑

i=1

ξi (2)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

w
T
yi
xi+δyi,r−w

T
r xi≥1−ξi

2Although we focus on the multiclass SVM formulation
of (Crammer & Singer, 2001), our method can be directly
applied to other multiclass SVM formulations.

where
∑n

i=1 ξi is divided by n to better capture how
the regularization parameter β scales with the dataset
size. Different from SVM, where the class labels are
given and the only variables are (w1, . . . ,wk), MMC
targets to find not only the optimal weight vectors,
but also the optimal labeling vector y∗.

2.2. Cutting Plane Algorithm

In this section, we will reformulate problem (2) to re-
duce the number of variables. Specifically,

Theorem 1 Problem (2) is equivalent to

min
w1,...,wk,ξ

1

2
β

k
∑

p=1

||wp||
2+

1

n

n
∑

i=1

ξi (3)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k
k
∑

p=1

w
T
pxi

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)

+

k
∏

q=1,q 6=r

I(wT
r xi>wT

q xi)
−wT

rxi≥1−ξi

where I(·) is the indicator function and the label for
sample xi is determined as

yi=

k
∑

p=1

p

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)
(4)

Proof. We will show that for every (w1, . . . ,wk) the
smallest feasible

∑n

i=1 ξi are identical for problem (2)
and problem (3), and their corresponding labeling vec-
tors are the same. For a given (w1, . . . ,wk), the ξi in
problem (2) can be optimized individually. According
to the constraint in problem (2),

ξi ≥ 1− (wT
yi
xi+δyi,r−w

T
r xi), ∀r = 1, . . . , k (5)

As the objective is to minimize 1
n

∑n

i=1 ξi, the optimal
value for ξi is

ξ
(1)
i = min

yi=1,...,k
max

r=1,...,k
{1− (wT

yi
xi+δyi,r−w

T
r xi)} (6)

and we denote the corresponding class label by y
(1)
i .

Without loss of generality, we assume the following
relationship

w
T
i1
xi ≥ w

T
i2
xi ≥ . . . ≥ wT

ik
xi (7)

where (i1, i2, . . . , ik) is a permutation of (1, 2, . . . , k).
For yi 6= i1, maxr=1,...,k{1− (wT

yi
xi+δyi,r−wT

r xi)} ≥

1, while for yi = i1, maxr=1,...,k{1 − (wT
yi

xi+δyi,r−

wT
r xi)} ≤ 1, therefore, y

(1)
i = i1 and

ξ
(1)
i = max

r=1,...,k
{1− (wT

i1
xi+δi1,r−w

T
r xi)} (8)

= max{0, 1− (wT
i1
xi−w

T
i2
xi)}

Similarly, for problem (3), the optimal value for ξi is

Efficient MultiClass Maximum Margin Clustering

ξ
(2)
i = max

r=1,...,k







1−





k
∑

p=1

w
T
pxi

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)

+
k
∏

q=1,q 6=r

I(wT
r xi>wT

q xi)
−wT

rxi











(9)

= max
r=1,...,k

{1− (wT
i1
xi+δi1,r−w

T
r xi)}

= max{0, 1− (wT
i1
xi−w

T
i2
xi)}

and the class label could be calculated as

y
(2)
i =

k
∑

p=1

p

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)
= i1 (10)

Therefore, the objective functions of both optimiza-
tion problems are equivalent for any (w1, . . . ,wk) with
the same optimal ξi, and consequently so are their op-
tima. Moreover, their corresponding labeling vectors
y are the same. Hence, we proved that problem (2) is
equivalent to problem (3). 2

By reformulating problem (2) as problem (3), the num-
ber of variables involved is reduced by n, but there are
still n slack variables ξi in problem (3). Define ep as
the k × 1 vector with only the p-th element being 1
and others 0, e0 as the k × 1 zero vector and e as the
all one vector. To further reduce the number of vari-
ables involved in the optimization problem, we have
the following theorem

Theorem 2 Problem (3) can be equivalently formu-
lated as problem (11), with ξ∗ = 1

n

∑n

i=1 ξ
∗
i .

min
w1,...,wk,ξ≥0

1

2
β

k
∑

p=1

||wp||
2+ξ (11)

s.t. ∀ci ∈ {e0, e1, . . . , ek}, i = 1, . . . , n

1

n

n
∑

i=1

{

c
T
i e

k
∑

p=1

w
T
pxizip+

k
∑

p=1

cip(zip−w
T
pxi)

}

≥
1

n

n
∑

i=1

c
T
i e−ξ

where zip =
∏k

q=1,q 6=p I(wT
p xi>wT

q xi) ∀i = 1, . . . , n; p =
1 . . . , k and each constraint c is represented as a k×n
matrix c = (c1, . . . , cn).

Proof. To justify the above theorem, we will show
that problem (3) and problem (11) have the same
objective value and an equivalent set of constraints.
Specifically, we will prove that for every (w1, . . . ,wk),
the smallest feasible ξ and

∑n

i=1 ξi are related by
ξ = 1

n

∑n

i=1 ξi. This means, with (w1, . . . ,wk) fixed,
(w1, . . . ,wk, ξ) and (w1, . . . ,wk, ξi) are optimal solu-
tions to problem (3) and (11) respectively, and they
result in the same objective function value.

For any given (w1, . . . ,wk), the ξi in problem (3) can
be optimized individually and the optimum is achieved
as

ξ
(2)
i = max{0, 1− (wT

i1
xi−w

T
i2
xi)} (12)

where we assume the relation in (7) holds.

Similarly for problem (11), the optimal ξ is

ξ
(3)= max

c1,...,cn∈{e0,...,ek}

{

1

n

n
∑

i=1

c
T
i e−

1

n

n
∑

i=1

[

c
T
i e

k
∑

p=1

w
T
pxizip (13)

+
k
∑

p=1

cip(zip−w
T
pxi)

]}

Since each ci are independent in Eq.(13), they can be
optimized individually. Therefore,

ξ
(3)=

1

n

n
∑

i=1

max
ci

{cTi e−c
T
i e

k
∑

p=1

w
T
pxizip−

k
∑

p=1

cip(zip−w
T
pxi)}

=
1

n

n
∑

i=1

max

{

0, max
p=1,...,k

[1− (wT
i1
xi+δi1,p−w

T
p xi)]

}

=
1

n

n
∑

i=1

max
{

0,max[0, 1− (wT
i1
xi−w

T
i2
xi)]

}

=
1

n

n
∑

i=1

max{0, 1− (wT
i1
xi−w

T
i2
xi)}=

1

n

n
∑

i=1

ξ
(2)
i

Hence, for any (w1, . . . ,wk), the objective functions
for problem (3) and problem (11) have the same value
given the optimal ξ and ξi. Therefore, the optima of
the two optimization problems are the same. 2

Putting theorems 1 and 2 together, we could there-
fore solve problem (11) instead to find the same max-
imum margin clustering solution, with the number of
variables reduced by 2n − 1. Although the number
of variables in problem (11) is greatly reduced, the
number of constraints increases from nk to (k + 1)n.
The algorithm we propose in this paper targets to find
a small subset of constraints from the whole set of
constraints in problem (11) that ensures a sufficiently
accurate solution. Specifically, we employ an adapta-
tion of the cutting plane algorithm (Kelley, 1960) to
solve problem (11), where we construct a nested se-
quence of successively tighter relaxations of problem
(11). Moreover, we can prove theoretically (see sec-
tion 3) that we can always find a polynomially sized
subset of constraints, with which the solution of the
relaxed problem fulfills all constraints from problem
(11) up to a precision of ε. That is to say, the remain-
ing exponential number of constraints are guaranteed
to be violated by no more than ε, without the need for
explicitly adding them to the optimization problem
(Tsochantaridis et al., 2005). Specifically, the CPM3C
algorithm keeps a subset Ω of working constraints and

Efficient MultiClass Maximum Margin Clustering

computes the optimal solution to problem (11) subject
to the constraints in Ω. The algorithm then adds the
most violated constraint in problem (11) into Ω. In
this way, a successively strengthening approximation
of the original MMC problem is constructed by a cut-
ting plane that cuts off the current optimal solution
from the feasible set (Kelley, 1960). The algorithm
stops when no constraint in (11) is violated by more
than ε. Here, the feasibility of a constraint is measured
by the corresponding value of ξ, therefore, the most vi-
olated constraint is the one that results in the largest
ξ. Since each constraint in problem (11) is represented
by a k × n matrix c, then we have

Theorem 3 Define p∗ = argmaxp(w
T
p xi) and r∗ =

argmaxr 6=p∗(w
T
r xi) for i = 1, . . . , n, the most violated

constraint could be calculated as follows

ci=

{

er∗ if (wT
p∗xi−w

T
r∗xi)<1

0 otherwise
, i = 1, . . . , n (14)

Proof. The most violated constraint is the one that
would result in the largest ξ. As each ci in the con-
straint is independent, in order to fulfill all constraints
in problem (11), the value of ξ is as follows

ξ
∗ =

1

n

n
∑

i=1

max
ci

{cTi e−c
T
i e

k
∑

p=1

w
T
pxizip−

k
∑

p=1

cip(zip−w
T
pxi)}

=
1

n

n
∑

i=1

max
ci

{cTi [e−w
T
p∗xie− zi + ti]}

where ti=(wT
1 xi, . . . ,w

T
k xi)

T . Since ci∈{e0, . . . , ek},
ci selects the largest element of the vector e−wT

p∗xie−

zi+ti, which could be calculated as 1−(wT
p∗xi−wT

r∗xi).
Therefore, the most violated constraint c that results
in the largest ξ∗ could be calculated as in Eq.(14). 2

The CPM3C algorithm iteratively selects the most vi-
olated constraint under the current weight vectors and
adds it into the working constraint set Ω until no vio-
lation of constraints is detected. Moreover, if a point
(w1, . . . ,wk, ξ) fulfills all constraints up to precision ε

∀ci ∈ {e0, e1, . . . , ek}
n
, i = 1, . . . , n (15)

1

n

n
∑

i=1

{

c
T
i e

k
∑

p=1

w
T
pxizip+

k
∑

p=1

cip(zip−w
T
pxi)

}

≥
1

n

n
∑

i=1

c
T
i e−ξ−ε

then the point (w1, . . . ,wk, ξ+ ε) is feasible. Further-
more, as in the objective function of problem (11),
there is a single slack variable ξ that measures the clus-
tering loss. Hence, we could simply select the stopping
criterion as all samples satisfying the inequality (15).
Then, the approximation accuracy ε of this approxi-
mate solution is directly related to the training loss.

2.3. Enforcing the Class Balance Constraint

In 2-class maximum margin clustering, a trivially “op-
timal” solution is to assign all patterns to the same
class, and the resultant margin will be infinite (Xu
et al., 2004). Similarly, for the multiclass scenario,
a large margin can always be achieved by eliminat-
ing classes (Xu & Schuurmans, 2005). Therefore, we
add the following class balance constraints to avoid the
trivially “optimal” solutions

−l ≤
n
∑

i=1

w
T
pxi−

n
∑

i=1

w
T
qxi≤ l, ∀p, q=1, . . . , k (16)

where l ≥ 0 controls the class imbalance. Therefore,
multiclass maximum margin clustering with working
constraint set Ω could be formulated as follows

min
w1,...,wk,ξ≥0

1

2
β

k
∑

p=1

||wp||
2+ξ (17)

s.t.
1

n

n
∑

i=1

{

c
T
i e

k
∑

p=1

w
T
pxizip+

k
∑

p=1

cip(zip−w
T
pxi)

}

≥
1

n

n
∑

i=1

c
T
i e−ξ, ∀[c1, . . . , cn] ∈ Ω

−l≤
n
∑

i=1

w
T
pxi−

n
∑

i=1

w
T
qxi≤ l, ∀p, q=1, . . . , k

Before getting into details of solving problem (17), we
first present the CPM3C approach in Algorithm 1.

Algorithm 1 Cutting Plane Multiclass MMC

Initialize Ω = φ

repeat
Solve problem (17) for (w1, . . . ,wk) under the
current working constraint set Ω and select the
most violated constraint c with Eq.(14). Set
Ω = Ω ∪ {c}.

until (w1, . . . ,wk) satisfies c up to precision ε

2.4. Optimization via the CCCP

In each iteration of the CPM3C algorithm, we need
to solve problem (17) to obtain the optimal classifying
hyperplanes under the current working constraint set
Ω. Although the objective function in (17) is convex,
the constraints are not, and this makes problem (17)
difficult to solve. Fortunately, the constrained concave-
convex procedure (CCCP) is just designed to solve
those optimization problems with a concave-convex
objective function under concave-convex constraints
(Smola et al., 2005). In the following, we will show
how to utilize CCCP to solve problem (17).

Efficient MultiClass Maximum Margin Clustering

The objective function in (17) and the second con-
straint are convex. Moreover, the first constraint is, al-
though non-convex, the difference of two convex func-
tions. Hence, we can solve (17) with CCCP. Notice

that while 1
n

∑n

i=1

[

cTi e
∑k

p=1w
T
pxizip+

∑k

p=1 cipzip

]

is

convex, it is a non-smooth function of (w1, . . . ,wk).
To use CCCP, we need to calculate the subgradients:

∂wr

{

1

n

n
∑

i=1

[

c
T
i e

k
∑

p=1

w
T
pxizip+

k
∑

p=1

cipzip

]}
∣

∣

∣

∣

∣

w=w(t)

(18)

=
1

n

n
∑

i=1

c
T
i ez

(t)
ip xi ∀r = 1, . . . , k

Given an initial point (w
(0)
1 , . . . ,w

(0)
k), CCCP com-

putes (w
(t+1)
1 , . . . ,w

(t+1)
k) from (w

(t)
1 , . . . ,w

(t)
k) by re-

placing 1
n

∑n

i=1

[

cTi e
∑k

p=1w
T
pxizip+

∑k

p=1cipzip

]

in the

constraint with its first order Taylor expansion at

(w
(t)
1 , . . . ,w

(t)
k), i.e.

1

n

n
∑

i=1

{

c
T
i e

k
∑

p=1

w
(t)
p

T
xiz

(t)
ip +

k
∑

p=1

cipz
(t)
ip

}

(19)

+
1

n

n
∑

i=1

c
T
i e

k
∑

p=1

(wp−w
(t)
p)Txiz

(t)
ip

=
1

n

n
∑

i=1

{

c
T
i e

k
∑

p=1

w
T
pxiz

(t)
ip +

k
∑

p=1

cipz
(t)
ip

}

By substituting the above first-order Taylor expansion
into problem (11), we obtain the following quadratic
programming (QP) problem:

min
w1,...,wk,ξ≥0

1

2
β

k
∑

p=1

||wp||
2+ξ (20)

s.t. ∀[c1, . . . , cn] ∈ Ω

1

n

n
∑

i=1

c
T
i e−ξ+

1

n

n
∑

i=1

k
∑

p=1

cipw
T
pxi

−
1

n

n
∑

i=1

{

c
T
i e

k
∑

p=1

w
T
pxiz

(t)
ip +

k
∑

p=1

cipz
(t)
ip

}

≤0

−l≤
n
∑

i=1

w
T
pxi−

n
∑

i=1

w
T
qxi≤ l, ∀p, q=1, . . . , k

Moreover, the dual problem of (20) is a QP problem
with |Ω| + 2 variables and could be solved in polyno-
mial time, where |Ω| denotes the total number of con-
straints in Ω. Putting everything together, according
to the formulation of the CCCP (Smola et al., 2005),
we solve problem (17) with the approach presented in
Algorithm 2, where we set the stopping criterion in
CCCP as the difference between two iterations less
than α% and set α% = 0.01, which means the current

Algorithm 2 Solve problem (17) with CCCP

Initialize wp = w0
p for p = 1, . . . , k.

repeat
Find (wt+1

1 , . . . ,wt+1
k) as the solution to the

quadratic programming problem (20).
Set wp = wt+1

p , p = 1, . . . , k
until stopping criterion satisfied.

objective function is larger than 1− α% of the objec-
tive function in last iteration, since CCCP decreases
the objective function monotonically.

2.5. Theoretical Analysis

We provide the following theorem regarding the cor-
rectness of the CPM3C algorithm.

Theorem 4 For any dataset X = (x1, . . . ,xn) and
any ε > 0, if (w∗

1, . . . ,w
∗
k, ξ

∗) is the optimal solution
to problem (11) with the class balance constraint, then
our CPM3C algorithm returns a point (w1, . . . ,wk, ξ)
for which (w1, . . . ,wk, ξ+ε) is feasible in problem (11)
and satisfies the class balance constraint. Moreover,
the corresponding objective value is better than the one
corresponds to (w∗

1, . . . ,w
∗
k, ξ

∗).

Based on the above theorem, ε indicates how close one
wants to be to the error rate of the best classifying
hyperplanes and can thus be used as the stopping cri-
terion (Joachims, 2006).

3. Time Complexity Analysis

In this section, we will provide analysis on the time
complexity of CPM3C. For the high-dimensional (say,
d-dimensional) sparse data commonly encountered in
applications like text mining and bioinformatics, we
assume each sample has only s¿ d non-zero features,
i.e., s implies the sparsity, while for non-sparse data,
by simply setting s = d, all our theorems still hold.

Theorem 5 Each iteration of CPM3C takes time
O(snk) for a constant working set size |Ω|.

Moreover, for the binary clustering scenario, we have
the following theorem

Theorem 6 For any ε > 0, β > 0, and any dataset
X = {x1, . . . ,xn} with samples belonging to two dif-
ferent classes, the CPM3C algorithm terminates after
adding at most R

ε2
constraints, where R is a constant

number independent of n and s.

It is true that the number of constraints can poten-
tially explode for small values of ε, however, experi-

Efficient MultiClass Maximum Margin Clustering

ence with CPM3C shows that relatively large values
of ε are sufficient without loss of clustering accuracy.
Since the number of iterations in CPM3C (with k = 2)
is bounded by R

ε2
, a constant independent of n and s,

and each iteration of the algorithm takes time O(snk)
(O(sn) for the binary clustering scenario), we arrive
at the following theorem

Theorem 7 For any dataset X = {x1, . . . ,xn} with
n samples belonging to 2 classes and sparsity of s, and
any fixed value of β > 0 and ε > 0, the CPM3C algo-
rithm takes time O(sn) to converge.

For the multiclass scenario, experimental results
shown in section 4 also demonstrate that the compu-
tational time of CPM3C scales roughly linearly with
the dataset size n.

4. Experiments

In this section, we will validate the accuracy and effi-
ciency of the CPM3C algorithm on several real world
datasets. Moreover, we will also analyze the scaling be-
havior of CPM3C with the dataset size and the sensi-
tivity of CPM3C to ε, both in accuracy and efficiency.
All the experiments are performed with MATLAB 7.0
on a 1.66GHZ Intel CoreTM2 Duo PC running Win-
dows XP with 1.5GB main memory.

4.1. Datasets

We use eight datasets in our experiments, which are
selected to cover a wide range of properties: Dig-
its, Letter and Satellite from the UCI repository,
MNIST3, 20 newsgroup4, WebKB5, Cora (Mc-
Callum et al., 2000) and RCVI (Lewis et al., 2004).
In order to compare CPM3C with other MMC algo-
rithms which can only perform binary clustering, we
choose the first two classes from Letter and Satel-
lite. For the 20 newsgroup dataset, we choose
the topic rec which contains autos, motorcycles, base-
ball and hockey from the version 20-news-18828. For
WebKB, we select a subset consists of about 6000
web pages from computer science departments of four
schools (Cornell, Texas, Washington, and Wisconsin).
For Cora, we select a subset containing the research
paper of subfield data structure (DS), hardware and
architecture (HA), machine learning (ML), operating
system (OS) and programming language (PL). For
RCVI, we use the data samples with the highest four
topic codes (CCAT, ECAT, GCAT and MCAT) in the

3http://yann.lecun.com/exdb/mnist/
4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://www.cs.cmu.edu/∼WebKB/

“Topic Codes” hierarchy in the training set.

Table 1. Descriptions of the datasets.
Data Size (n) Feature (N) Class Sparsity
Letter 1555 16 2 98.9%
UCIDig 1797 64 10 51.07%
UCISat 2236 36 2 100%
MNIST 70000 784 10 19.14%
Cora-DS 751 6234 9 0.68%
Cora-HA 400 3989 7 1.1%
Cora-ML 1617 8329 7 0.58%
Cora-OS 1246 6737 4 0.75%
Cora-PL 1575 7949 9 0.56%
WK-CL 827 4134 7 2.32%
WK-TX 814 4029 7 1.97%
WK-WT 1166 4165 7 2.05%
WK-WC 1210 4189 7 2.16%
20-news 3970 8014 4 0.75%
RCVI 21251 47152 4 0.16%

4.2. Comparisons and Clustering Results

Besides our CPM3C algorithm, we also implements
some other competitive algorithms and present their
results for comparison. Specifically, we use K-Means
(KM) and Normalized Cut (NC) as baselines, and
also compared with Maximum Margin Cluster-
ing (MMC) (Xu et al., 2004), Generalized Maxi-
mum Margin Clustering (GMC) (Valizadegan &
Jin, 2007) and Iterative Support Vector Regres-
sion (SVR) (Zhang et al., 2007) which all aim at
clustering data with the maximum margin hyperplane.
Technically, for k-means, the cluster centers are ini-
tialized randomly. For NC, the implementation is the
same as in (Shi & Malik, 2000), and the width of the
Gaussian kernel is set by exhaustive search from the
grid {0.1σ0, 0.2σ0, . . . , σ0}, where σ0 is the range of
distance between any two data points in the dataset.
Moreover, for MMC and GMC, the implementation
is the same as in (Xu et al., 2004; Xu & Schuurmans,
2005) and (Valizadegan & Jin, 2007) respectively. Fur-
thermore, the implementation code for SVR is down-
loaded from http://www.cse.ust.hk/∼twinsen and the
initialization is based on k-means with randomly se-
lected initial data centers, and the width of the Gaus-
sian kernel is set in the same way as in NC.

In the experiments, we set the number of clusters equal
to the true number of classes k for all the clustering
algorithms. To assess clustering accuracy, we follow
the strategy used in (Xu et al., 2004) where we first
take a set of labeled data, remove the labels for all
data samples and run the clustering algorithms, then
we label each of the resulting clusters with the major-
ity class according to the original training labels, and
finally measure the number of correct classifications
made by each clustering. Moreover, we also calculate
the Rand Index (Rand, 1971) for each clustering re-
sult. The clustering accuracy and Rand index results
are summarized in table 2 and table 3 respectively,

Efficient MultiClass Maximum Margin Clustering

Table 2. Clustering accuracy(%) comparisons.
Data KM NC MMC GMC SVR CPM3C

Dig 3-8 94.68 65.00 90.00 94.40 96.64 96.92

Dig 1-7 94.45 55.00 68.75 97.8 99.45 100.0

Dig 2-7 96.91 66.00 98.75 99.50 100.0 100.0

Dig 8-9 90.68 52.00 96.25 84.00 96.33 97.74

Letter 82.06 76.80 - - 92.80 94.47

UCISat 95.93 95.79 - - 96.82 98.48

Text-1 50.53 93.79 - - 96.82 95.00
Text-2 50.38 91.35 - - 93.99 96.28

UCIDig 96.38 97.57 - - 98.18 99.38

MNIST 89.21 89.92 - - 92.41 95.71

Dig 0689 42.23 93.13 94.83 - - 96.63

Dig 1279 40.42 90.11 91.91 - - 94.01

Cora-DS 28.24 36.88 - - - 43.75

Cora-HA 34.02 42.00 - - - 59.75

Cora-ML 27.08 31.05 - - - 45.58

Cora-OS 23.87 23.03 - - - 58.89

Cora-PL 33.80 33.97 - - - 46.83

WK-CL 55.71 61.43 - - - 71.95

WK-TX 45.05 35.38 - - - 69.29

WK-WT 53.52 32.85 - - - 77.96

WK-WC 49.53 33.31 - - - 73.88

20-news 35.27 41.89 - - - 70.63

RCVI 27.05 - - - - 61.97

where the results for k-means and iterative SVR are
averaged over 50 independent runs and ‘-’ means the
corresponding algorithm cannot handle the dataset in
reasonable time. Since GMC and iterative SVR can
only handle binary clustering problems, we also pro-
vide experiments on several 2-class problems: Let-
ters, Satellite, autos vs. motorcycles (Text-1)
and baseball vs. hockey (Text-2). Moreover, for
the UCI-Digits and MNIST datasets, we enumerate
all 45 possible class pairs, and report the average clus-
tering results. Furthermore, as the MMC and GMC
algorithms can only handle datasets with no more than
a few hundred samples, we perform experiments on
UCI Digits and focus on those pairs (3 vs 8, 1 vs
7, 2 vs 7, 8 vs 9, 0689 and 1279) that are difficult to
differentiate. From the tables we can clearly observe

Table 3. Rand Index comparisons.
Data KM NC MMC GMC SVR CPM3C

Dig 3-8 0.904 0.545 0.823 0.899 0.940 0.945

Dig 1-7 0.995 0.504 0.571 0.962 0.995 1.00

Dig 2-7 0.940 0.550 0.978 0.994 1.00 1.00

Dig 8-9 0.835 0.500 0.929 0.733 0.934 0.956

Letter 0.706 0.644 - - 0.867 0.897

UCISat 0.922 0.919 - - 0.939 0.971

Text-1 0.500 0.884 - - 0.939 0.905
Text-2 0.500 0.842 - - 0.887 0.929

UCIDig 0.933 0.956 - - 0.967 0.989

MNIST 0.808 0.818 - - 0.860 0.921

Dig 0689 0.696 0.939 0.941 - - 0.968

Dig 1279 0.681 0.909 0.913 - - 0.943

Cora-DS 0.589 0.744 - - - 0.735
Cora-HA 0.385 0.659 - - - 0.692

Cora-ML 0.514 0.720 - - - 0.754

Cora-OS 0.518 0.522 - - - 0.721

Cora-PL 0.643 0.675 - - - 0.703

WK-CL 0.603 0.602 - - - 0.728

WK-TX 0.604 0.514 - - - 0.707

WK-WT 0.616 0.581 - - - 0.747

WK-WC 0.581 0.509 - - - 0.752

20-news 0.581 0.496 - - - 0.782

RCVI 0.471 - - - - 0.698

that our CPM3C algorithm can beat other competi-

tive algorithms on almost all the datasets.

4.3. Speed of CPM3C

Table 4 compares the CPU-time of CPM3C with
other competitive algorithms. According to the ta-
ble, CPM3C is at least 18 times faster than SVR, 200
times faster than GMC. As reported in (Valizadegan &
Jin, 2007), GMC is about 100 times faster than MMC.
Hence, CPM3C is still faster thanMMC by about four
orders of magnitude. Moreover, as the sample size in-
creases, the CPU-time of CPM3C grows much slower
than that of iterative SVR, which indicates CPM3C
has much better scaling property with the sample size
than SVR. Finally, CPM3C also performs much faster
than conventional kmeans, which is a very appealing
result. As for the Ncut method, since the calculation
of the similarity matrix is very time consuming and
usually takes several hours on the text datasets, we do
not report the time it spends here.

Table 4. CPU-time (seconds) comparisons.
Data KM GMC SVR CPM3C

Dig 3-8 0.51 276.16 19.72 1.10
Dig 1-7 0.54 289.53 20.49 0.95
Dig 2-7 0.50 304.81 19.69 0.75
Dig 8-9 0.49 277.26 19.41 0.85
Letter 0.08 - 2133 0.87
UCISat 0.19 - 6490 4.54
Text-1 66.09 - 930.0 19.75
Text-2 52.32 - 913.8 16.16

Dig 0689 34.28 - - 9.66
Dig 1279 17.78 - - 17.47
Cora-DS 839.67 - - 35.31
Cora-HA 204.43 - - 24.35
Cora-ML 22781 - - 69.04
Cora-OS 47931 - - 13.98
Cora-PL 7791.4 - - 165.0
WK-CL 672.69 - - 9.534
WK-TX 766.77 - - 10.53
WK-WT 4135.2 - - 10.67
WK-WC 1578.2 - - 9.041
20-news 2387.8 - - 215.6
RCVI 428770 - - 587.9

4.4. Dataset size n vs. Speed

In the theoretical analysis section, we state that the
computational time of CPM3C scales linearly with the
number of samples. We present numerical demonstra-

102 103100

101

102

103

Number of Samples

C
P

U
−T

im
e

(s
ec

on
ds

)

Cora & 20News

Cora−DS
Cora−HA
Cora−ML
Cora−OS
Cora−PL
20News
O(n)

102 103 104100

101

102

103

Number of Samples

C
P

U
−T

im
e

(s
ec

on
ds

)

WebKB & RCVI

WK−CL
WK−HA
WK−WT
WK−WC
RCVI
O(n)

Figure 1. CPU-Time (seconds) of CPM3C as a function of
dataset size n.

Efficient MultiClass Maximum Margin Clustering

tion for this statement in figure 1, where a log-log plot
of how computational time increases with the size of
the data set is shown. Specifically, lines in the log-log
plot correspond to polynomial growth O(nd), where
d is the slope of the line. Figure 1 shows that the
CPU-time of CPM3C scales roughly O(n), which is
consistent with the statement in section 3.

4.5. ε vs. Accuracy & Speed

Theorem 6 states that the total number of iterations
involved in CPM3C is at most R

ε2
, and this means with

higher ε, the algorithm might converge fast. However,
as ε is directly related to the training loss in CPM3C,
we need to determine how small ε should be to guar-
antee sufficient accuracy. We present in figure 2 and
figure 3 how clustering accuracy and computational
time scale with ε. According to figure 2, ε = 0.01

10−4 10−2 1000.2

0.3

0.4

0.5

0.6

0.7

0.8

Epsilon

C
lu

st
er

in
g

A
cc

ur
ac

y

Cora & 20News

Cora−DS
Cora−HA
Cora−ML
Cora−OS
Cora−PL
20News

10−4 10−2 1000.4

0.5

0.6

0.7

0.8

0.9

Epsilon

C
lu

st
er

in
g

A
cc

ur
ac

y

WebKB & RCVI

WK−CL
WK−TX
WK−WT
WK−WC
data5

Figure 2. Clustering accuracy of CPM3C vs. ε.

10−4 10−2 10010−1

100

101

102

103

Epsilon

C
P

U
−T

im
e

(s
ec

on
ds

)

Cora & 20News

Cora−DS
Cora−HA
Cora−ML
Cora−OS
Cora−PL
20News

O(x−0.5)

10−4 10−2 100

10−2

100

102

104

Epsilon

C
P

U
−T

im
e

(s
ec

on
ds

)

WebKB & RCVI

WK−CL
WK−TX
WK−WT
WK−WC
RCVI

O(x−0.5)

Figure 3. CPU-time (seconds) of CPM3C vs. ε.

is small enough to guarantee clustering accuracy. The
log-log plot in figure 3 verifies that the CPU-time of
CPM3C decreases as ε increases. Moreover, the em-
pirical scaling of roughly O(1

ε0.5) is much better than
O(1

ε2
) in the bound from theorem 6.

5. Conclusions

We propose the cutting plane multiclass maximum
margin clustering (CPM3C) algorithm in this paper,
to cluster data samples with the maximum margin hy-
perplane. Preliminary theoretical analysis of the algo-
rithm is provided, where we show that the computa-
tional time of CPM3C scales linearly with the sample
size n with guaranteed accuracy. Moreover, experi-
mental evaluations on several real world datasets show
that CPM3C performs better than existing MMC
methods, both in efficiency and accuracy.

Acknowledgments

This work is supported by the projects (60721003) and
(60675009) of the National Natural Science Founda-
tion of China.

References

Crammer, K., & Singer, Y. (2001). On the algorithmic im-
plementation of multiclass kernel-based vector machines.
JMLR, 2, 265–292.

Ding, C., He, X., Zha, H., Gu, M., & Simon, H. D. (2001).
A min-max cut algorithm for graph partitioning and
data mining. ICDM (pp. 107–114).

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern
classification. John Wiley & Sons, Inc.

Joachims, T. (2006). Training linear svms in linear time.
SIGKDD 12.

Kelley, J. E. (1960). The cutting-plane method for solving
convex programs. Journal of the Society for Industrial
Applied Mathematics, 8, 703–712.

Lewis, D. D., Yang, Y., Rose, T., & Li, F. (2004). Rcv1:
A new benchmark collection for text categorization re-
search. JMLR, 5, 361–397.

McCallum, A., Nigam, K., Rennie, J., & Seymore, K.
(2000). Automating the contruction of internet portals
with machine learning. Information Retrieval Journal,
3, 127–163.

Rand, W. M. (1971). Objective criteria for the evaluation
of clustering methods. JASA, 66, 846–850.

Schölkopf, B., Smola, A. J., & Müller, K. R. (1999). Ker-
nel principal component analysis. Advances in kernel
methods: support vector learning, 327–352.

Shi, J., & Malik, J. (2000). Normalized cuts and image
segmentation. PAMI.

Smola, A. J., Vishwanathan, S., & Hofmann, T. (2005).
Kernel methods for missing variables. AISTATS 10.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables. JMLR, 6, 1453–1484.

Valizadegan, H., & Jin, R. (2007). Generalized maxi-
mum margin clustering and unsupervised kernel learn-
ing. NIPS 19 (pp. 1417–1424).

Xu, L., Neufeld, J., Larson, B., & Schuurmans, D. (2004).
Maximum margin clustering. NIPS 17.

Xu, L., & Schuurmans, D. (2005). Unsupervised and semi-
supervised multi-class support vector machines. AAAI.

Zhang, K., Tsang, I. W., & Kowk, J. T. (2007). Maximum
margin clustering made practical. ICML 24.

Zhao, B., Wang, F., & Zhang, C. (2008). Efficient max-
imum margin clustering via cutting plane algorithm.
SDM (pp. 751–762).

