
Listwise Approach to Learning to Rank - Theory and Algorithm

Fen Xia* fen.xia@ia.ac.cn

Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Tie-Yan Liu tyliu@microsoft.com

Microsoft Research Asia, Sigma Center, No.49 Zhichun Road, Haidian District, Beijing, 100190, P. R. China.

Jue Wang jue.wang@ia.ac.cn
Wensheng Zhang wensheng.zhang@ia.ac.cn

Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Hang Li hangli@microsoft.com

Microsoft Research Asia, Sigma Center, No.49 Zhichun Road, Haidian District, Beijing, 100190, P. R. China.

Abstract

This paper aims to conduct a study on the
listwise approach to learning to rank. The
listwise approach learns a ranking function by
taking individual lists as instances and min-
imizing a loss function defined on the pre-
dicted list and the ground-truth list. Exist-
ing work on the approach mainly focused on
the development of new algorithms; methods
such as RankCosine and ListNet have been
proposed and good performances by them
have been observed. Unfortunately, the un-
derlying theory was not sufficiently studied
so far. To amend the problem, this paper
proposes conducting theoretical analysis of
learning to rank algorithms through inves-
tigations on the properties of the loss func-
tions, including consistency, soundness, con-
tinuity, differentiability, convexity, and effi-
ciency. A sufficient condition on consistency
for ranking is given, which seems to be the
first such result obtained in related research.
The paper then conducts analysis on three
loss functions: likelihood loss, cosine loss,
and cross entropy loss. The latter two were
used in RankCosine and ListNet. The use of
the likelihood loss leads to the development of

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).
*The work was performed when the first author was an
intern at Microsoft Research Asia.

a new listwise method called ListMLE, whose
loss function offers better properties, and also
leads to better experimental results.

1. Introduction

Ranking, which is to sort objects based on certain fac-
tors, is the central problem of applications such as in-
formation retrieval (IR) and information filtering. Re-
cently machine learning technologies called ‘learning
to rank’ have been successfully applied to ranking, and
several approaches have been proposed, including the
pointwise, pairwise, and listwise approaches.

The listwise approach addresses the ranking problem
in the following way. In learning, it takes ranked lists
of objects (e.g., ranked lists of documents in IR) as
instances and trains a ranking function through the
minimization of a listwise loss function defined on the
predicted list and the ground truth list. The listwise
approach captures the ranking problems, particularly
those in IR in a conceptually more natural way than
previous work. Several methods such as RankCosine
and ListNet have been proposed. Previous experi-
ments demonstrate that the listwise approach usually
performs better than the other approaches (Cao et al.,
2007)(Qin et al., 2007).

Existing work on the listwise approach mainly fo-
cused on the development of new algorithms, such as
RankCosine and ListNet. However, there was no suf-
ficient theoretical foundation laid down. Furthermore,
the strength and limitation of the algorithms, and the
relations between the proposed algorithms were still

Listwise Approach to Learning to Rank - Theory and Algorithm

not clear. This largely prevented us from deeply un-
derstanding the approach, more critically, from devis-
ing more advanced algorithms.

In this paper, we aim to conduct an investigation on
the listwise approach.

First, we give a formal definition of the listwise ap-
proach. In ranking, the input is a set of objects, the
output is a permutation of the objects1, and the model
is a ranking function which maps a given input to an
output. In learning, the training data is drawn i.i.d.
according to an unknown but fixed joint probability
distribution between input and output. Ideally we
would minimize the expected 0− 1 loss defined on the
predicted list and the ground truth list. Practically
we instead manage to minimize an empirical surrogate
loss with respect to the training data.

Second, we evaluate a surrogate loss function from four
aspects: (a) consistency, (b) soundness, (c) mathemat-
ical properties of continuity, differentiability, and con-
vexity, and (d) computational efficiency in learning.
We give analysis on three loss functions: likelihood
loss, cosine loss, and cross entropy loss. The first one
is newly proposed in this paper, and the last two were
used in RankCosine and ListNet, respectively.

Third, we propose a novel method for the listwise ap-
proach, which we call ListMLE. ListMLE formalizes
learning to rank as a problem of minimizing the likeli-
hood loss function, equivalently maximizing the likeli-
hood function of a probability model. Due to the nice
properties of the loss function, ListMLE stands to be
more effective than RankCosine and ListNet.

Finally, we have experimentally verified the correct-
ness of the theoretical findings. We have also found
that ListMLE can significantly outperform RankCo-
sine and ListNet.

The rest of the paper is organized as follows. Section
2 introduces related work. Section 3 gives a formal
definition to the listwise approach. Section 4 conducts
theoretical analysis of listwise loss functions. Section 5
introduces the ListMLE method. Experimental results
are reported in Section 6 and the conclusion and future
work are given in the last section.

2. Related Work

Existing methods for learning to rank fall into three
categories. The pointwise approach (Nallapati, 2004)
transforms ranking into regression or classification on

1In this paper, we use permutation and ranked list in-
terchangeably.

single objects. The pairwise approach (Herbrich et al.,
1999) (Freund et al., 1998) (Burges et al., 2005) trans-
forms ranking into classification on object pairs. The
advantage for these two approaches is that existing
theories and algorithms on regression or classification
can be directly applied, but the problem is that they
do not model the ranking problem in a straightforward
fashion. The listwise approach can overcome the draw-
back of the aforementioned two approaches by tackling
the ranking problem directly, as explained below.

For instance, Cao et al. (2007) proposed one of the first
listwise methods, called ListNet. In ListNet, the list-
wise loss function is defined as cross entropy between
two parameterized probability distributions of permu-
tations; one is obtained from the predicted result and
the other is from the ground truth. Qin et al. (2007)
proposed another method called RankCosine. In the
method, the listwise loss function is defined on the ba-
sis of cosine similarity between two score vectors from
the predicted result and the ground truth2. Experi-
mental results show that the listwise approach usually
outperforms the pointwise and pariwise approaches.

In this paper, we aim to investigate the listwise ap-
proach to learning to rank, particularly from the view-
point of loss functions. Actually similar investigations
have also been conducted for classification. For in-
stance, in classification, consistency and soundness of
loss functions are well studied. Consistency forms the
basis for the success of a loss function. It is known
that if a loss function is consistent, then the learned
classifier can achieve the optimal Bayes error rate in
the large sample limit. Many well known loss func-
tions such as hinge loss, exponential loss, and logis-
tic loss are all consistent (cf., (Zhang, 2004)(Bartlett
et al., 2003)(Lin, 2002)). Soundness of a loss func-
tion guarantees that the loss can represent well the
targeted learning problem. That is, an incorrect pre-
diction should receive a larger penalty than a correct
prediction, and the penalty should reflect the confi-
dence of prediction. For example, hinge loss, exponen-
tial loss, and logistic loss are sound for classification.
In contrast, square loss is sound for regression but not
for classification (Hastie et al., 2001).

3. Listwise Approach

We give a formal definition of the listwise approach
to learning to rank. Let X be the input space whose

2In a broad sense, methods directly optimizing evalua-
tion measures, such as SVM-MAP (Yue et al., 2007) and
AdaRank (Xu & Li, 2007) can also be regarded as listwise
algorithms. We will, however, limit our discussions in this
paper on algorithms like ListNet and RankCosine.

Listwise Approach to Learning to Rank - Theory and Algorithm

elements are sets of objects to be ranked, Y be the out-
put space whose elements are permutations of objects,
and PXY be an unknown but fixed joint probability
distribution of X and Y . Let h : X → Y be a ranking
function, and H be the corresponding function space
(i.e., h ∈ H). Let x ∈ X and y ∈ Y , and let y(i) be
the index of object which is ranked at position i. The
task is to learn a ranking function that can minimize
the expected loss R(h), defined as:

R(h) =
∫

X×Y

l(h(x),y)dP (x,y), (1)

where l(h(x),y) is the 0 − 1 loss function such that

l(h(x),y) =
{

1, if h(x) 6= y
0, if h(x) = y,

(2)

That is to say, we formalize the ranking problem as
a new ‘classification’ problem on permutations. If the
permutation of the predicted result is the same as the
ground truth, then we have zero loss; otherwise we
have one loss. In real ranking applications, the loss
can be cost-sensitive, i.e., depending on the positions
of the incorrectly ranked objects. We will leave this
as our future work and focus on the 0 − 1 loss in this
paper first. Actually, in the literature of classification,
people also studied the 0 − 1 loss first, before they
eventually moved onto the cost-sensitive case.

It is easy to see that the optimal ranking func-
tion which can minimize the expected loss R(hB) =
inf R(h) is given by the Bayes rule,

hB(x) = arg max
y∈Y

P (y|x), (3)

Since PXY is unknown, formula (1) cannot be directly
solved and thus hB(x) cannot be easily obtained. In
practice, we are given independently and identically
distributed (i.i.d) samples S = {(x(i),y(i))}m

i=1 ∼
PXY , we instead try to obtain a ranking function
h ∈ H that minimizes the empirical loss.

RS(h) =
1
m

m∑
i=1

l(h(x(i)),y(i)). (4)

Note that for efficiency consideration, in practice the
ranking function usually works on individual objects.
It assigns a score to each object (by employing a scor-
ing function g), sorts the objects in descending order of
the scores, and finally creates the ranked list. That is
to say, h(x(i)) is decomposable with respect to objects.
It is defined as

h(x(i)) = sort(g(x(i)
1), . . . , g(x(i)

ni
)). (5)

where x
(i)
j ∈ x(i), ni denotes the number of objects

in x(i), g(·) denotes the scoring function, and sort(·)
denotes the sorting function. As a result, (4) becomes:

RS(g) =
1
m

m∑
i=1

l(sort(g(x(i)
1), . . . , g(x(i)

ni
)),y(i)). (6)

Due to the nature of the sorting function and the
0 − 1 loss function, the empirical loss in (6) is inher-
ently non-differentiable with respect to g, which poses
a challenge to the optimization of it. To tackle this
problem, we can introduce a surrogate loss as an ap-
proximation of (6), following a common practice in
machine learning.

Rφ
S(g) =

1
m

m∑
i=1

φ(g(x(i)),y(i)), (7)

where φ is a surrogate loss function and g(x(i)) =
(g(x(i)

1), . . . , g(x(i)
ni)). For convenience in notation, in

the following sections, we sometimes write φy(g) for
φ(g(x),y) and use bold symbols such as g to denote
vectors since for a given x, g(x) becomes a vector.

4. Theoretical Analysis

4.1. Properties of Loss Function

We analyze the listwise approach from the viewpoint
of surrogate loss function. Specifically, we look at
the following properties 3 of it: (a) consistency , (b)
soundness, (c) continuity, differentiability, and convex-
ity, and (d) computational efficiency in learning.

Consistency is about whether the obtained ranking
function can converge to the optimal one through the
minimization of the empirical surrogate loss (7), when
the training sample size goes to infinity. It is a nec-
essary condition for a surrogate loss function to be a
good one for a learning algorithm (cf., Zhang (2004)).

Soundness is about whether the loss function can in-
deed represent loss in ranking. For example, an in-
correct ranking should receive a larger penalty than
a correct ranking, and the penalty should reflect the
confidence of the ranking. This property is particu-
larly important when the size of training data is small,
because it can directly affect the training results.

4.2. Consistency

We conduct analysis on learning to rank algorithms
from the viewpoint of consistency. As far as we know,

3In addition, convergence rate is another issue to con-
sider. We leave it as future work.

Listwise Approach to Learning to Rank - Theory and Algorithm

this is the first work discussing the consistency issue
for ranking.

In the large sample limit, minimizing the empirical
surrogate loss (7) amounts to minimizing the following
expected surrogate loss

Rφ(g) = EX,Y {φy(g(x))} = EX{Q(g(x))} (8)

where Q(g(x)) =
∑
y∈Y

P (y|x)φy(g(x)).

Here we assume g(x) is chosen from a vector Borel
measurable function set, whose elements can take any
value from Ω ⊂ Rn.

When the minimization of (8) can lead to the min-
imization of the expected 0 − 1 loss (1), we say the
surrogate loss function is consistent. A equivalent def-
inition can be found in Definition 2. Actually this
equivalence relationship has been discussed in related
work on the consistency of classification (Zhang, 2004).
Definition 1. We define Λy as the space of all possible
probabilities on the permutation space Y, i.e., ΛY ,
{p ∈ R|Y | :

∑
y∈Y py = 1, py ≥ 0}.

Definition 2. The loss φy(g) is consistent on a set
Ω ⊂ Rn with respect to the ranking loss (1), if the
following conditions hold: ∀p ∈ ΛY , assume y∗ =
arg maxy∈Y py and Y c

y∗ denotes the space of permu-
tations after removing y∗, we have

inf
g∈Ω

Q(g) < inf
g∈Ω,sort(g)∈Y c

y∗
Q(g)

We next give sufficient conditions of consistency in
ranking.
Definition 3. A permutation probability space ΛY is
order preserving with respect to object i and j, if the
following conditions hold: ∀y ∈ Yi,j , {y ∈ Y :
y−1(i) < y−1(j)} where y−1(i) denotes the position for
object i in y, denote σ−1y as the permutation which
exchanges the positions of object i and j while hold
others unchanged for y, we have py > pσ−1y.
Definition 4. The loss φy(g) is order sensitive on a
set Ω ⊂ Rn, if φy(g) is a non-negative differentiable
function and the following two conditions hold:

1. ∀y ∈ Y , ∀i < j, denote σy as the permutation
which exchanges the object on position i and that
on position j while holds others unchanged for y,
if gy(i) < gy(j), then φy(g) ≥ φσy(g) and with at
least one y, the strict inequality holds.

2. If gi = gj, then either ∀y ∈ Yi,j,
∂φy(g)

∂gi
≤ ∂φy(g)

∂gj
,

or ∀y ∈ Yi,j,
∂φy(g)

∂gi
≥ ∂φy(g)

∂gj
, and with at least

one y, the strict inequality holds.

Theorem 5. Let φy(g) be an order sensitive loss func-
tion on Ω ⊂ Rn. ∀n objects, if its permutation prob-
ability space is order preserving with respect to n − 1
objective pairs (j1, j2), (j2, j3), · · · , (jn − 1, jn). Then
the loss φy(g) is consistent with respect to (1).

Due to space limitations, we only give the proof sketch.
First, we can show if the permutation probability space
is order preserving with respect to n−1 objective pairs
(j1, j2), (j2, j3), · · · , (jn − 1, jn), then the permutation
with the maximum probability is y∗ = (j1, j2, · · · , jn).
Second, for an order sensitive loss function, for any or-
der preserving object pairs (j1, j2), the vector g which
minimizes Q(g) in (8) should assign a larger score to
j1 than to j2. This can be proven by the change of loss
due to exchanging the scores of j1 and j2. Given all
these results and Definition 2, we can prove Theorem
5 by means of contradiction.

Theorem 5 gives sufficient conditions for a surrogate
loss function to be consistent: the permutation prob-
ability space should be order preserving and the func-
tion should be order sensitive. Actually, the assump-
tion of order preserving has already been made when
we use the scoring function and sorting function for
ranking. The property of order preserving has also
been explicitly or implicitly used in previous work,
such as Cossock and Zhang (2006). The property of
order sensitive shows that starting with a ground truth
permutation, the loss will increase if we exchange the
positions of two objects in it, and the speed of increase
in loss is sensitive to the positions of objects.

4.3. Case Studies

We look at the four properties of three loss functions.

4.3.1. Likelihood Loss

We introduce a new loss function for listwise approach,
which we call likelihood loss. The likelihood loss func-
tion is defined as:

φ(g(x),y) = − log P (y|x;g) (9)

where P (y|x;g) =
n∏

i=1

exp(g(xy(i)))∑n
k=i exp(g(xy(k)))

.

Note that we actually define a parameterized exponen-
tial probability distribution over all the permutations
given the predicted result (by the ranking function),
and define the loss function as the negative log likeli-
hood of the ground truth list. The probability distri-
bution turns out to be a Plackett-Luce model (Marden,
1995).

The likelihood loss function has the nice properties as
below.

Listwise Approach to Learning to Rank - Theory and Algorithm

First, the likelihood loss is consistent. The following
proposition shows that the likelihood loss is order sen-
sitive. Therefore, according to Theorem 5, it is consis-
tent. Due to the space limitations, we omit the proof.

Proposition 6. The likelihood loss (9) is order sen-
sitive on Ω ⊂ Rn.

Second, the likelihood loss function is sound. For sim-
plicity, suppose that there are two objects to be ranked
(similar argument can be made when there are more
objects). The two objects receive scores of g1 and g2

from a ranking function. Figure 1(a) shows the scores,
and the point g = (g1, g2). Suppose that the first ob-
ject is ranked below the second object in the ground
truth. Then the upper left area above line g2 = g1 cor-
responds to correct ranking; and the lower right area
incorrect ranking. According to the definition of likeli-
hood loss, all the points on the line g2 = g1 +d has the
same loss. Therefore, we say the likelihood loss only
depends on d. Figure 1(b) shows the relation between
the loss function and d. We can see the loss function
decreases monotonously as d increases. It penalizes
negative values of d more heavily than positive ones.
This will make the learning algorithm focus more on
avoiding incorrect rankings. In this regard, the loss
function is a good approximation of the 0 − 1 loss.

2d

dgg =− 12

12 gg =2g

1g

g

(a)

d

φ

(b)

Figure 1. (a) Ranking scores of predicted result; (b) Loss
φ v.s. d for the likelihood loss.

Third, it is easy to verify that the likelihood loss is
continuous, differentiable, and convex (Boyd & Van-
denberghe, 2004). Furthermore, the loss can be com-
puted efficiently, with time complexity of linear order
to the number of objects.

With the above good properties, a learning algorithm
which optimizes the likelihood loss will become pow-
erful for creating a ranking function.

4.3.2. Cosine Loss

The cosine loss is the loss function used in RankCosine
(Qin et al., 2007), a listwise method. It is defined on
the basis of the cosine similarity between the score

vector of the ground truth and that of the predicted
result.

φ(g(x),y) =
1
2
(1 − ψy(x)T g(x)

‖ψy(x)‖‖g(x)‖
). (10)

The score vector of the ground truth is produced by a
mapping ψy(·) : Rd → R, which retains the order in a
permutation, i.e, ψy(xy(1)) > · · · > ψy(xy(n)).

First, we can prove that the cosine loss is consistent,
given the following proposition. Due to space limita-
tions, we omit the proof.

Proposition 7. The cosine loss (10) is order sensitive
on Ω ⊂ Rn.

Second, the cosine loss is not very sound. Let us again
consider the case of ranking two objects. Figure 2(a)
shows point g = (g1, g2) representing the scores of the
predicted result and point gψ representing the ground
truth (which depends on the mapping function ψ). We
denote the angle from point g to line g2 = g1 as α, and
the angle from gψ to line g2 = g1 as αgψ

. We inves-
tigate the relation between the loss and the angle α.
Figure 2(b) shows the cosine loss as a function of α.
From this figure, we can see that the cosine loss is
not a monotonously decreasing function of α. When
α > αgψ

, it increases quickly, which means that it
can heavily penalize correct rankings. Furthermore,
the mapping function and thus αgψ

can also affect the
loss function. Specifically, the curve of the loss func-
tion can shift from left to right with different values
of αgψ

. Only when αgψ
= π/2, it becomes a rela-

tively satisfactory representation of loss for the learn-
ing problem.

ψg

1g

2g
12 gg =g

α

(a)

−π αgψ π α

φ

(b)

Figure 2. (a) Ranking scores of predicted result and ground
truth; (b) Loss φ v.s. angle α for the cosine loss.

Third, it is easy to see that the cosine loss is contin-
uous, differentiable, but not convex. It can also be
computed in an efficient manner with a time complex-
ity linear to the number of objects.

Listwise Approach to Learning to Rank - Theory and Algorithm

4.3.3. Cross Entropy Loss

The cross entropy loss is the loss function used in List-
Net (Cao et al., 2007), another listwise method. The
cross entropy loss function is defined as:

φ(g(x),y) = D(P (π|x; ψy)||P (π|x;g)) (11)

where P (π|x; ψy) =
n∏

i=1

exp(ψy(xπ(i)))∑n
k=i exp(ψy(xπ(k)))

P (π|x;g) =
n∏

i=1

exp(g(xπ(i)))∑n
k=i exp(g(xπ(k)))

where ψ is a mapping function whose definition is sim-
ilar to that in RankCosine.

First, we can prove that the cross entropy loss is con-
sistent, given the following proposition. Due to space
limitations, we omit the proof.

Proposition 8. The cross entropy loss (11) is order
sensitive on Ω ⊂ Rn.

Second, the cross entropy loss is not very sound.
Again, we look at the case of ranking two objects.
g = (g1, g2) denotes the ranking scores of the predicted
result. gψ denotes the ranking scores of the ground
truth (depending on the mapping function). Similar
to the discussions in the likelihood loss, the cross en-
tropy loss only depends on the quantity d. Figure 3(a)
illustrates the relation between g, gψ, and d. Figure
3(b) shows the cross entropy loss as a function of d. As
can be seen that the loss function achieves its minimum
at point dgψ

, and then increases as d increases. That
means it can heavily penalize those correct rankings
with higher confidence. Note that the mapping func-
tion also affects the penalization. According to map-
ping functions, the penalization on correct rankings
can be even larger than that on incorrect rankings.

2d

dgg =− 12

12 gg =

2g

1g

ψgg

(a)

dgψ d

φ

(b)

Figure 3. (a) Ranking scores of predicted result and ground
truth; (b) Loss φ v.s. d for the cross entropy loss.

Third, it is easy to see that the cross entropy loss is
continuous and differentiable. It is also convex because
the log of a convex function is still convex, and the

Algorithm 1 ListMLE Algorithm
Input: training data{(x(1),y(1)), . . . , (x(m),y(m))}
Parameter: learning rate η, tolerance rate ε
Initialize parameter ω
repeat

for i = 1 to m do
Input (x(i),y(i)) to Neural Network and compute
gradient 4ω with current ω
Update ω = ω − η ×4ω

end for
calculate likelihood loss on the training set

until change of likelihood loss is below ε
Output: Neural Network model ω

set of convex function is closed under addition (Boyd
& Vandenberghe, 2004). However, it cannot be com-
puted in an efficient manner. The time complexity is
of exponential order to the number of objects.

Table 1 gives a summary of the properties of the loss
functions. All the three loss functions as aforemen-
tioned are consistent, as well as continuous and differ-
entiable. The likelihood loss is better than the cosine
loss in terms of convexity and soundness, and is better
than the cross entropy loss in terms of time complexity
and soundness.

5. ListMLE

We propose a novel listwise method referred to as
ListMLE. In learning of ListMLE, we employ the like-
lihood loss as the surrogate loss function, since it is
proven to have all the nice properties as a surrogate
loss. On the training data, we actually maximize the
sum of the likelihood function with respect to all the
training queries.

m∑
i=1

log P (y(i)|x(i);g). (12)

We choose Stochastic Gradient Descent (SGD) as the
algorithm for conducting the minimization. As rank-
ing model, we choose linear Neural Network (param-
eterized by ω). Algorithm 1 shows the learning algo-
rithm based on SGD.

6. Experimental Results

We conducted two experiments to verify the correct-
ness of the theoretical findings. One data set is syn-
thetic data, and the other is the LETOR benchmark
data for learning to rank (Liu et al., 2007).

Listwise Approach to Learning to Rank - Theory and Algorithm

Table 1. Comparison between different surrogate losses.

Loss Consistency Soundness Continuity Differentiability Convexity Complexity

Likelihood
√ √ √ √ √

O(n)
Cosine

√
×

√ √
× O(n)

Cross entropy
√

×
√ √ √

O(n! · n)

6.1. Experiment on Synthetic Data

We conducted an experiment using a synthetic data
set. We created the data as follows. First, we ran-
domly sample a point according to the uniform dis-
tribution on the square area [0, 1] × [0, 1]. Then we
assign to the point a score using the following rule,
y = x1 + 10x2 + ε where ε denotes a random variable
normally distributed with mean of zero and standard
deviation of 0.005. In total, we generate 15 points and
their scores in this way, and create a permutation on
the points based on their scores, which forms an in-
stance of ranking. We repeat the process and make
100 training instances, 100 validation instances, and
100 testing instances. We applied RankCosine, List-
Net4, and ListMLE to the data.

We tried different score mapping functions for
RankCosine and ListNet, and used five most represen-
tative ones, i.e., log(15− r),

√
15 − r, 15− r, (15− r)2

and exp(15 − r), where r denotes the positions of ob-
jects. We denote the mapping functions as log, sqrt,
l, q, and exp for simplicity. The experiments were re-
peated 20 times with different initial values of param-
eters in the Neural Network model. Table 2 shows
the means and standard deviations of the accuracies
and Mean Average Precision (MAP)(Baeza-Yates &
Ribeiro-Neto, 1999) of the three algorithms. The ac-
curacy measures the proportion of correctly ranked in-
stances and MAP5 is a commonly used measure in IR.

As shown in the table, ListMLE achieves the best per-
formance among all the algorithms in terms of both
accuracy and MAP, owing to good properties of its loss
function. The accuracies of RankCosine and ListNet
vary according to the mapping functions. Especially,
RankCosine achieves an accuracy of only 0.047 when
using the mapping function exp while 0.917 when using
the mapping function l. This result indicates that the
performances of the cosine loss and the cross entropy
loss depend on the mapping functions, while finding a
suitable mapping function is not easy. Furthermore,
RankCosine has a larger variance than ListMLE and
ListNet. The likely explanation is that RankCosine’s

4The top-1 version of the cross entropy loss was em-
ployed as in the original work (Cao et al., 2007).

5When calculating MAP, we treated the top-1 items as
relevant and the other as irrelevant.

Table 2. The performance of three algorithms on the syn-
thetic data set.

Algorithm Accuracy MAP

ListMLE 0.92 ± 0.011 0.999 ± 0.002
ListNet-log 0.905 ± 0.010 0.999 ± 0.002
ListNet-sqrt 0.917 ± 0.009 0.999 ± 0.002
ListNet-l 0.767 ± 0.021 0.995 ± 0.003
ListNet-q 0.868 ± 0.028 0.999 ± 0.002
ListNet-exp 0.832 ± 0.074 0.997 ± 0.004
RankCosine-log 0.180 ± 0.217 0.948 ± 0.034
RankCosine-sqrt 0.080 ± 0.159 0.886 ± 0.056
RankCosine-l 0.917 ± 0.112 0.999 ± 0.002
RankCosine-q 0.102 ± 0.161 0.890 ± 0.060
RankCosine-exp 0.047 ± 0.163 0.746 ± 0.136

performance is sensitive to the initial values of param-
eters due to the non-convexity of its loss function.

6.2. Experiment on OHSUMED Data

We also conducted an experiment on OHSUMED, a
benchmark data set for learning to rank provided in
LETOR. There are in total 106 queries, and 16,140
query-document pairs upon which relevance judg-
ments are made. The relevance judgments are either
definitely relevant, possibly relevant, or not relevant.
The data was in the form of feature vector and rele-
vance label. There are in total 25 features. We used
the data split provided in LETOR to conduct five-fold
cross validation experiments. In evaluation, besides
MAP, we adopted another measures commonly used in
IR: Normalized Discounted Cumulative Gain (NDCG)
(Jarvelin & Kekanainen, 2000).

Note that here the ground truth in the data is given as
partial ranking, while the methods need to use total
ranking (permutation) in training. To bridge the gap,
for RankCosine and ListNet, we adopted the methods
proposed in the papers (Cao et al., 2007) (Qin et al.,
2007). For ListMLE we randomly selected one perfect
permutation for each query from among the possible
perfect permutations based on the ground truth.

We applied RankCosine, ListNet, and ListMLE to
the data. The results reported below are those aver-
aged over five trials. As shown in Figure 4, ListMLE
achieves the best performance among all the algo-
rithms. Especially, on NDCG@1, it has more than

Listwise Approach to Learning to Rank - Theory and Algorithm

5-point gains over RankCosine which is at the sec-
ond place. We also conducted the t-test on the im-
provements of ListMLE over the other two algorithms.
The results show that the improvements are statisti-
cally significant for NDCG@5, NDCG@7, NDCG@8,
NDCG@9, and NDCG@10 (p-value < 0.05).

0.5

0.52

0.54

0.56

0.58

ListMLE

ListNet

0.42

0.44

0.46

0.48

0.5

MAP NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 NDCG@6 NDCG@7 NDCG@8 NDCG@9 NDCG@10

RankCosine

Figure 4. Ranking performance on OHSUMED data.

7. Conclusion

In this paper, we have investigated the theory and al-
gorithms of the listwise approach to learning to rank.
We have pointed out that to understand the effective-
ness of a learning to rank algorithm, it is necessary to
conduct theoretical analysis on its loss function. We
propose investigating a loss function from the view-
points of (a) consistency, (b) soundness, (c) continu-
ity, differentiability, convexity, and (d) efficiency. We
have obtained some theoretical results on consistency
of ranking. We have conducted analysis on the likeli-
hood loss, cosine loss, and cross entropy loss. The re-
sult indicates that the likelihood loss has better prop-
erties than the other two losses. We have then de-
veloped a new learning algorithm using the likelihood
loss, called ListMLE and demonstrated its effective-
ness through experiments.

There are several directions which we can further ex-
plore. (1) We want to conduct more theoretical anal-
ysis on the properties of loss functions, for example,
weaker conditions for consistency and the rates of con-
vergence. (2) We plan to study the case where cost-
sensitive loss function is used instead of the 0 − 1 loss
function in defining the expected loss. (3) We plan
to investigate other surrogate loss functions with the
tools we have developed in this paper.

References

Baeza-Yates, R., & Ribeiro-Neto, B. (Eds.). (1999). Mod-
ern information retrieval. Addison Wesley.

Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2003).
Convexity, classification, and risk bounds (Technical Re-

port 638). Statistics Department, University of Califor-
nia, Berkeley.

Boyd, S., & Vandenberghe, L. (Eds.). (2004). Convex op-
timization. Cambridge University.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., & Hullender, G. (2005). Learning to
rank using gradient descent. Proceedings of ICML 2005
(pp. 89–96).

Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F., & Li, H. (2007).
Learning to rank: From pairwise approach to listwise
approach. Proceedings of the 24th International Con-
ference on Machine Learning (pp. 129–136). Corvallis,
OR.

Cossock, D., & Zhang, T. (2006). Subset ranking using
regression. COLT (pp. 605–619).

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (1998).
An efficient boosting algorithm for combining prefer-
ences. Proceedings of ICML (pp. 170–178).

Hastie, T., Tibshirani, R., & Friedman, J. H. (Eds.).
(2001). The elements of statistical learning: Data min-
ing, inference and prediction. Springer.

Herbrich, R., Graepel, T., & Obermayer, K. (1999). Sup-
port vector vector learning for ordinal regression. Pro-
ceedings of ICANN (pp. 97–102).

Jarvelin, K., & Kekanainen, J. (2000). Ir evaluation meth-
ods for retrieving highly relevant documents. Proceed-
ings of SIGIR (pp. 41–48).

Lin, Y. (2002). Support vector machines and the bayes rule
in classification. Data Mining and Knowledge Discovery,
259–275.

Liu, T. Y., Qin, T., Xu, J., Xiong, W. Y., & Li, H. (2007).
Letor: Benchmark dataset for research on learning to
rank for information retrieval. Proceedings of SIGIR.

Marden, J. I. (Ed.). (1995). Analyzing and modeling rank
data. London: Chapman and Hall.

Nallapati, R. (2004). Discriminative models for informa-
tion retrieval. Proceedings of SIGIR (pp. 64–71).

Qin, T., Zhang, X.-D., Tsai, M.-F., Wang, D.-S., Liu, T.-
Y., & Li, H. (2007). Query-level loss functions for infor-
mation retrieval. Information processing and manage-
ment.

Xu, J., & Li, H. (2007). Adarank: a boosting algorithm
for information retrieval. Proceedings of SIGIR (pp. 391–
398).

Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007).
A support vector method for optimization average pre-
cision. Proceedings of SIGIR (pp. 271–278).

Zhang, T. (2004). Statistical analysis of some multi-
category large margin classification methods. Journal
of Machine Learning Research, 5, 1225–1251.

