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Abstract

For two-class classification, it is common to
classify by setting a threshold on class prob-
ability estimates, where the threshold is de-
termined by ROC curve analysis. An analog
for multi-class classification is learning a new
class partitioning of the multiclass probabil-
ity simplex to minimize empirical misclassi-
fication costs. We analyze the interplay be-
tween systematic errors in the class proba-
bility estimates and cost matrices for multi-
class classification. We explore the effect on
the class partitioning of five different trans-
formations of the cost matrix. Experiments
on benchmark datasets with naive Bayes and
quadratic discriminant analysis show the ef-
fectiveness of learning a new partition matrix
compared to previously proposed methods.

1. Introduction

Many classifiers first estimate class probabilities py (z)
for each class k € {1,..., K}, then classify a test sam-
ple z as the class ¢(x) that minimizes the expected
misclassification costs:

=

y(x) = arg _min =9(B(x);c), (1)

Z Z\JpJ

where c¢;); is the " row, j* column element of the
cost matrix ¢, and the cost of classifying as class ¢
when the true class is j. We define the function g to
use as short-hand for this minimization.

Such probability-based classifiers can be interpreted as
mapping each test sample to a point on the p-simplex,
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where each corner of the simplex has p; = 1 for some
j, and p; = 0 for all 4 # j; and that the cost matrix
¢ induces a partitioning of the p-simplex into regions
assigned to each of the K classes. However, the proba-
bility estimation can suffer from systematic errors, e.g.
oversmoothing the estimate towards class prior prob-
abilities. The main contribution of this paper is an
analytic and experimental investigation of how chang-
ing the partitioning of the p-simplex can reduce the
effect of such systematic errors on classification loss,
analogous to ROC analysis for two-class classification.

First, we discuss systematic probability estimation er-
rors and show how these errors can cause classification
errors. Then in Section 3 we review methods to reduce
the effect of such errors. In Section 4 we establish prop-
erties that describe how changing c affects the class-
partitioning of the p-simplex. In Section 5, we propose
learning a partitioning of the p-simplex that seeks to
minimize the empirical misclassification costs for the
given ¢, and we provide experimental evidence of the
effectiveness of our approach in Section 6.

2. Systematic Error in Multi-class
Probability Estimation

Friedman uses the term oversmoothing for cases where
the probability estimates are systematically smoothed
towards the class prior probabilities, and undersmooth-
ing for cases where the class probability estimates
produced are too confident, such as 1-NN (Friedman,
1997). Other systematic errors in the probability es-
timates can occur; Niculescu-Mizil and Caruana have
documented the systematic errors introduced by var-
ious methods of probability estimation for two-class
classification (Niculescu-Mizil & Caruana, 2005). Here
we provide illustrative examples of over- and under-
smoothing in multiclass tasks.
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2.1. A Naive Bayes’ Example

Consider a three-class problem with discrete features.
We estimate class probabilities for test samples using
naive Bayes (Hastie et al., 2001). The three classes are
equally likely, and the feature vector consists of two
identical copies of the same feature. Thus the naive
Bayes’ assumption of independent features is clearly
violated. Figure 1(a) shows pairings of a true class
probability (marked with an attached circle) and the
associated naive Bayes’ estimated probability (marked
with a triangle). The incorrect feature-independence
assumption undersmooths the probability estimates,
pushing them towards the edges of the simplex.

When an estimated probability and the corresponding
true probability fall in the same class partition, the un-
dersmoothing does not cause any classification error.
When the line attaching a triangle to a circle crosses a
class partition line, a classification error occurs. One
sees that undersmoothing does not cause errors given
the 0/1 cost matrix (dashed lines), but causes many
errors given an asymmetric cost matrix (solid lines).

2.2. A k-NN Example

Let N be the number of training samples. Then for
the k-NN classifier as the number of nearest neigh-
bors k — N, the probability estimates are smoothed
towards the class prior probabilities. Figure 1(b) illus-
trates an extreme example: k = 2000, N = 3000, and
the samples are drawn iid and with equal probability
from one of three class-conditional normal distribu-
tions. The oversmoothing does not cause errors given
the 0/1 cost matrix (dashed lines), but causes many
errors given an asymmetric cost matrix (solid lines).

3. Related Work

Approaches to deal with the systematic errors in prob-
ability estimation can be analyzed in terms of the clas-
sification rule given in (1). Such approaches gener-
ally either change the partitioning of the p-simplex, or
change the probability estimates.

3.1. Related Work in Two-class Classification

For the two-class case, the p-simplex is a line segment
from p1(x) = 0 to pi(x) = 1, and a scalar threshold ¢
partitions the two class regions. The optimal threshold
t* derived with respect to (1) is,

t* =

Ci]2 — C2)2 (2)
C12 + C2)1 — €11 — C2)2

Classification errors can be reduced by changing the
class-partitioning by specifying a threshold ¢ that re-

(b) k-NN example

Figure 1. Circles mark the true probabilities, triangles
mark the estimated probabilities, and each line connects a
true probability to the corresponding estimate. The dashed
lines mark the class partitioning of the p-simplex induced
by the 0-1 cost matrix, and the solid lines mark the class
partitioning induced by an asymmetric cost matrix.

duces the effect of systematic errors of the class prob-
ability estimates. The most common approach uses
the receiver operating characteristic (ROC) curves
(Egan, 1975; Hanley & McNeil, 1982). An ROC curve
plots estimates of the probabilities Py, (2|2) versus
Py y(2[1) for thresholds ¢,0 < ¢ < 1, where the es-
timates are derived from training or validation data.
For a given cost matrix the desired point on the ROC
curve is chosen and the associated threshold ¢ is used
for the classifier (Noe, 1983; Provost & Fawcett, 2001).

Other methods fix the threshold at the theoretical op-
timal t* given by (2), and seek to improve classification
by improving the probability estimates. Friedman con-
sidered adding a scalar a to the probability estimates



Cost-sensitive Multi-class Classification

for class 1 (Friedman, 1997); it is easy to show that this
method is equivalent to using a threshold ¢ = t* — a.

Zadrozny and Elkan use monotonic functions of the
probability estimate p; to give a calibrated estimate
and show great improvements in cost-sensitive classi-
fication when the calibrated probability estimates are
used in place of the original estimates (Zadrozny &
Elkan, 2001; Zadrozny & Elkan, 2002). One of their
approaches builds on Platt’s earlier work to transform
support vector machine (SVM) scores into probability
estimates using a sigmoid function (Platt, 2000). The
same approach can be applied to probability estimates
rather than SVM scores. Zadrozny and Elkan propose
two other approaches to perform the calibration: bin-
ning and pair-adjacent violators.

Binning takes the probability estimates obtained using
cross-validation, orders these values and then groups
them into B bins so that there are an equal num-
ber of samples in each bin (Zadrozny & Elkan, 2001).
The upper and lower boundaries of each bin are de-
termined, and for any test sample with a probability
estimate falling in bin b, the updated probability esti-
mate for class 1 is given by the fraction of validation
samples in bin b that belong to class 1.

Pair-adjacent violators (PAV) monotonically trans-
form the probability estimates using isotonic regres-
sion (Ayer et al., 1955). It has been shown that apply-
ing threshold t* from (2) to the calibrated probability
estimates obtained using PAV is equivalent to using
a threshold chosen by ROC analysis on the original
probabilities (O’Brien, 2006).

3.2. Related Work in Multi-class Classification

Zadrozny and Elkan extended their two-class solutions
to multi-class problems by breaking the classification
task into a number of binary classification tasks and
using error correcting output codes (ECOC) to obtain
multi-class probability estimates (Zadrozny & Elkan,
2002).

Other methods seek to extend the ROC thresholding
approach to K-class classification. Instead of choos-
ing a scalar threshold ¢, a partition of the (K — 1)-
dimensional p-simplex must be specified. Mossman
proposed a method for three class tasks using a very re-
strictive partitioning of the simplex (Mossman, 1999):

1 if  ps(x) <61 and pa(z) — pr(x) < 62
if  ps(z) < 61 and pa(x) — p1(x) > 02
3 if ﬁg,(l‘) > 0.

3)

Lachiche and Flach proposed an alternative to the

minimum expected misclassification cost assignment

of (1) (Lachiche & Flach, 2003):
§(x) = arg max w; p, (4)

where the w; are chosen by minimizing costs on the
training set:

N

* .
W' = argmin Y Clargmax, wipi )y (0)
n=1

and x,,y, are the nth training sample and its asso-
ciated class label. We refer to (4) and (5) as the LF
method. Mossman’s method and the LF method can
both be viewed as learning a new partitioning for the
p-simplex. In Section 5, we show how these parti-
tions can be achieved by using different cost matrices
in equation (1).

MetaCost is a wrapper method that can be used with
any classification algorithm and reduces the variance
of the probability estimates by bootstrapping (Domin-
gos, 1999). MetaCost reduces the variance of proba-
bility estimates, but is not designed to overcome sys-
tematic probability estimation errors.

4. The Effect of the Cost Matrix on the
Class-Decision Boundaries

In this section we establish how different changes in
the cost matrix affect the class partitioning of the p-
simplex enacted by (1). In Section 5 we use these
properties to propose a new method to reduce the ef-
fect of systematic errors in probability estimation.

For a particular cost matrix ¢, and any two classes i, k
that are adjacent in the partition of the p-simplex, the
partition-boundary between them is described by the
hyperplane,

K K

Z Ci|jbj = Z Ck|j Dy - (6)

j=1 j=1

We restrict attention to cost matrices where the cost
of correct assignment is always less than the cost of
incorrect assignment, that is, c;|; < ¢;;, Vi # j.

Property 1: For any p, the assigned class is the same

for cost matrices ¢ and ac for any scalar a.

Proof: The minimization in (1) is unaffected by
replacing ¢;|; by acy;, Vi, j.

Property 2: If the cost matriz ¢ is full rank, then
there is a point (¢ where all two class boundaries as
described by (6) intersect, and (¢ may occur outside
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the probability simplex. We term (¢ the “equal risk

point”.

Proof: 1If ¢ is full rank then the solution is (¢ =
¢~ '1/|le7t1]|; that will solve (6) for all classes. How-
ever, it can happen that |c=!1]|; = 0, in which case
the equal risk point can be said to be at infinity.

If ¢ is not full rank there may still be an unique
equal risk point. In general, (¢ must solve

0
= for some v € R.

¥ 1

If the above matrix is full rank then there is a unique
point solution for (¢, otherwise the above system is un-
derdetermined and there is a hyperplane of solutions,
or the above system can be overdetermined and there
is no solution.

Property 3: Adding a constant to all costs for a par-
ticular true class (equivalently, adding a constant to
each term in any column of the cost matriz) does not
affect the assignment.

Proof: The minimization in (1) is unaffected by

changing ¢;; to ¢;; + oy, Vi.

Property 4: The class-partitioning produced by any
cost matriz ¢ can equivalently be produced by some cost
matriz ¢ where ¢;; =0 and ¢;; > 0 for i # j.

Proof: Follows directly from Property 3.

Property 5: (See Fig. 2b) Adding a constant «
to the cost of assignment to class i irrespective of the
true class (that is, adding a to each term in row i of
a cost matriz), produces a new class-partitioning with
partition boundaries parallel to those of the original.

Proof: This change only affects the two-class boundary
equations specified by (6) for class ¢ and each class k:

K

K K
D (e +)p; = ey = Y iy + o
= =

Jj=1

Thus the new boundary between class ¢ and k is
parallel to the original boundary between class
and k. To maintain c;; < cilj, Vi # j requires
maxXpi(Crlk — Cijk) < @ < ming;(crs — Ciji)-

Property 6: (See Fig. 2c) Scaling all costs where
the true class is £ by a positive constant « (that is, mul-
tiplying column £ of ¢ by ) moves an equal risk point
along the line joining it to the corner of the simplex
where py = 1. The intersections of the class bound-

aries with the p; = 0 plane are unchanged.

Proof: To prove that the new equal risk point 56 is
on the line joining the original equal risk point (¢ and
the corner of the simplex where py = 1, we show that
there exists a constant (3 such that

¢ =BG + (1= B) =0, (7)
for all j, and where 7 is the indicator function.

From (6), multiplying column ¢ by «, and requiring
equal risk for classes ¢ and k:

K

Z (cilj — cxp)C5 + (cije — erpe)(alf) = 0. (8)

J=1.57#L

First note that if (f = 0, then ¢® remains an equal risk
point for the transformed cost matrix. Otherwise, for
any (¢, we write (f = s;¢f. Comparing (6) and (8),
there exists ¢ such that Ef = a(sjgg), Vj # £. Thus,

+-(2)

Let 8 = alf /¢, then (9) establishes (7) Vj # £. Also,
Y6 = 8Y¢ (10)

J#L J#L
=1-¢ = pO-¢), (11)

where (11) follows from (10) since components of ¢°
and ¢° both sum to 1. This establishes (7) for £.

G- 9)

Lastly, by setting p, = 0 in equation (6), it is evident
that changes in ¢;, and c;, will not effect the inter-
sections of the class boundaries with the p, = 0 plane.

Property 7: (See Fig. 2d) Scaling all costs where
the assigned class is i by a positive constant « (that is,
multiplying all elements in row i by o) moves an equal
risk point (¢ along the hyper-plane where all classes
but class i have equal expected misclassification costs.

Proof: Let ¢, = cj)p, for all j # ¢, and let ¢;), = acyy-
Then the equal risk point fe produced by ¢ solves the
same set of class boundary equations (6) specifying (¢,
except

K

K
D e —ex)5 =0 = > (acy; —exp)C5 =0.

j=1 j=1

Because the constraints specifying that the other
classes have equal misclassification costs still apply, the
new equal risk point CN ¢ must occur along the hyper-
plane specified by that subset of the constraints.
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5. Learning the Partition Matrix

We propose changing the class partitions so that the
class-partitioning corrects for the systematic error in
the probability estimates. Changing the partition of
the multi-class p-simplex is analogous to the two-class
practice of changing the threshold on p;(z).

We split the cost matrix’s role into two separate enti-
ties: a partition matrix (which partitions the p-simplex
with linear boundaries), and the misclassification cost
matrix that specifies how misclassification errors are to
be scored. From now on we will use the term partition
matriz for the former role, and the term cost matrixz
only for the latter role.

Given a training set {(.131, y1)7 (]“Qa ?J2)7 ~eey (xNv yN)}7
where x,, has class probability estimate vector p(x,,),
we propose to use a partition matrix a* that solves

a* = arg 1r1f1ainZ:Cg(]a(mn);a)\yn7 (12)
n

where the function ¢ in (12) is defined in (1). To avoid
the issue of overfitting in learning a partition matrix,
we restrict the partition to have linear boundaries that
are parallel to the original decision boundaries pro-
duced by the cost matrix (see Fig. 2b). We have
also considered learning partition matrices with differ-
ent constraints, including partition matrices with all
K? — K free parameters, partition matrices that are
column-multiply modifications of the original cost ma-
trix (see Fig. 2¢), and row-multiply modifications (see
Fig. 2d). We found these different constraints resulted
in similar performance, with the parallel partitioning
working consistently well (O’Brien, 2006).

By Property 4 stated in Section 4, without loss of gen-
erality we consider only partition matrices a where
a;; = 0 and a;; > 0 for i # j. From Property 5,
adding «; to row i of the cost matrix will yield a par-
tition matrix with partition boundaries parallel to the
partition boundaries induced by ¢. To maintain the
requirement that a;; = 0 we subtract the same con-
stant from column ¢ without affecting the partition
boundaries (Property 3). Thus given the cost matrix
¢, the partition matrix is a where a;; = ¢;; + a; — ;.
This approach requires learning the parameters a; for
i=1,....K.

Related methods can also be viewed as applications of
(12) but with different restrictions on a. Mossman’s
method for three classes (Mossman, 1999) implicitly
requires a to be of the form

0 1 L— %
i 0 L , (13)

LIy SR ) 0
1 1

2 2

3 13 1
(a) Initial Cost Matrices

13
(b) Parallel Cost Matrices (o = 0.3)

13
(d) Row Multiply (a = 1.75)

Figure 2. This figure illustrates Properties 5, 6, and 7 de-
scribed in Section 4 for a three-class classification. The
partition produced by the cost matrix is marked by solid
lines: a 0/1 cost matrix for the left figures, and an asym-
metric cost matrix for the right figures. The corners of the
simplex are marked such that p; = 1 at corner j, and if a
test sample has estimated class probability p that falls in
the region including corner j, then the estimated class la-
bel is j. For each of the figures, manipulations are applied
to the class 1 elements of the cost matrix. The dashed lines
show the initial cost matrix partitions, the gray lines help
to illustrate the properties.
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where the § terms are those used in (3) and L > 1.
The LF method (Lachiche & Flach, 2003) is equivalent
to choosing a partition matrix a such that a;;; = w;z;);
where z;; is the 0-1 cost matrix and w; is the weight
used in equations (4) and (5). Thus the LF method is
equal to a column-multiply of a 0-1 cost matrix (see
Property 5 stated in Section 4, and Fig 2c), whereas
our proposed method enacts a parallel shift based on
the actual cost matrix c.

5.1. Optimizing the Partition Matrix

We learn the new partition matrix by minimizing an
empirical loss calculated on a validation set of labeled
samples using a greedy approach. The new partition
matrix a is initialized to the cost matrix ¢. Then each
free parameter is updated in turn. Let a denote the
current partition matrix, and the new partition matrix
a will have a;; = a;; + o and a;); = a;); — o; for all
j # i. Suppose a; = —oo and interpret a as a cost
matrix — then there would be an infinitely negative
cost to assigning a sample as class ¢, and thus every
training sample would be assigned to class i. Sup-
pose one increased «; from negative infinity. For dif-
ferent values of «; it would become more cost-effective
to classify each of the training samples as a different
class, call this classification choice ¢*(p(z,)), where
g (p(xy)) = argming; Z]K:1 ap;pj(x). Let agy, de-
note the changepoint value — for a; < «;, training
sample n would be assigned to class ¢ and for a; > Qin
training sample n would be assigned to class ¢*(p(x,,)).

We find these N changepoints «;, for n = 1,... N,
by solving the N equations,

(@if; + cin) j(2n).

Z Agi(p(an))s) i (Tn) =

j=1 J

M-

1

Re-order the training data by their changepoints, so
that {x,yr} denotes the training point with the kth
largest changepoint. Then select N* where,

N*=arg - min > ey, D Cily-
0=1y4,..0y
n<No n>Nop
(14)

Note that a;n= to a;n«+1 defines the range of «; that
would yield the empirical cost given in (14); we set the
parameter «; to be the geometric mean of oy~ and
a;nN+41. Since we require that a;; < ay;, for all k& # j,
it must be that a;; < a;; + a; and a;; + o < ag);,
for all j,k # 4, and so «; is clipped to satisfy these
conditions. In addition, if a;n+ < 0 < a;n+41, then
«; is set equal to 0, or equivalently a is set equal to a.

Each class’s partition matrix parameter is adjusted in
this manner once, and the parameters are updated in

order of class size from most populous to least. Pre-
liminary experiments provided evidence that multiple
passes through the parameters did not improve the fi-
nal classification performance, and that performance
was fairly robust to the parameter ordering.

6. Experiments

Experiments with UCI benchmark datasets compare
the proposed parallel-partition matrix method to
MetaCost (MC) (Domingos, 1999) and to the LF
method (Lachiche & Flach, 2003).

For two-class problems the proposed partition matrix
methods are equivalent to ROC analysis and therefore
only multi-class problems are considered here.

There are two basic variants of MetaCost: the first
variant is that the probability estimates are based on
training samples not including the sample, while the
other variant is that all-inclusive estimates are made.
The results reported here are the better of the two
variants for each dataset.

Randomized ten-fold cross-validation was done 100
times for each method and each dataset. In the cross-
validation, 1/10 of the data was set aside as test data.
For MetaCost, 100 resamples were generated using the
remaining nine folds. For the proposed methods and
the LF method the remaining nine folds were subject
to a nine-fold cross-validation so that 8/10 of the data
(eight folds) were used to estimate the probabilities
for each of the nine folds. Then the partition matrix
a and LF parameters were estimated using the nine
folds’ probability estimates. Finally, the learned cost-
sensitive classifier was applied to the withheld 1/10 of
the test data.

Experiments were done with two different probability
estimation methods. For datasets with discrete fea-
tures, multinomial naive Bayes was used with Lapla-
cian correction for estimating probabilities. Any con-
tinuous features used with naive Bayes were quan-
tized to 21 values. For datasets with continuous
features, regularized quadratic discriminant analysis
(QDA) (Friedman, 1989) was used. Each class’s esti-
mated covariance matrix was regularized as,

trace (ﬁ)ML)
I

i:(l—’y—/\)iij‘F)\i—F)\ ,
where 3,7, is the maximum likelihood estimate of the
full covariance matrix, 3 is the pooled maximum like-
lihood estimate, d is the dimensionality of the feature
vector, and v and \ were increased from zero until the
condition number of 3 was less than 106.
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Experiments were run with two different cost scenar-
ios. In practical situations it is often the rare events
that are of greatest interest, and therefore the cost of
misclassifying samples from rare classes is higher. To
simulate this situation, we set ¢;; = 0 and,

N;
Cits = ——
i|j Ni+Nj7

where N; is the number of training samples labeled
class i. For the second set of experiments, we set ¢;; =
0, and each element c;;, for j # k was drawn randomly
and uniformly from [1, 10].

6.1. Discussion of Results

Results are presented in Tables 1 and 2 in terms of the
mean increase in performance over the baseline of us-
ing the partitioning induced by the cost matrix. The
datasets in the results tables are ordered by increas-
ing geometric-mean class size for the training set. The
results show that MetaCost did not consistently im-
prove over the baseline. The LF method performed
better and usually improved performance, but caused
large increases in error in two cases: image segmenta-
tion with QDA and dermatology with naive Bayes. In
contrast, learning a new parallel partitioning showed a
mean improvement of 10.8% for the rarity-based cost
matrix and a mean improvement of 8.9% with the ran-
dom cost matrix.

The LF method and proposed partition-learning
method are designed to correct for systematic errors in
the probability estimates. Such systematic errors can
be interpreted as a bias that can cause the classifier
to be wrong in the same way on average over many
training sets. Thus, we expected to see a greater in-
crease in performance for the LF method and proposed
partition-learning method for larger datasets (further
down in the tables) because performance given a large
training sets is more likely to suffer from problems of
bias than estimation variance. With smaller datasets,
estimation variance is generally a larger concern, and
the bias reduction offered by the LF and proposed
method may not be very helpful. In addition, for small
datasets it is harder to learn the systematic error from
only a few training samples, and there is an increased
risk of overfitting the learned parameters.

The datasets iris and dermatology had very low mis-
classification loss for the original probability estimates.
For these datasets there was not much improvement
possible, and we hypothesize that the methods that
learned parameters were likely to overfit to small im-
provements in the training data.

We used a greedy optimization approach to learn the

Mean % Improved

Alg. | Dataset MC LF Par
NB Bridges 2 (type) -1 | -10 5
NB Bridges 2 (material) 16 0 -8
NB Audiology -34 4 -3
NB Horse (site) -7 17 18
NB Bridges 2 (rel-1) -6 -3 -5
NB Image segmentation -53 5 0
QDA | Image segmentation -5 | -122 9
NB Horse (code) 1 13 16
NB Glass -4 18 16
QDA | Glass -3 27 33
NB Flag (religion) 2 7 6
NB Horse (type) 1 25 27
QDA | Iris -1 -18 -4
NB Ecoli -13 -5 -7
QDA | Ecoli -6 -9 -1
NB Dermatology -12 | -100 -18
QDA | Wine 1 64 56
NB Horse (subtype) 2 22 21
NB Flare2 (common) 2 18 17
NB Car -16 10 18
NB Nursery -16 -8 31
Mean -7.2 | 2.1 10.8
Std. Dev. 14.4 | 404 17.3

Table 1. Performance for the rarity-based cost matrix with
¢;ji = 0 and ¢;; = N;/(Ni+ Nj). Largest average improve-
ment for each dataset is in bold.

new partition matrix for our method, but in some cases
this leads only to a locally optimal solution. The LF
method also uses a greedy search. However, Deng et
al.’s results (Deng et al., 2006) show that improving
the optimization of the LF objective can lead to an
improvement in results. Similarly, we hypothesize that
finding a globally optimal solution would also lead to
an improvement in costs.

7. Discussion

We analyzed how changes in the cost matrix affect
the partitioning of the p-simplex due to the cost ma-
trix. Based on this analysis, we explored correcting for
systematic probability estimation errors by learning a
partitioning of the p-simplex that minimizes empirical
misclassification costs on the training set. To reduce
overfitting, we only considered partitionings parallel to
the original partitioning induced by the cost matrix.
Experiments with two standard classifiers showed that
this post-processing worked best when the number of
training samples per class is relatively large, and when
the estimation error with the original cost matrix is
large.
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Mean % Improved

Alg. | Dataset MC LF Par
NB Bridges 2 (type) -5 | -12 -3
NB Bridges 2 (material) 12 | -10 2
NB Audiology -63 -46 -9
NB Horse(site) 2 1 -1
NB Bridges 2 (rel-1) -2 -5 -5
NB Image segmentation -36 8 -3
QDA | Image segmentation -11 | -123 35
NB Horse (code) -2 5 1
NB Glass 5 -4 1
QDA | Glass -4 7 1
NB Flag (religion) -2 13 13
NB Horse(type) -2 5 1
QDA | Iris -1 -7 -3
NB Ecoli -11 | -17 -10
QDA | Ecoli -3 -2 3
NB Dermatology -42 | -132 15
QDA | Wine -5 68 73
NB Horse(subtype) -19 18 18
NB Flare2 (common) -5 35 22
NB Car -22 25 32
NB Nursery -55 10 3
Mean -12.9 | -7.8 8.9
Std. Dev. 19.9 | 454 19.2

Table 2. Performance for random cost matrix. Largest av-
erage improvement for each dataset is in bold.
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