
Preconditioned Temporal Difference Learning

Hengshuai Yao hengshuai@gmail.com

Zhi-Qiang Liu zq.liu@cityu.edu.hk

School of Creative Media, City University of Hong Kong, Hong Kong, China

Abstract

This paper extends many of the recent pop-
ular policy evaluation algorithms to a gener-
alized framework that includes least-squares
temporal difference (LSTD) learning, least-
squares policy evaluation (LSPE) and a vari-
ant of incremental LSTD (iLSTD). The basis
of this extension is a preconditioning tech-
nique that solves a stochastic model equa-
tion. This paper also studies three signifi-
cant issues of the new framework: it presents
a new rule of step-size that can be computed
online, provides an iterative way to apply pre-
conditioning, and reduces the complexity of
related algorithms to near that of temporal
difference (TD) learning.

1. Introduction

In Reinforcement Learning (RL), a primary concern is
how to reuse experience in an intelligent and fast way.
To achieve this we must consider two major issues,
namely, the data efficiency and the computational effi-
ciency. Recently these two issues were widely studied
by the research on temporal difference (TD) leaning.
TD is a classical algorithm well suited for policy eval-
uation (Sutton, 1988), and achieves great success for
its wide applications in control and AI games (Sutton
& Barto, 1998). One of its significant advantages is its
superior computational efficiency. If the feature vec-
tor has K components, TD requires O(K) complexity.
However, previous research shows that TD uses expe-
rience inefficiently (Lin & Mitchell, 1992)(Geramifard
et al., 2006a). The reason is that TD throws the tran-
sition information away after using it for one update of
weights. One way to reuse this information is to accu-
mulate it into a data set once it has been experienced.
Then TD methods are repeatedly applied to the data

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

set. This pattern is known as experience replay (Lin
& Mitchell, 1992), and has a high efficiency in using
experience because each transition is exploited to the
maximum extent. However, this method may be inef-
ficient to perform online because the data set is possi-
ble to grow extremely large if the exploration process
runs for a long time1. Another way is to extract some
data structure from the sequence of experience and up-
date the weights with the help of this structure. This
way is more desirable because the data structure re-
quires much smaller size of memory than the data set,
and leads to recent popular algorithms such as least-
squares temporal difference (LSTD) (Boyan, 1999) and
least-squares policy evaluation (LSPE) (Nedić & Bert-
sekas, 2003). Compared to TD, the two algorithms are
more data efficient, but similar to the experience re-
play, are still computationally expensive.

LSTD inverts some accumulated matrix per time step,
and generally requires O(K3). Recursive LSTD (RL-
STD) computes the inversion of LSTD’s matrix iter-
atively using Sherman-Morison formula and reduces
the complexity to O(K2) (Bradtke & Barto, 1996)(Xu
et al., 2002). LSPE is similar to LSTD and will
be examined later. Recently incremental LSTD (iL-
STD) was proposed to strike a balance between LSTD
and TD (Geramifard et al., 2006a)(Geramifard et al.,
2006b): its data efficiency is almost as good as LSTD,
but its computational cost is very near to that of
TD. However, iLSTD still requires tuning the step-size
manually as TD. In contrast, LSTD has no parameter
to tune.

The aim of this paper is to explore the relations among
recent popular policy evaluation algorithms. A frame-
work of policy evaluation algorithms called the precon-
ditioned temporal difference (PTD) learning is intro-
duced, which includes LSTD, LSPE and a variant of
iLSTD, etc. Furthermore, we maintain LSTD’s prop-

1Lin avoided this problem by using only a window of
most recent experience (Lin & Mitchell, 1992). This, how-
ever, results in loss of information and it is in general dif-
ficult to prespecify the window size.

Preconditioned Temporal Difference Learning

erty of ease of tuning. This paper proposes an adap-
tive step-size that can be computed online by all PTD
algorithms.

To reduce computational complexity O(K2) of the
PTD algorithms due to the inversion of the precon-
ditioner matrix, we develop an efficient incremental
process to apply preconditioning, which leads to a set
of incremental PTD algorithms. Incremental PTD al-
gorithms take advantage of the sparse nature of RL
tasks, storing and manipulating only the valid expe-
rience by a condensed structure every time step. We
also present an efficient adaptive step-size for incre-
mental PTD algorithms. Results on Boyan chain ex-
ample show that PTD algorithms using the adaptive
step-size gives much faster convergence than using pre-
vious rule of step-size; incremental PTD algorithms via
condensed implementation have a high efficiency in us-
ing data while a low complexity similar to iLSTD.

1.1. Stationary Model Equation

Given a state space S = {1, 2, . . . , N}, the problem of
policy evaluation is to predict the long-term optimal
reward of a policy for each state s:

J(s) =

∞
∑

t=0

γtr(st, st+1), s0 = s, 0 < γ ≤ 1,

where γ is the discount factor, and r(st, st+1) is the
reward received by the agent at time t. Given K(K ≤
N) feature functions ϕk (·) : S 7→ R, k = 1, . . . ,K, the
feature of state st is φt = [ϕ1(st), ϕ2(st), . . . , ϕK(st)]

′.
The optimal reward vector J can now be approximated
by Ĵ = Φw, where w is the weight vector, and Φ is
the feature matrix whose entries are Φ(j, k) = ϕk(j),
k = 1, . . . ,K; j = 1, . . . , N .

For an ergodic Markov chain that has steady-
state probabilities π(1), π(2), . . . , π(N), (Tsitsiklis &
Van Roy, 1997) proved that TD(λ) eventually finds a
weight vector w∗ that satisfies a linear system

Aw∗ = −b, (1)

where A and b are defined by

A = Φ′D(γP−I)
∞
∑

k=0

(λγP)kΦ, b = Φ′D
∞
∑

k=0

(λγP)kr̄,

D is the diagonal matrix with diagonal entries π(i),
i = 1, . . . , N ; λ ∈ [0, 1] is the eligibility trace fac-
tor; P is the transition probability matrix; I is the
identity matrix; and r̄ is the vector with components
r̄i =

∑N

j=1 Pi,jr(i, j), i = 1, . . . , N . For each λ ∈ [0, 1],
w∗ is also the limit point of LSTD(λ), LSPE(λ) and

iLSTD(λ). Equation (1) is only useful for analysis but
not applicable in practice and will be called the sta-
tionary model equation.

1.2. Law of Large Numbers

A common structure grown by LSTD(λ), LSPE(λ)
and iLSTD(λ) is updated incrementally. If the cur-
rent transition from st to st+1 incurs a reward rt, then
a matrix and a vector are updated by

Ãt+1 = Ãt + zt(γφt+1 − φt)
′; b̃t+1 = b̃t + ztrt,

where zt is the eligibility trace, computed recursively
by zt+1 = λγzt + φt+1. Because the components of
Ãt+1 and b̃t+1 can get to infinity it is better to use
some well-defined term. For infinite-horizon problems,
(Tadić, 2001)(Nedić & Bertsekas, 2003) used the fol-
lowing structure

At+1 =
1

t + 1
Ãt+1; bt+1 =

1

t + 1
b̃t+1, (2)

which satisfies the law of large numbers. However, (2)
are no longer consistent estimations of A and b for ab-
sorbing Markov chains such as Boyan chain example.
In Section 2.1, such an extension is proposed.

1.3. Related Algorithms

At time t, the rule of LSTD(λ) for updating weights
can be specified as wt+1 = −Ã−1

t+1b̃t+1. In practice, Ãt

can be singular and a perturbation which sets Ã0 to
δ−0 I (δ−0 < 0) should be used.

LSPE(λ) was proposed for infinite-horizon problem
(Nedić & Bertsekas, 2003). If the current step-size
is αt, LSPE updates w by

wt+1 = wt + αt(Dt+1)
−1

(At+1wt + bt+1) , (3)

where

Dt+1 =
1

t + 1

(

δ+
0 I +

t
∑

k=0

φkφ′

k

)

, δ+
0 > 0.

In the long run, Dt+1 converges to Φ′DΦ.

1.4. Preconditioning

Generally, solutions to a linear system like (1) can be
categorized into two classes. The first is the direct
methods (Saad, 2003), which factorize A into easily in-
vertible matrices, including Gaussian elimination and
LU/QR factorization, etc. However, the complexity
involved in factorizing A is not practical for large scale
systems. The second class, known as the iterative so-
lutions, scales well with the problem size and is very
efficient for large and sparse linear systems.

Preconditioned Temporal Difference Learning

According to the literature of iterative solutions, pre-
conditioning is especially effective for symmetric sys-
tem (Saad, 2003), but usually for RL tasks, matrix A
is not symmetric. Therefore, the original stationary
model equation is first transformed into the following
symmetric form

A′Aw∗ = −A′b, (4)

which can be solved by Richardson’s iteration (Saad,
2003)

wτ+1 = wτ − αA′ (Awτ + b) , (5)

where α is some positive scalar that should satisfy

ρ(I − αA′A) < 1.

The technique of preconditioning refers to a general
technique which preconditions a system before solv-
ing it. For example, preconditioning (4) gives us the
preconditioned symmetric model equation

C−1A′Aw∗ = −C−1A′b,

where C is an invertible matrix, usually called the pre-
conditioner. Then the model equation is solved by the
iteration

wτ+1 = wτ − C−1A′ (Awτ + b) . (6)

Convergence rate of (6) is governed by the spectral
radius of I − C−1A′A: the smaller the radius is,
the faster the solution will be (Saad, 2003). There-
fore a good preconditioner should make the precon-
ditioned radius smaller than the original radius, i.e.,
ρ(I − C−1A′A) < ρ(I − αA′A).

2. The Generalized Framework

We first give consistent estimations of A and b for ab-
sorbing Markov chains, and then we show how to apply
them together with preconditioning to policy evalua-
tion.

2.1. Robbins-Monro for Absorbing Chains

A trajectory of an absorbing Markov chain is a finite
sequence s0, . . . , sq, where sq is the absorbing state.
Given trajectories 1, . . . ,M , where the mth trajectory
has length Lm, the consistent estimations of A and b
are

AM =
1

T

M
∑

m=1

Lm
∑

t=0

zt(γφt+1 − φt)
′, (7)

and

bM =
1

T

M
∑

m=1

Lm
∑

t=0

ztrt, (8)

where T is the number of all observed state visits in
M trajectories, and zt is the eligibility trace. Simi-
larly, for absorbing Markov chain, LSPE should use
the following structure to estimate Φ′DΦ:

DM =
1

T

M
∑

m=1

Lm
∑

t=0

φtφ
′

t. (9)

On a transition from st to st+1, estimations (7),
(8) and (9) can be updated incrementally, which is
achieved by a Robbins-Monro (RM) procedure:

At+1 = At +
1

T
(zt(γφt+1 − φt)

′ − At), (10)

bt+1 = bt +
1

T
(ztrt − bt), (11)

and

Dt+1 = Dt +
1

T
(φtφ

′

t − Dt), (12)

where T is updated by T = T + 1 after the three
estimations. The convergence of RM procedure can be
proved in similar manner to the case of infinite-horizon
problems (Tadić, 2001)(Nedić & Bertsekas, 2003).

2.2. The Framework

Given At+1 and bt+1 estimated by RM, we can define
a stochastic model equation

At+1w = −bt+1.

Because RM estimations have some error, the stochas-
tic model equation is not satisfied, and there exists a
nonzero residual vector

et+1(w) = At+1w + bt+1. (13)

A natural idea is that the current weights can be im-
proved by minimizing the residual error ||et+1(w)||2,
which produces a gradient descent algorithm

wt+1 = wt − αtA
′

t+1(At+1wt + bt+1),

where αt is a positive step-size. Gradient descent al-
gorithm is a stochastic form of the iteration (5).

The general preconditioned temporal difference (PTD)
learning applies the technique of preconditioning to
improve the convergence rate of gradient descent. As-
sume Ct+1 is a chosen preconditioner, the rule of PTD
can be cast as

wt+1 = wt − αtC
−1
t+1A

′

t+1(At+1wt + bt+1), (14)

where αt is some scalar but not necessarily positive.
With the rule proposed in Section 3, the step-size guar-
antees the convergence of PTD algorithms and makes

Preconditioned Temporal Difference Learning

them more flexible in stochastic environments than
(6).

The choice of preconditioner is a key issue. Generally,
preconditioner should decrease the spectral radius of
gradient descent:

ρ(I − αtC
−1
t+1A

′

t+1At+1) < ρ(I − αtA
′

t+1At+1).

Gradient descent makes no preconditioning because it
chooses the identity matrix as preconditioner. Good
examples of preconditioner can be found in recent pop-
ular policy evaluation algorithms.

2.3. Relations to Previous Algorithms

LSTD, LSPE and iLSTD are all special forms of ap-
plying preconditioner to gradient descent algorithm:

Ct+1 = −A′

t+1Dt+1, where Dt+1 is defined in (12).
One can easily verify that this is a variant of LSPE(λ).

Ct+1 = A′

t+1At+1. This is an extended form of

LSTD: wt+1 = (1 − αt)wt + αt(−A−1
t+1bt+1). Using

1 as the step-size, we get exactly LSTD(λ). Later we
will see that LSTD is optimal in choosing its step-size
because certain residual error is minimized.

Ct+1 = −A′

t+1. This approach is a variant of
iLSTD(λ) (Yao & Liu, 2008).

3. The Rule of Step-size

This section presents an adaptive process to compute
the step-size online for gradient descent algorithm,
LSTD, iLSTD and LSPE. The four algorithms all use
a preconditioner in the form of A′

t+1Bt+1, which is as-
sumed to be used by general PTD algorithms.

The update direction of PTD is provided by a precon-
ditioned residual (p-residual) vector

δt = B−1
t+1et+1(wt), (15)

where et+1 is the residual vector defined in (13). This
p-residual is an “old” one, because it is obtained before
the weight update. After the weight update, the p-
residual vector changes to

θt+1 = B−1
t+1et+1(wt+1).

From (14) and (15), θt+1 can be rewritten as

θt+1 = B−1
t+1(At+1(wt − αtδt) + bt+1)

= δt − αtB
−1
t+1At+1δt.

Because θt+1 stands for an improved difference be-
tween the two sides of the preconditioned stochastic

model equation, naturally we hope that the new p-
residual error is smaller than the old one: ||θt+1||

2 <
||δt||

2. This can be guaranteed by requiring that θt+1

be orthogonal to θt+1 − δt. Accordingly, we obtain a
new rule of step-size

αt =
δ′tB

−1
t+1At+1δt

(B−1
t+1At+1δt)′(B

−1
t+1At+1δt)

. (16)

This step-size is the optimal value that minimizes
the new p-residual error over α ∈ R, i.e., αt =
arg min ||θt+1||

2. Obviously the step-size is positive
when B−1

t+1At+1 is positive definite, which is true for
gradient descent algorithm, iLSTD, and LSTD.

It is interesting that in (16), if Bt+1 = At+1, then the
step-size is equal to 1. This indicates that LSTD’s
choice of step-size is optimal in the sense that the
p-residual error ||(1 − αt)(wt + A−1

t+1bt+1)||
2 is mini-

mized. When Bt+1 = −I, the residual error ||(I +
αtAt+1)et+1(wt)||

2 is minimized; for ease of later com-
parisons with previous step-size of iLSTD, this variant
will be called the Minimal Residual (MR) algorithm.

To compute p-residual vector and step-size, PTD al-
gorithms have to carry out matrix inversion, which re-
quires O(K3). Sherman-Morison formula is a solution
to reduce this complexity to O(K2). Another efficient
solution is to apply preconditioning incrementally and
take advantage of the sparse nature of RL tasks.

4. Incremental PTD

The key of incremental preconditioning is to approx-
imate the p-residual and the adaptive step-size in an
iterative way.

4.1. Iterative P-residual and Approximated

Step-size

Let κt be the error caused by the residual and the
current iterative p-residual, defined by

κt = et+1(wt) − Bt+1δ̂t. (17)

The new estimation of δt can be improved by

δ̂t+1 = δ̂t − βtκt, (18)

where βt is computed by

βt = −
κ′

t(Bt+1κt)

(Bt+1κt)′(Bt+1κt)
. (19)

Substituting the p-residual δt in (14) with the iterative

p-residual δ̂t, we get the general form of incremental
PTD algorithms

wt+1 = wt − α̂tδ̂t, (20)

Preconditioned Temporal Difference Learning

Algorithm 1 Efficient matrix-vector multiplication
using CSR.

Input: Zt+1
Q (a, c, d) and a vector βt

Output: A vector ot = Qt+1βt

for k = 1 to K do

k1 = dt+1(k)
k2 = dt+1(k + 1) − 1
ot(k) = at+1(k1 : k2)

′βt(ct+1(k1 : k2))
end for

where α̂t is computed by the following steps.

Given the iterative p-residual δ̂t, steps (21a)–(21d)
compute a vector v, which is an approximation of
B−1

t+1At+1δt; then the approximated step-size is com-
puted by (21e):

ξt = At+1δ̂t, (21a)

χt = ξt − Bt+1vt, (21b)

ηt = −
χ′

t(Bt+1χt)

(Bt+1χt)′(Bt+1χt)
, (21c)

vt+1 = vt − ηtχt, (21d)

α̂t =
δ̂′tvt+1

v′

t+1vt+1
. (21e)

If Bt+1 = −I, iterative p-residual reproduces p-
residual exactly and we get MR(λ); If Bt+1 = −Dt+1,
we get an incremental form of LSPE(λ) (iLSPE(λ))
that applies preconditioning via iterative p-residual.

4.2. Incremental PTD Using CSR

If the function approximation used is sparse, then
matrix Φ is sparse. While this seems a restrictive
condition, several popular linear function approxima-
tion schemes such as lookup table, Boyan’s linear in-
terpolation approximation and tile coding (Sutton &
Barto, 1998), are indeed sparse. If the transition ma-
trix is also sparse, matrices At+1 and Bt+1 will both
have many zero entries, implying that “no experience
is available for the states related to these entries”.
Therefore, it is better to remove the void experience
and store only the valid experience by a condensed
structure. Here the Compressed Sparse Row (CSR)
format (Saad, 2003) is used. Let Qt stand for At or
Bt. The CSR format is a triplet Zt

Q(at, ct, dt), where
at is a real array containing all the real values of the
nonzero elements of Qt; ct is an integer array contain-
ing the column indices of the elements stored in at;
and dt is an integer array containing the pointers to
the beginning of each row in at and ct.

When Qt+1 is sparse, the need for fast matrix-vector
multiplication offers a place where CSR fits in. The

Figure 1. Boyan chain example with N + 1 states. The
transition probabilities are marked on the arch.

details are shown by Algorithm 1, whose complexity
is O(lt+1), where lt+1 is the number of nonzero entries
in Qt+1. Now (17), (19), (21a), (21b) and (21c) can
make a call to Algorithm 1, and the complexity of
incremental PTD is given by the following theorem
which is proved in (Yao & Liu, 2008).

Theorem 4.2.1 (Complexity of incremental PTD).
The per-time-step complexity of incremental PTD us-
ing CSR is O(qK), where q is a small positive real
related to the sparsity of matrix A.

5. Boyan Chain Example

Boyan chain and the features are shown in Figure 1.
Transition from N to N + 1 incurs a reward −2; tran-
sition from N + 1 incurs 0; the other transitions incur
−3. The discount factor γ is set to 1.

The first experiment is another implementation of ex-
perience replay. As RM procedure is able to extract
compressed experience information by estimations of
A and b, it is natural to ask whether experience can
be well replayed by repeatedly presenting RM’s esti-
mations to PTD algorithms. Two questions arise for
this approach. Will it lead to convergence? What is
the role of λ for PTD(λ)?

RM(λ) were first run and averaged over 10 sets
of 10000 trajectories, and then their estimated
structures were repeatedly presented to Gradi-
ent descent(GRAD(λ)), iLSTD(λ), LSPE(λ) and
LSTD(λ). All compared algorithms used the adaptive
step-size derived in Section 3, and converged to satis-
factory solutions for a variety of problem sizes with all
λ ∈ [0, 1]. The case of N = 12 is shown in Figure 2. It
is very interesting that for all PTD algorithms smaller
λ gives better performance; λ = 0 performs best and
λ = 1 performs worst, —exactly the same role with
that for TD(λ) under repeated presentation training
paradigm (Sutton, 1988). Explanation can be given if
we view TD as a model exploration process: although
TD does not use the model A and b explicitly, its learn-

Preconditioned Temporal Difference Learning

0 0.2 0.4 0.6 0.8 1
2

2.2

2.4

2.6

2.8

3

3.2
x 10

−3

λ

R
M

S
 E

rr
or

s

Figure 2. Effects of λ: the (same) RMS errors by
GRAD(λ), MR(λ), LSPE(λ) and LSTD(λ).

ing requires exploring and sampling temporal values of
the model. It appears that both TD and PTD algo-
rithms rely on the model data reflected by the sets of
trajectories.

To explore λ’s effect for algorithms, we only have to
study its role for the model data, which is extracted by
RM procedure. Results are shown in Figure 3, where
the model errors are measured by ||AT −A||2 and ||bT −
b||2, averaged over 10 sets of 10000 trajectories. It
can be observed that smaller λ has smaller modeling
errors for A and b, —the role of λ for RM(λ) is just
what should be consistent with that for TD(λ) and
PTD(λ).

Although all PTD algorithms converge to the same
solution, their rates of convergence are quite different.
The case of λ = 1 is shown in Figure 4. MR, LSPE
and LSTD are faster than Gradient descent because
they make use of preconditioning and their spectral
radii are smaller than that of Gradient descent. Figure
5 compares the spectral radii ρ(I − αtC

−1
t A′

tAt) of
different algorithms.

Algorithms were also compared under the same learn-
ing paradigm as Boyan (Boyan, 1999), where weights
were updated immediately after RM estimations at
each time step. All compared algorithms used the
adaptive rule except that iLSPE used the approximate
step-size developed in Section 4.1. For both adaptive
step-size and approximated step-size, a satisfactory
convergence was obtained. Results are shown in Fig-
ure 6 and Figure 7, where each point was the averaged

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

λ

M
od

el
 E

rr
or

s

b’ error

A’ error

Figure 3. Model errors by RM(λ) procedures.

RMS error over 10 sets of data. It is clear that some
intermediate value of λ performs best in both learning
error and convergence rate for all algorithms. Gener-
ally, four preconditioned algorithms learns faster than
Gradient descent algorithm. However, the convergence
rate advantages of MR(λ), iLSPE(λ), LSPE(λ) and
LSTD(λ) over Gradient descent are becoming smaller
as λ increases. The reason may be that larger λ causes
larger model error and deteriorates the effects of pre-
conditioning.

Experiment was also run to compare the adaptive step-
size with the rule used by (Geramifard et al., 2006a),

which takes αt = c0(c1+1)

traj#+c1

, where c0 was chosen from

{0.01, 0.1, 1}, and c1 was chosen from {100, 1000, 106}.
The best performance of all the nine combinations of
the two constants was experimentally chosen for iL-
STD. Figure 8 shows that RMS error of MR (adap-
tive step-size) is faster to decrease than that of iL-
STD. From Figure 8, we can also observe that PTD’s
predictions (such as those given by LSTD and LSPE)
have larger variations than incremental PTD’s (such
as those given by MR and iLSPE). The reason is that
PTD algorithms are based on the inversion of precon-
ditioner, which is not well conditioned at the beginning
stage of learning; while incremental PTD algorithms
avoid numerical instability via iterative p-residual.

Table 1 compares the complexity of PTD and incre-
mental PTD algorithms, where CSR are used for MR
(one CSR for At) and iLSPE (one CSR for At and
one CSR for Dt). We can see that incremental PTD
algorithms have a clear computational advantage over

Preconditioned Temporal Difference Learning

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Replay Times

R
M

S
 E

rr
or

s

GRAD
MR
LSPE
LSTD

Figure 4. The role of preconditioner (λ = 1). Algorithms
are stopped if RMS error is smaller than 0.01.

Table 1. Comparison of per-time-step running time (ms) of
PTD and incremental PTD algorithms on K = 401 (λ =
0). The machine used is Pentium(R) 4 PC (CPU 3.00GHZ;
RAM 1.00GB).

LSTD LSPE iLSTD MR iLSPE
72.3 120.3 5.9 10.6 21.9

Table 2. Comparison of memory requirements for A using
CSR and full matrix for a variety of problem sizes (λ = 0).

N 12 100 400 800 1200 1600
l

K2 0.75 0.1479 0.04 0.0198 0.0132 0.01

PTD algorithms. Reason lies in that CSR enables in-
cremental PTD to manipulate much smaller size of
data than PTD. Table 2 shows the relative memory
requirements of CSR and full matrix for a variety of
problem sizes by the ratio l/K2, where l is the nonzero
entries of A. We can observe that the larger the size
of state space is, the more advantages will be gained
by using CSR.

6. Conclusion

In this paper we proposed two general frameworks,
PTD and incremental PTD, which are more data
efficient than TD. Generally PTD approaches such
as LSTD and LSPE are computationally expensive,
whereas incremental PTD algorithms such as MR and
iLSPE can take advantage of sparse nature of RL
tasks, and have complexity near to that of iLSTD and

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Replay Times

S
pe

ct
ra

l R
ad

ii

GRAD
MR
LSPE

Figure 5. Spectral radius comparisons (λ = 1). LSTD’s
spectral radius is 0 permanently, thus not shown.

TD. We also develop an adaptive process for comput-
ing the step-size online for PTD algorithms, and an
approximated process for computing the step-size for
incremental PTD algorithms.

Acknowledgement

We are thankful to Lihong Li, George Konidaris and
Andrew Barto for helpful discussions with a draft of
this paper. We appreciate for the suggestions by the
four reviewers that help improve this paper in many
aspects. This research has been partially supported
by RGC CERG grant No. CityU 1178/06 (9041147)
from Hong Kong UGC.

References

Boyan, J. A. (1999). Least-squares temporal difference
learning. Proceedings of the Sixteenth International
Conference on Machine Learning (pp. 49–56). Mor-
gan Kaufmann.

Bradtke, S., & Barto, A. G. (1996). Linear least-
squares algorithms for temporal difference learning.
Machine Learning, 22, 33–57.

Geramifard, A., Bowling, M., & Sutton, R. S. (2006a).
Incremental least-squares temporal difference learn-
ing. Twenty-First National Conference on Artificial
Intelligence (AAAI-06) (pp. 356–361). AAAI Press.

Geramifard, A., Bowling, M., Zinkevich, M., & Sut-
ton, R. S. (2006b). iLSTD: Eligibility traces and

Preconditioned Temporal Difference Learning

0 0.2 0.4 0.6 0.8 1

0.0174

0.0175

0.0177

0.0179

0.018

0.0181

λ

R
M

S
 E

rr
or

s

GRAD(λ)
MR(λ)
iLSPE(λ)
LSPE(λ)
LSTD(λ)

Figure 6. The RMS errors at 90000th visit by GRAD(λ),
MR(λ), iLSPE(λ), LSPE(λ) and LSTD(λ).

0 0.2 0.4 0.6 0.8 1
0.142

0.143

0.144

0.145

0.146

0.147

0.148

λ

R
M

S
 E

rr
or

s

GRAD(λ)
MR(λ)
iLSPE(λ)
LSPE(λ)
LSTD(λ)

Figure 7. Comparison of convergence rate in terms of RMS
errors at 900th state visit.

convergence analysis. Advances in Neural Informa-
tion Processing Systems 19 (pp. 441–448).

Lin, L.-J., & Mitchell, T. M. (1992). Mem-
ory approaches to reinforcement learning in non-
markovian domains (Technical Report CMU-CS-92-
138). Carnegie Mellon University, Pittsburgh, PA
15213.

Nedić, A., & Bertsekas, D. P. (2003). Least-squares
policy evaluation algorithms with linear function ap-

10
0

10
1

10
2

0

10

20

30

40

50

Number of State Transitions

R
M

S
 E

rr
or

s

iLSTD
MR
iLSPE
LSPE
LSTD

Figure 8. Averaged RMS errors (over 10 × 10000 trajecto-
ries) of iLSTD, MR, iLSPE, LSPE and LSTD in Boyan’s
setting (λ = 0). Perturbation factors of LSTD and LSPE
were −0.01 and 0.01 respectively. Weights for all al-
gorithms were initialized to [0.1, 0.1, 0.1, 0.1]′ except for
LSTD.

proximation. Journal of Discrete Event Systems, 13,
79–110.

Saad, Y. (2003). Iterative methods for sparse linear
systems. SIAM.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. MIT Press.

Tadić, V. (2001). On the convergence of temporal-
difference learning with linear function approxima-
tion. Machine Learning, 42, 241–267.

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of
temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control,
42, 674–690.

Xu, X., He, H., & Hu, D. (2002). Efficient reinforce-
ment learning using recursive least-squares methods.
Journal of Artificial Intelligence Research, 16, 259–
292.

Yao, H., & Liu, Z. (2008). Preconditioned temporal
difference learning (Technical Report CityU-SCM-
MCG-0408). City University of Hong Kong.

