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Abstract

It is common in classification methods to first
place data in a vector space and then learn
decision boundaries. We propose reversing
that process: for fixed decision boundaries,
we “learn” the location of the data. This way
we (i) do not need a metric (or even stronger
structure) — pairwise dissimilarities suffice;
and additionally (ii) produce low-dimensional
embeddings that can be analyzed visually.
We achieve this by combining an entropy-
based embedding method with an entropy-
based version of semi-supervised logistic re-
gression. We present results for clustering
and semi-supervised classification.

1. Introduction

Non-linear embedding (aka dimensionality reduction)
can be useful for several purposes: eg, for data visu-
alization, or as a pre-processing step to clustering or
to supervised learning. In the latter case, using un-
labeled data in the embedding essentially makes the
entire procedure semi-supervised.

This paper proposes to integrate the embedding with a
clustering or with a classification into a single method.
To do so, we impose class boundaries in the embedding
space and encourage the data points to keep some dis-
tance from them, i.e. implement a margin. This is
in contrast to conventional classification approaches
which fix the data in some (high-dimensional) space,
often by means of a positive definite kernel function,
and then optimize the (linear) class boundaries. Re-
versing this setup, that is fixing the boundaries and
learning the points, has potential advantages: work-
ing in low-dimensional spaces may be easier, the data
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can be visualized, and the requirements on the input
data are more relaxed (no metric nor kernel required).

To implement our approach, we extend an existing
embedding technique by introducing the boundaries
and a repulsive force on the data points. Popu-
lar techniques for non-linear embedding include for
example Locally Linear Embedding (LLE) (Roweis
& Saul, 2000), Isomap (Tenenbaum et al., 2000)
Self-Organizing Maps (SOM) (Kohonen, 1988), and
Stochastic Neighbor Embedding (SNE) (Hinton &
Roweis, 2003). In the following, we will work with
SNE, since it offers properties that we will take ad-
vantage of: it can use as input pairwise dissimilarities,
and its cost function is expressed in terms of entropy.

Recently, a method called Parametric Embedding
(PE) based on SNE has been proposed, that simulta-
neously embeds objects and their classes (Iwata et al.,
2005). It is worth noting a fundamental difference be-
tween PE and our proposed method. The latter oper-
ates on pairwise relationships between the objects to
be embedded, possibly augmented with “labels” (ie,
class probabilities) for a fraction of them. The output
consists of an embedding together with a prediction
of class membership for each object. In contrast, PE
requires information on the relationship between ob-
jects and classes for all objects as input, and does not
produce predictions. It may therefore be considered
purely a change of representation.

The paper proceeds as follows. In Section 2, we
briefly review SNE as our starting point. We extend
it step by step: we add a class boundary for binary
clustering (Section 3); we take labeled data into ac-
count to achieve semi-supervised learning (Section 4);
and we generalize it to multiple classes (Section 5).
Then, in Section 6, we suggest a heuristic to optimize
the resulting cost function and set parameter values.
Next we perform experiments for clustering and semi-
supervised classification (Section 7). The paper con-
cludes with a discussion.
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2. Stochastic Neighbor Embedding

Consider a set of n objects, and suppose that for each
object i we are given some dissimilarity d;; to every
other object j. By definition, d;; will be oco; we do
not consider any point as its own neighbor. Given the
point %, the asymmetric “probability” p;; that point j
is its neighbor can be, for example, computed as:

p = dh)
N Zk;éi exp(—d?k) .
In fact, the set of neighborhood probabilities {p;; } con-

tains all the information that SNE uses about the orig-
inal objects.

(1)

SNE aims at representing the original objects as points
yi in a low-dimensional Euclidean space (embedding).
To achieve this, probabilistic neighborhoods are de-
fined between those representations:

_ ey —yil®)
T s oxp(=llyi —yil?) (2)

©j

In a good embedding, the induced neighborhood Q; =
(gij)j=1,...n of any object i should resemble the cor-
responding original neighborhood P; = (pij)j=1,...n-
Notice that the @Q;’s are invariant wrt rotation and
translation of the embedding, and that its arbitrary
scaling is imposed by choosing a variance of 1/2 in the
computations of the g;; in (2). Hinton and Roweis
(2003) propose to minimize the sum of Kullback-
Leibler (KL) divergences (aka relative entropies) be-
tween the Q; and the P;:

C=Y KL(PIQ)= Y "p; 1g§_ NG
i i g K

Although SNE puts more effort in preserving relations
of high similarity (due to the weighting of the log ra-
tio by p;j), it also tries to keep embedded points dis-
tant which are dissimilar in the original space. This is
an improvement over non-linear embedding methods
such as LLE (Roweis & Saul, 2000), where dissimilar
objects may end up embedded as close neighbors.

The embedding is computed by minimizing C (3) with
respect to the y;’s. The gradient of C,
oc
dyi

Z(Yi —yi)Pij — @ij +pji —q5i) » (4
J

is very interpretable: y; is pulled towards or pushed

away from y; according to the difference between the

original neighborhood probabilities and those induced

by the embedding. The minimization has to be per-

formed with care because many local minima exist
(Hinton & Roweis, 2003).

3. Enforcing a Boundary and a Margin

We make the assumption that two classes (or cate-
gories) of objects exist which are labeled “+1” and
“—17, and we would like to discover them.

We divide the embedding space in two regions of differ-
ent class membership by means of a boundary defined
by y;1 = 0, where y;; denotes the first component of
y;. This choice is just for convenience; the location of
the boundary is arbitrary due to the translation- and
rotation-invariance of the SNE embedding.

Let M; be the binomial probability distribution of
class membership for object 4, with M;(+1) = m; and
M;(-1) = 1 — m,;. We estimate the probability that
object i belongs to class “+1” by the logistic function

1
T Texp (—2ya)

()
Here, A > 0 is a parameter that can be interpreted as
the length scale of the first component of y; alterna-
tively, it can be seen as an inverse measure of steepness
of the logistic probability distribution.

In order to discover structure we want the embedding
to induce high class membership probabilities, i.e. that
the m; are either close to 0 or to 1. But we need to
avoid the trivial solution with all points embedded far
on the same side of the boundary — we want a certain
balance around the boundary.

3.1. Generalized Jensen-Shannon Divergence

Unlike most measures of difference, the generalized
Jensen-Shannon (JS) divergence (Lin, 1991) is appli-
cable to more than two probability distributions. Con-
sider our set of n class membership distributions M;.
Their generalized JS divergence is defined as'

JS(My,...,M,)=H (% ZMi> —%ZH(M,-) :

B: balancing

A: margin

(6)
where H(-) is Shannon’s entropy. Maximizing this
measure is exactly what we need to satisfy our re-
quirement that the embedded points should organize
themselves around the boundary.

To see this, first consider the rightmost term in (6),

'The actual definition allows for weighing the proba-
bility distributions: JS(Ma,...,M,) = H(ZZTK'ZMZ) -
> miH(M;). We use uniform weights, m; = 1/n, corre-
sponding to the assumption that the data points are iid.
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that is the negative average of entropies:

A:EZ]Wbym+ﬂ—mm%ﬂ—mm.(ﬂ

%

For our binomial distributions, it will be maximum (ie,
zero) when all m; are either equal to 0 or to 1. In com-
bination with the definition of the class probabilities
m;, this engenders a margin around the boundary, by
encouraging points to move away from the boundary.
The margin is “soft”, ie. there may be points inside it,
since a high entropy may be compensated for by a de-
crease in the SNE cost C. Minimizing such entropies
has recently been suggested for semi-supervised learn-
ing (Grandvalet & Bengio, 2005).

Consider now the first term of the JS divergence (6),
which is the entropy of the average M of the M;:

B=-—mlogm— (1 —m)log(l —m) , (8)

where m = % >, m;. It is maximum when the average
probability m is 0.5, that is when the embedded points
are distributed on both sides of the boundary in a bal-
anced manner. In case there exists prior knowledge on
the (unequal) relative class sizes, this may be incorpo-
rated by changing B = H(M) = H(3) — KL (M| 3)
intoB=-KL (1\7[” 7r+1), where 741 is the prior prob-
ability of class “+17.

3.2. Cost Function and Derivative

We augment the SNE cost function (3) by subtract-
ing the generalized JS divergence (6). This additional
term will only affect the first component of the vectors
y;. It is then enough to take derivatives of A and B
with respect to y;1:

0A 1
_— = — i 1-— i )Yil - 9
Points get pushed away from the boundary, the more
so, the closer they are to it. This creates a margin
around the boundary, the size of which depends on A.
Let us now take the derivative of B:
0B 1 1—m

1 (m>mxqu). (10)

m

0yi1 D) o8

Roughly, the log((1 —m)/m) factor pushes point y; to
the side of the boundary that contains less points. For
example, if m < 0.5, then y; will be pushed towards the
class “+1” side. This force is then moderated by the
m;(1 —m;) factor. Points far from the boundary will
be less affected than points near to it. Intuitively this
makes sense, since we are already more certain about
the class of points which are far from the boundary.

3.3. Fisher and the Margin

If we consider P given, the method outlined so far has
only two parameters: the dimension of the space to
embed into, and the scale parameter A\ of the logistic
function (5). In fact, A determines the size of the (soft)
margin around the boundary, through the term A (7)
of the Jensen-Shannon divergence. The larger A is,
the further a point must be pushed away from the
boundary to achieve an m; close enough to 0 or to 1
to satisfy A.

It seems reasonable to select the value of A that max-
imizes the margin. It would seem at first sight that
A should be large, since this maximizes the margin,
in theory. However, A needs to be commensurate to
the scale of the y;’s computed by standard SNE em-
bedding. Indeed, for too large a A the derivative of
the term A does not have enough strength to compete
with that of the SNE cost term C.

We propose to use the Fisher criterion (see e.g. Bishop
(1995)) as a measure of the margin:

) s
T D)) ey - Y

where g1 (+1) is the mean of the first dimension of the
points of class “+1”, and var (y; (+1)) is their variance.
It has the advantage of being a relative criterion, in-
dependent of any scaling of the embedded points. It
also directly matches our goal, which is to discrimi-
nate one class from another along the vector normal
to the boundary. We choose the value of A that gives
an embedding with maximum value of J.

4. The Semi-Supervised Case

So far, we have concentrated on the unsupervised case,
where no information about the class membership of
our objects is available. However, it is not uncommon
that for a fraction of the objects a label is known. This
scenario is commonly referred to as “semi-supervised
learning”, and has gained much interest recently.

We want our method to be able to handle partially
labeled data and to deal with noisy (or uncertain) la-
bels. We suppose that for a subset of our objects we
are given “soft” class membership labels in terms of
probabilities of the object belonging to class “+17. If
object ¢ is labeled, then we are given its “supervised”
class membership binomial probability distribution 73,
with T;(4+1) = t; and T;(—1) = 1 —¢;. The soft label of
point 7 is thus effectively its probability ¢; of belonging
to class “417.

The label distribution 7; will have an effect on the
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embedding of point ¢ through its class membership
distribution M;, defined in (5). We will encourage
M; to match T; as well as possible by minimizing the
Kullback-Leibler divergence these two distributions.

We extend our method to deal with probabilistic labels
by adding the following term to the cost function:

D= 3" KL(Ti| M)
€L
= ZH(TZ) —tilogm; — (1 —t;) log(1 —my) ,
€L
(12)
where £ C {1,...,n} is the set of objects with known
labels. Given that the m; depend on the embedded
points only through their distance to the boundary,
we compute derivatives with respect to y;1:

oD 1

B /\(mz t;) . (13)
Suppose t; is large (ie, close to 1) indicating that point
i very likely belongs to class “417. If m; is smaller
than ¢; (for example if y; is on the “1” side of the
boundary), then the gradient is smaller than zero. A
gradient descent step to minimize D causes the value
of y;1 to increase, pulling it towards the correct side of
the boundary. The opposite (desired) behaviour takes
place if ; is smaller than m;.

As we expected, minimizing the Kullback-Leibler di-
vergence between the T; and the M; has the effect of
pulling labeled points towards the side of the boundary
of the class they are most likely to belong to.

The final cost function for semi-supervised embedding
thus reads

Z:KL(R‘H Qi) — JS(M,...,M,)+> KL(T;|| M;).

A+B: boundary L

C: SNE D: labels

(14)
An additional weighting of the different terms of the
cost function could of course be introduced. We prefer
not to do so for two reasons. First, minimizing the
number of parameters is desirable given the heuristic
nature of our method. Also the effect of weighting of
the A + B term is captured by varying A. Second,
all terms can being expressed as entropies, the un-
weighted summation may help us in our aim of giving
an information theoretic interpretation to the whole
cost function. We call the method of minimizing this
cost Mbed.

5. Extension to Multiple Classes

We have so far concentrated exclusively on the case of
two classes. Extending our framework to handle mul-

tiple classes is straightforward. Suppose we want to
handle K different classes. We need to the class mem-
bership distribution M; of point i to be a multinomial
now. We achieve this by replacing the sigmoid func-
tion (5) by a “softmax”. The probability that point ¢
belongs to class k is now given by:

exp (5 (Wi, yi))
Sorexp (5 (Wi yi))

where there is one projection vector wy for each class.

The directions wj have to be chosen with care, be-
cause they carry implications about the relationships
between the classes. As an example, consider four
classes that are to be embedded into two-dimensional
space with their wj being the four axis-parallel di-
rections. Then each class can be neighbor to only two
other classes, forcing two pairs of classes to have larger
mutual distance. This can be seen as a geometric way
of encoding prior knowledge about the structure of the
classes.

However, when no such prior knowledge exists, it is
usually preferred to operate in the most general set-
ting, i.e. not to impose any structure. In our case this
means that each class direction w; should have unit
length and should have the same angle to every other
class direction w;. To realize this, at least K — 1 di-
mensions are required for K classes.

For semi-supervised applications, the T; have to be
generalized to multinomials as well: now there exists a
variable t;;, for each class k, indicating the probability
with which the object ¢ belongs to this class.

For computing the derivative of the cost function, it
will be useful to note that

omgy, 1
By, = Xmik <W]I — zl:mzlwl—r> . (16)
The derivative of A (7) is minus the mean of the terms

OH (M; 1 T T
ot () () ]

(17)

where v, := myi (Wi, y;). For B (8), we obtain

OH(M 1 _
%i) = Ezk: <§l:milwl—r _Wl—cr> mik logmy

(18)
Further, the derivative of D (12) is computed by

OKL(Ti||M;) 1 T
— by =3 zk: (Mg — tir) Wy, (19)
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Finally, we have to generalize the Fisher criterion (11)
to multiple classes. From Multivariate Analysis of
Variance (MANOVA) we adopt the Hotelling-Lawley
trace, which quantifies the dissimilarity of mean vec-
tors of multiple populations. It is defined as

J=1tr[SpSy] (20)

where Xy is the matrix of covariance within the
classes, and ¥ p is the matrix of covariance between
the classes.

6. Optimization

Since our objective is non-convex, optimization is dif-
ficult. We resort to a search for local minima by con-
jugate gradient (CG) descent.?

As pointed out earlier, the value of A should be cho-
sen relative to the scale of the SNE embedding, which
we estimate by the radius r of the sphere encompass-
ing the y;’s after a crude SNE embedding (10 CG
steps). We approximate r by the geometric mean of
the component-wise standard deviations of the y;’s.

Assuming a Gaussian distribution of the SNE-
embedded points, about 68% of them are within dis-
tance r of the origin, and about 95% within 2r. Figure
1 shows the logistic function (5) for different values of
A as a multiple of the radius. It seems that 10 to %0
is a reasonable range of values for A. We implement a
scheme that “anneals” A\ by decreasing it logarithmi-
cally from 10 to 10~!. In first experiments, 20 steps

seemed to be a reasonable choice.

—_ Iogm( lambda ) = 1.0
0.9 — Iogm( lambda ) = 0.5
_ Iogm( lambda ) = 0.0
. Iogm( lambda ) =-0.5
H__ Iogm( lambda ) = -1.0

class probability m
o
o

-2 -15 -1 -0.5 .0 0.5 15 2
Y, in multiples of radius

Figure 1. During the annealing the shape of the logistic
function changes from that shown in blue to that in red.

For semi-supervised learning, the “confidence” in the
labels is gradually increased. We want to start with

*We use the function “minimize” by Carl Rasmussen,
available at http://www.kyb.tuebingen.mpg.de/ carl.

rather low confidence in the labels, since absolute cer-
tainty (t;x € {0,1}) corresponds to locations at in-
finity (for part D of the cost function). We choose
to let the confidence correspond to a point placed
at distance 2r along a direction wy from the origin.
Formally, based on (15), with y, = rwy and using
(Wi, wy) =—1/(K —1) for k # 1, we get

P €xXp (% <Wk7Y*>)
*k

C e (3 (wi )
1) (21)
A

1) Hen (3r)

as desired confidence. For an object ¢ with a given class
label k, we thus set t;5 to ts, and t;; to (1—t.)/(K—1)
for | # k.

Finally, the dimension d of the embedding space is set
to K. The rationale is that we need at least K — 1 di-
mensions to encode “uniform” class priors, where each
class is equally similar to the rest. Adding one ex-
tra dimension appears to be useful as it gives an ad-
ditional degree of freedom for fitting P. However, in-
creasing the dimensionality too much tends to decrease
the classification accuracy (apart from increasing com-
putational expense).

The resulting algorithm is shown as Algorithm 1. A
matlab implementation is available at http://www.
kyb.tuebingen.mpg.de/bs/people/zien/Mbed/. In
line 7 the value of A\ appears to be set to twice the
values suggested before. This is because the above
discussion referred to the binary case with the logistic
function defined by (5), while the algorithm uses the
multi-class version (15). When K = 2, they relate via
mi1(A) = mi(\/2).

7. Experiments

We perform unsupervised and semi-supervised experi-
ments, corresponding to the two kinds of applications
of our method. Our example data sets consist of vecto-
rial data and we compute pairwise Euclidean distances
d;; using (1) to obtain neighborhood probabilities. For
a K-class problem, we set the length scale o to the 1/K
quantile of the distribution of all pairwise distances.

7.1. Unsupervised

As an illustrative example, we use Mbed to embed
the digits 2, 4 and 8 from the test set of the USPS
handwritten digits into a 3-dimensional space using 10
CG steps per annealing step. Figure 2 shows the first
two components of the result (right), next to an SNE
embedding into 2-dimensional space (left) as reference.
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Algorithm 1 The Mbed algorithm.

Require
Require
Require

Require:

: P € R™™™ {pairwise neighborhood matrix of objects}

: K {number of classes}

: Lyt L —{1,...,K} {(optional) labels for semi-supervised learning}

S0, § {number of CG optimization steps in initial and subsequent annealing steps}

1: d — K {embed into as many dimensions as there are classes}
{STEP 1: determine SNE radius}
2: Yy « N(0,0.1I) € R"* {initialize the embedding with random locations from a normal distribution}

3: Ysng — minimizey (so, SNE(Y),Ys) {perform sg steps of CG with the SNE objective function (3)}
4: v« radius(Ysng) {compute the approximate radius of the embedded points}
{STEPS 2-20: anneal \}
5. Y; < N(0,107371) € R™*4 {initialize the embedding with small scale random values}
6: for j =2 to 20 do
70 X 2%7r%10/1000-2/®=2) {let \ decrease from 2r * 10 to 2r/10; cf Figure 1}
8 T—exp(3r)/ [(K —1)exp (—%rﬁ) + exp (%r)] {cf (21)}
9:  t) —tiyt+ (1 —ty)(1—7)forallie L
10: Y; « minimizey (s, Mbed(Y),Y;_1,\,t?) {perform s CG steps with augmented objective function (14)}
11: end for
12: return Y; that maximizes criterion J {cf (20)}
SNE step 20
0.6f | | | | | EB 0.6f
0.4¢ 0.4f
0.2f 0.2
o o
—0.2} i ©-0.2
-0.4 y -0.4
0.6 2 0.6

-06 -04 -0.2 0 02 04 06

-06 -04 -0.2 0

Figure 2. Embedding (SNE, left) and clustering (Mbed, right) of USPS digits 2, 4 and 8. Digits are color-coded for better

visual impression.

Further, we cluster four datasets from Section 7.2 with
Mbed and with traditional k-means, ignoring the la-
bels. We give both methods the correct number of
classes, and train with 10 re-initializations. Table 1
shows the percentage of pairs of points with incon-
sistent attributed classes: points with identical label
assigned to different clusters, and vice-versa. Notice
that this measure is not trivially comparable with the
classical misclassification error used in Section 7.2.

For g50c, Mbed performs only slightly worse than k-
means, which implements the optimal model for this
data set. For glOn both algorithms are invalidated be-
cause the cluster assumption does not hold. TEXT is
very high-dimensional and non-trivial; here Mbed ben-
efits from performing dimensionality reduction. For

g50c glOn TEXT COIL
k-means | 9.02% 50.09% 18.78%  4.62%
Mbed 9.68% 50.09% 10.03%  5.90%

Table 1. Percentage of inconsistently labeled pairs of points
for Mbed and k-means in the purely unsupervised case.

COIL, the cluster assumption is strongly present which
k-means benefits from, and the embedding dimension-
ality, 20, is too high for Mbed to perform excellently.

7.2. Semi-Supervised

We extend the unsupervised example by introducing
50 labeled points Figure 3 shows the resulting embed-
ding (right), compared to the unsupervised one (left).
The number of misclassified points decreases. The bot-
tom of the figure shows a series of annealing steps.
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0.61

0.4r

2 2
2 2 22 22
2 e 2 222222 2? 22
28222 2 2 2
2 2 LIEY 227 5

22%,02 2
2% 2220, 22° 22

04 06

step 17

-0.6 -04 -02 0 02 04 06

-0.6 -04 -0.2 0 02 04 06

-0.6 -04 -0.2 0 02 04 06 -0.6 -04 -02 0 02 04 06

Figure 3. Clustering (right) and semi-supervised classification (left) of USPS digits 2, 4 and 8. In the clustering, step 20
was chosen by the margin criterion (20), in the classification it was step 9. Steps 1, 5, 13, and 17 of the semi-supervised
annealing are shown at the bottom. Labeled objects are emphasized by larger font size.

manifold TSVM LDS Mbed
g50c 17.30% 6.87% 5.62% 5.32%
g10n 30.64%  14.36% 9.72%  38.30%
TEXT 11.71% 7.44% 5.13% 5.90%
USPS 21.30%  26.46% 15.79% 30.57%
COIL 6.20%  26.26% 4.86%  40.44%

Table 2. Average test error of Mbed and three reference
methods on five data sets.

To evaluate Mbed thoroughly in semi-supervised ap-
plications, we adopt the benchmark used by Chapelle
and Zien (2005) (including the splits in labeled and
unlabeled points)3. Note the absence of free param-
eters in Mbed as specified in Algorithm 1: no cross-
validation is necessary and all training labels are used.
We perform 500 CG steps in total for each optimiza-
tion: sg = 10 are used for the initial SNE, the remain-
ing are distributed evenly over the annealing steps.

Table 2 lists the test errors achieved by Mbed, aver-
aged over the ten splits. For comparison, results re-
ported by Chapelle and Zien (2005) for three other
methods are also supplied: “manifold”, akin to the al-
gorithm proposed by Belkin and Niyogi (2004); Trans-
ductive Support Vector Machine (TSVM), optimized

3The data sets are available http://www.kyb.
tuebingen.mpg.de/bs/people/chapelle/1ds/.

as described by Joachims (1999); and Low Density
Separation (LDS) (Chapelle & Zien, 2005). Note that
the performances may be over-optimistic for “mani-
fold” and TSVM, since for these methods model selec-
tion was carried out by minimizing the test error.

While Mbed yields excellent performances on the gh0c
and TEXT data sets, the results for the other sets are
rather poor. We hypothesize two potential causes:

e For gl0n, the “cluster assumption” is not valid
since the class boundary cuts through the centers
of two clusters (Chapelle & Zien, 2005). However,
the unsupervised parts of our cost function act to
conserve the clustering (C) and drive the clusters
away from the class boundary (B, A).

e While the other data sets are binary, USPS and
COIL have 10 and 20 classes, respectively. Thus,
we need to embed into relatively high dimensional
spaces which makes the problem of local optima
severe, and optimization more difficult.

Further experiments have to be conducted to confirm
that the above explainations hold, and that the ob-
served behavior is not due to deficiencies of the cost
function itself.
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8. Discussion

We have proposed an alternative view on the problem
of relating data points to class boundaries: in contrast
to existing methods, the boundaries are fixed and the
data points are arranged relative to them. This ap-
proach assumes the presence of meaningful structure
in the data (“cluster assumption”).

Among the merits of this approach are that (i) weak
requirements are imposed on the input data (no met-
ric nor even positive definite kernel is required); (ii)
there is only one parameter, the number K of classes,
for unsupervised learning, and no parameter for semi-
supervised learning, where K is known; and (iii) a new
representation for the data is found, which can be use-
ful for further analysis.

There are also a few open problems with our method:

e )\ is determined heuristically, which makes the
class probabilities assigned to the objects mean-
ingless. Investigating the relation between A, the
margin, the radius of the SNE embedding, and
the misclassification rate may inspire a more prin-
cipled approach. The connection between entropy
and Bayesian inference may prove useful (Bishop,
1995). Ideally A should be learnt, and posterior
class probabilities be provided as output.

e The optimization is non-convex and thus difficult.
The annealing may help escaping undesirable lo-
cal minima, but probably better strategies could
be devised.

e As is the case for many other semi-supervised
learning methods, Mbed is too slow for large data
sets. However, Mbed may profit from work on effi-
cient optimization of the SNE cost function (Nam
et al., 2004).

e Mbed is transductive, i.e. it gives predictions only
for the unlabeled points used in training. Classi-
fying a new point ideally requires rerunning the
entire optimization, which is costly. Suboptimal
approaches may be investigated, like optimizing
only over the position of the new point.

However, the presented results indicate that the
method may already be useful for moderately sized
binary problems, especially when visualization is de-
sirable.

Acknowledgements Thanks to Matthias Hein for
discussion about the Jensen-Shannon divergence.
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