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Abstract

Graph-based methods for semi-supervised learn-
ing have recently been shown to be promising for
combining labeled and unlabeled data in classifi-
cation problems. However, inference for graph-
based methods often does not scale well to very
large data sets, since it requires inversion of a
large matrix or solution of a large linear program.
Moreover, such approaches are inherently trans-
ductive, giving predictions for only those points
in the unlabeled set, and not for an arbitrary test
point. In this paper a new approach is presented
that preserves the strengths of graph-based semi-
supervised learning while overcoming the lim-
itations of scalability and non-inductive infer-
ence, through a combination of generative mix-
ture models and discriminative regularization us-
ing the graph Laplacian. Experimental results
show that this approach preserves the accuracy of
purely graph-based transductive methods when
the data has “manifold structure,” and at the
same time achieves inductive learning with sig-
nificantly reduced computational cost.

paradigm include the work of Blum and Chawla (2001);
Zhu et al. (2003); Zhou et al. (2004); Belkin et al. (2004a).

Many graph-based methods are inheretidysductivein
nature: a graph is formed with vertices representing the la-
beled and unlabeled data, and a graph algorithm is used
to somehow separate the nodes according to the predicted
class labels. However, when a new data point is presented,
it is unclear how to make a prediction—other than to re-
build the graph with the new test point and rerun the graph
algorithm from scratch. Since this may involve solving

a large linear program or inverting a huge matrix, these
procedures have limited generalization ability. Yet semi-
supervised methods should be most attractive when the un-
labeled data set is extremely large, and thus scalability be
comes a central issue. In this paper we address the prob-
lems of scalability and non-inductive inference by combin-
ing parametric mixture models with graph-based methods.
Our approach is related to, but different from, the recent
work of Delalleau et al. (2005) and Belkin et al. (2004b).

The mixture model has long been recognized as a natural
approach to modeling unannotated data; indeed, some of
the earliest studies of the semi-supervised learning prob-
lem investigated the statistical or learning-theoretii- ef
ciency of estimating mixture models through a combina-
tion of labeled and unlabeled data (Castelli & Cover, 1996;

1. Introduction Ratsaby & Venkatesh, 1995). As a generative model, a

The availability of large data collections, with only lirai mixture is naturally inductive, and 'typically has a relgtjx/
human annotation, has turned the attention of a growin&rnall number of _parameter_s. Various applied st_ud|es sug-
community of machine learning researchers to the problerg€Sted that multinomial mixtures can be effective at us-
of semi-supervised learning. The broad research agend39 unlabeled data for classifying text documents (Nigam
of semi-supervised learning is to develop methods that cafit @l 2000), where the learning is typically carried out
leverage a large amount of unlabeled data to build mor&!Sing the EM algorithm to estimate the MAP model over
accurate classification algorithms than can be achieved ufhe unlabeled se'_[. However, the anecdotal evidence is that
ing purely supervised learning. An attractive new family of Many more studies were not published because they ob-
semi-supervised methods is based on the use of a grapﬁfi'”ed negativeresults, showing that learning a mixture

cal representation of the unlabeled data—examples of thif1odel will often degrade the performance of a model fit
using only the labeled data; one published study with these

Appearing inProceedings of the€2™ International Conference conclusions is (Cozman et al., 2003). One of the reasons
on Machine LearningBonn, Germany, 2005. Copyright 2005 by for this phenomenon is that the data may have a “manifold
the author(s)/owner(s). structure” that is incompatible with the generative migtur
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model; thus EM may have difficulty in making thabels featurest ~ G(n,,) are generated (conditionally indepen-
follow the manifold. An illustrative example is given in the dently) givenm. Note thatp(y | m) can take ‘soft’ values

left plot of Figure 1. The desired behavior is shown in thebetween 0 and 1, enabling classes to share a mixture com-
right plot, which is achieved using tHearmonic mixture ponent. In unlabeled data, both the mixing component
model presented in this paper. and class labej is latent for each example. The param-
eters of the mixture model ate = {(v,,, Am,nm)}M

m=1"

Mixture models and graph-based semi-supervised Iearninghe EM algorithm is the standard procedure for estimat-

methods make different assumptions about the relation be- S . .
) ing the parameters to maximize the incomplete likelihood
tween the data and the labels—but these assumptions ar -
0) =I1; >0, P(@i|1m) p(y | Am) Yim. Combining the

not mutually exclusive. It |s'p055|ble that the data f.'ts theIabeled and unlabeled data together, the log likelihood is
component model (a Gaussian, for exampdeglly, while

the manifold structure appeagobally. The present work 00) — o o Ao D2 | 1) +
attempts to combine the strengths of both approaches. We (6) ; gzm:w v P 7hm)

show how the mixture model can be combined with the

graph to yield a much smaller “backbone graph” with nodes Z log Z Y P (23 | 1hm) @)

induced from the mixture components. The number of mix- v

ture components controls the size of the backbone grap
leading to computationally efficient algorithms. The har-
monic mixture is a special case of our general frameworkGraph-based semi-supervised learning methods are based
where a harmonic function (Zhu et al., 2003) is inducedon the principle that the label probability should vary
over the backbone graph to specify the class membershismoothly over the data graph. The graph hasodes,

of the mixture model. Since the mixture model is genera-with two nodes connected by a (weighted) edge if they are
tive it handles new points, while the graph allows the labelsdeemed similar according to some similarity function, cho-
to follow the data manifold. Importantly, our procedure for sen by prior knowledge. The graph is thus represented by
combining the mixture model with the backbone graph in-then x n symmetric weight matri¥y’; the combinatorial
volves a convex optimization problem. Laplacian isA = D — W, where the diagonal degree ma-
trix satisfiesD;; = Y ; Wij-

@.2. L abel smoothnesson the data graph

After a brief overview of mixture models and previous
work on graph-based semi-supervised learning in Sectabel smoothness can be expressed in different ways. We
tion 2, we detail our combined approach in Section 3.adopt theenergyused in semi-supervised learning by Zhu
Experimental results for synthetic data, handwritten dig-et al. (2003), given by

its recognition, image analysis and text categorizatian ar "
given in Section 4. The paper concludes with a discussion £ _ 1 wii (fi— )2 = FTA 2
and summary of the results. () 2 1'32231 gl =F4AF @)
where f is the label posterior vector of a mixture model,
defined as

Let (>-<L,y.L.) = {(z1, yl-) e (frl,yl)} be the IZ:llbeled- data. 5(yi,1) i€L

For simplicity we consider binary classification, wighe fi = { p(yi=1|2:,0) i€U

{-1,1}. Letxy = {z+1...x,} be the unlabeled data,

andu = n — I. The lettersL andU will be used to repre- That is, f; is the probability that point has labely = 1
sent the labeled and unlabeled data, respectively. In semiinder the mixture model; since this is a function of the
supervised learning the goal is to learn a classifier fronparameters of the mixture, we will write it also 8$9).

2. Background and Notation

both (x.,y) andxy . The energy is small whefivaries smoothly over the graph.
Zhu et al. (2003) proposed the use of the harmonic solution
2.1. Mixture models Af = 0 subject to the constraints specified by the labeled

data. SinceA is the combinatorial Laplacian, this implies
In the standard view of a mixture model for classification, that fori € U, f; is the average of the values pfat neigh-
the generative process is to sample~ Mult(\,) from  poring nodes (thé@armonicproperty), which is consistent
a multinomial depending on the clagsand to then sam-  wjth the smoothness assumption. Alternative measures of
ple 2 ~ G(nm) for some generative modéf. We will  smoothness are based on the normalized Laplacian (Zhou
work with a diﬁerent, but equivalent view where a mixture etal., 2004) or Spectra| transforms (Zhu etal., 2005), and

componentn ~ Mult(v) is first sampled from a multino-  work similarly in the framework below.
mial modely over M outcomes, wher@/ is the number of

mixture components. Then, the labek Mult(),,) and Note that by extending the notion of a weighted graph to

allow self-transitions and possibly negative edge weights
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any symmetric matrix with zero row sums can be consid-EM estimation. The second advantage is that, as we will
ered to be a graph Laplacian. We will make use of thisshow below O, (v, A, ) is aconvexfunction of \.
notion of a generalized Laplacian in the following section.

3.1. Convexity of O,

3. Combin?ng M ixture Modelsand Graph O, involves((#) and£(H). First let us considef(6). In
Regularization (1) the sum ovei € U is constant w.r.tA. The sum over
Our goal is to combine the mixture model and graph—baseé € L can be written as
learning algorithms. Intuitively, to enforce the smootssie M
assumption encoded in the weight matfix we mightreg- ~ €.(6) = Y 1og > Y Amp(@i|nm) +
ularize the mixture model by the energy of the posterior i€l,y;=1  m=1
with respect to the graph. This leads naturally to minimiza- M
tion of the objective function o oD (1= ) p(@i | 1m)
€L, y;i=—1 m=1
Oa() = —al(0) + (1 — ) £(0) (3)

Since we fixy andn, the term within the first sum has the
This objective function makes explicit the tension betweerformlog " a, A, It can be directly verified that its Hes-
maximizing the data likelihood and minimizing the graph sian is negative-definite:
energy. The most direct way of proceeding is to estimate .
parameter$ = (v, \, ) to minimize the objective),, () {‘(ﬂogzmam)‘m} _ —aa <0
wherea € [0,1] is a coefficient that controls the relative OXiON; (m amAm)?

strength of the two terms. A similar calculation shows that the Hessian for the second
Note that while the energ§(f) may appear to be the log- term is negative-definite as well. Thég(¢) is concave in
arithm of a priorp(f) oc exp(—f " Af), itin factinvolves A, and—a/(0) is convex.

the observed labelg;,, sincef is fixed on the labeled data.
Thus, it is perhaps best thought of as a discriminative com
ponent of the objective function, whil&é) is the genera-
tive component. In other words, optimizir@, will carry
out a combination of discriminative and generative learn
ing. This is closely related to, but different from, the dnap
regularization framework of Belkin et al. (2004b).

Next let us conside€ (). Define au x M responsibility
matrix R by R;,,, = p(m | z;), depending ory andn, with
R, denoting then-th column. We can writef;; = R .
We partitionA into labeled and unlabeled parts, with;
‘being the submatrix on unlabeled points; ;, on labeled
points and so on. The graph energy is written as

Unfortunately, learning all of the parameters together is€0) = fTAf
difficult—since the energy¢ () is discriminative, EM = fiALLf,+2fAofu+ FiAvufu
training is computationally demanding as the M-step does = frApofr+2fLALuRA+ ATRTAyy RA

not have a closed-form solution; moreover, it has the usual
drawback of local minima. We propose instead the follow-Since Ay = 0, the HessiarRR™ Ayy R = 0 is positive
ing two-step approach. semi-definite il\. Thus(1—a)&(#) is convex in\. Putting

] S o it together,0,, is convex in\.
Generative/Graph-Discriminative Training

) o 3.2. Special case: a =0
Select the number of mixture componenfs and initialize

the parameter8 = (v, \, 7). The graph-discriminative training in step 2 has a very spe-
cial structure, which we now explain. We first consider the
1. Train the mixture model USing the Objective function Specia| case = 0 and then the genera| cases [0’ 1]
01(0) = —£(0) with standard EM. ) )
The casee = 0 has a particularly simple closed form
2. Fix~ andn, and reestimate the multinomialto min-  solution and interpretation. Notice that although= 0,

imize O, (). the solution depends on the incomplete log-likelihd(i)
through the choice of andn learned in step 1.
Figure 2.Training combining/(¢) and£ (6). The parameters are constrained withifo, 1]. However

_ S S ~ firstlet us consideh that minimize£ in the unconstrained
Clearly this algorithm is suboptimal in terms of optimizing problem. The solution to the linear system
the objective function. However it has two important ad-

vantages. One advantage is that the first step is standard ViE = RT(QAyuRAN+2Aurf)=0 (4
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Figure 1.Predictions of Gaussian mixture models learned with the standard EM algatimot follow the manifold structure. Small
dots are unlabeled data. Two labeled points, marked with a wh@ed a black box, are at roughly the ends of the spirals. Each plot
shows a Gaussian mixture model with = 36 components, with the ellipses showing contours of the covariance matfficesentral
dots have sizes proportional to the component wejidht) = ~,, (tiny components are not plotted), and its brightness indicates the
strength of class membership, given by, = p(y = 1| m): white denotes\,, = 1, black denotes\,, = 0, and intermediate gray
denotes values in between. Although the dengity) is estimated well by the standard mixture fit using EM (leftdoes not follow

the data manifold. The right plot shows the harmonic mixture, wheserefit to be harmonic on the backbone graph.

is given by the boundary solving the associated constrained optimiza-

N 1 tion problem. Solving the system (4) will be much less
N =—(RTAuvR) " R"Avrfy, ®) computationally expensive than the< v matrix inversion

Note that, in general, the constrairits< ),, < 1 must required by harmonic solution, when the number of mix-

also be explicitly enforced. If the above solution lies ie th ture componentsl/ is much smaller than the number of

interior of the hypercubg0, 1] then it must also be the unlabeled points. This reduction is possible because the

solution of the constrained problenin this case, (5) de- f are now obtained by marginalizing the mixture model.

termines the class membership probabilities for each mix-

ture component — the soft label for the unlabeled data i3.3. Graphical interpretation

given by f;; = RA. Previously unseen test points can be

classified similarly. The procedure just described can be interpreted graphicall

in terms of a much smalldsackbone graplwith supern-
Compare the solution (5), which we will refer to as tie@-  odesinduced by the mixture components. The backbone
monic mixture with the completely graph-based harmonic graph has the sanidabeled nodes as in the original graph,
function solution (Zhu et al., 2003): but only M unlabeled supernodes.

harmonic: fu= —A[}%JAULfL By rearranging terms it is not hard to show that in the back-
h ; _ bone graph, the generalized Laplacian is
mixture: fu=—R(R"AyyR) " R™AyLf,
.
Computationally, obtaining the harmonic mixture requires A - (I 0) (ALL ALU) (I 0) ©6)
the inversion of a/ x M matrix, or if the solution lies on 0 R Avr Ayu)\0 R

_More generally, the Karush-Kuhn-Tucker optimality condi- Nte that A has zero row sums. The harmonic mixture
tions imply that the harmonic mixture can be expressed’as- . . . .
parameten is then a harmonic function on the generalized

—(R"AvuR) " (R"Aurf + u), wherey is a vector of La- : o o .
grange multipliers. Geometrically, this can be viewed as the solu!‘aplac'an' The harmonic mixture algorithm is summarized

tion of an inhomogeneous Dirichlet boundary value problem forin Figure 3.
a generalized Laplacian. Computationally if somg are out of S
bounds, we clip them as the starting point for constrained conve>'<Derhaps the k?est Intuition for- the backbone graph f:omes
optimization, which converges quickly. Pseudo inverse is used iffom considering hard clustering. In this caBg, = 1 if
R is rank deficient. m is the cluster to which point belongs, andR;,,, = 0
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Harmonic Mixture Trainingox = 0 4. Experiments

Select the number of mixture componenfs initialize the ~ We test harmonic mixtures on synthetic data, handwrit-

parameter§ = (v, \,7), and form the graph Laplaciah. ten digits, image analysis and text categorization tasks.
The emphases are on how the harmonic mixtures (denoted

1. Run standard EM to obtain A, andn. ‘HM’ below) perform against several baseline methods on
unlabeled data; how they handle unseen data; and whether
they can reduce the problem size. Unless otherwise noted,
3. Fixing~ andn, compute the harmonic mixtures are computed with= 0.

2. Form the generalized Laplacié‘h from (6).

We use three baseline methods: sampling unlabeled data
to create a smaller graph (‘sample’), mixture models con-
structed with the standard EM algorithm (‘EM’), and har-

A= arg mlrb\ )\TAUU)\ + QATAULfL

Output: Harmonic mixture modél = (v, A*,7) monic functions on the original large graphs (‘graph’). In
_ o ) ‘sample’, we randomly draw) unlabeled points from
Figure 3.The harmonic mixture algorithnay = 0 U. We create a small (sizé+ M) graph with these

and the labeled points, and compute the harmonic func-
tion f; on the small graph first. The graph computa-
In this case the supernodes are the clusters themselves. LN €Ot is thus the same as *HM'. Then as in (Delalleau
w;; be the weight between nodes in the original graph. €t @l 299?2 we Complﬂ?wthe labels for other pointsy
The equivalent weight between supernodeg) reduces fi = oz wig £/ (221 wij)-

to Wst = > icc(s), jecr Wiss @and the equivalent weight _

between a supernodeand a labeled nodge Lisw,; = 4.1 Synthetic Data

Dice(s) Wij- Inthis case the solution (5) is also guaranteedr; g ot ys look at the synthetic dataset in Figure 1. It has a
to satisfy the constraints. One can create such a backborg, ss roll structure, and we hope the labels can follow the

otherwise. Lete(m) = {i| R;» = 1} denote clustefn.

graph using, for instancé;means clustering. spiral arms. There is one positive and one negative labeled
point, at roughly the opposite ends. We use= 766 un-
3.4. General case: o > 0 labeled points and an additional 384 points as unseen test

In the general case of > 0 step 2 does not have a closed- data.

form solution. As\,, must lie in the interval0, 1], we  The mixture model and standard EM. To illustrate the
perform constrained convex optimization in this case. Thedea, consider a Gaussian mixture model (GMM) with
gradient of the objective function is easily computed. Notep; — 36 components, each with full covariance. The left
that panel shows the converged GMM after running EM. The
GMM models the manifold densify(x) well. However the

8€ 0 m i m i i
% - Z M’Y Pz | ) - component class membership, = p(y = 1|m) (bright-
m iel, gimt 2ok=1 Ve P(Ti | 1K) Ak ness of the central dots) does not follow the manifold. In
Yo 2 (23 | m) fact \ takes the extreme values of 0 or 1 along a somewhat

>

M linear boundary instead of following the spiral arms, which
i€L,y;=—1 Zk:1 Ve P (2 | 77k) (1= Ax) y 9 P

is undesirable. The classification of data points will not

and 9&/0X was given in (4). One can also use sigmoid follow the manifold either.

function to transform it into an unconstrained optimizatio Thegraph and harmonic mixtures. Next we combine the
problem with\,, = o(8,) = 1/ (exp(—0m)+ 1) and  mixture model with a graph to compute the harmonic mix-
optimize thes parameters. tures, as in the special case= 0. We construct a fully
connected graph on the U U data points with weighted
edgesw;; = exp (—||z; — z;][>/0.01). The weight pa-
rameters in all experiments are selected with 5-fold cross
validation. We then reestimate which are shown in the
right panel of Figure 1. Nota now follow the manifold as

it changes from 0 (black) to approximately 0.5 (gray) and
finally 1 (white). This is the desired behavior.

Although the objective function is convex, a good starting
point for X is important for fast convergence. We select an
initial value for A by solving a one dimensional problem
first. We have two parameters at hand:y, the solution
from the standard EM algorithm in step 1, akgdv, the
harmonic mixture solution from the special case= 0.

We find the optimal interpolated coefficient [0, 1] A\g =

e Aem + (1 — €) Aum that minimizes the objective function. The particular graph-based method we use needs extra care.
Then, we start from\, and use a quasi-Newton algorithm The harmonic function solutioifi is known to sometimes

to find the global optimum foh.
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skew toward 0 or 1. This problem is easily corrected if wealgorithm before running EM.
know or have an estimate of the proportion of positive andT

negative points, with the Class Mass Normalization heuris- h.e graph. We use a symm_etrlzed 10 neqres_t ngghbor

. ) . .~ weighted graph on the 1600 images. That is, images

tic (Zhu et al., 2003). In this paper we use a similar but sim- s ;
o : .are connected if is within j's 10NN or vice versa, as

pler heuristic. Assuming the two classes are about equal in

: : . . measured by Euclidean distance. The weightsugre=
size, we simply set the decision boundaryratdian(f). exp (*Hl’vz B xjHQ/MOQ).

Sensitivity to M. As illustrated in the synthetic data,

is too small, the GMM is unable to modg(x) well, let .
o . ... the number of mixture componenid needs to be large
aloneA. In other words, the harmonic mixture is sensitive o
enough for harmonic mixture to work. We vaiy and

to M. M has to be larger than a certain threshold so that the e .
. Observe the classification accuracies on the unlabeled data
manifold structure can appear. In faef may need to be

. 2 with different methods. For each/ we perform 20 trials
larger than the number of labeled poihts/hich is unusual . . e
. - . . . with randomL/U split, and plot the mean of classification
in traditional mixture model methods for semi-supervised

learning. But oncé/ is over the threshold, further increase accuracies o/ in Figure 4(top center). The experiments

should not dramatically change the solution. In the end"<'€ performed with labeled set size fixed at 10. We

o . . _“conclude that ‘HM’ needs only/ ~ 150 components to
the harmonic mixture may approach the harmonic function . e an

. match the performance of ‘graph’. ‘HM’ outperforms both
solution whenM = w.

‘sample’ and ‘EM’.

Sensitivity to M. If the number of mixture componenid

Figure 4(top left) shows the classification accuracieg/on

we changé/. ‘graph’ is the ideal performance. Wi : . L -
as we c‘a Qév grapf s the ideal perfo ance. e tation, we invert a 50 x 150 matrix instead of the original
find that ‘HM’ threshold is around/ = 35, at which point . . : o
. - .. 1590 x 1590 matrix for harmonic function. This is good
the accuracy jumps up and stabilizes thereafter. This is the

number of mixture components needed for ‘HM’ to capturesavIng with little sacrifice in accuracy.

the manifold structure. ‘sample’ needs far more sample$iandling unseen data. On 600 unseen data points (Figure
(M > 400, not shown) to reach5% accuracy. ‘EM’ fails 4 bottom center), ‘HM’ is better than ‘sample’ and ‘EM’
to make the labels to follow the manifold structure regard-too.

less of the number of mixtures.

Computational savings. In terms of graph method compu-

The general case o > 0. We also vary the parameter
Computational savings. ‘HM’ performs almost as good between 0 and 1, which balances the generative and dis-
as ‘graph’ but with a much smaller problem size. As Fig- criminative objectives. In our experimenis= 0 always

ure 4(left) shows we only need to inverBa x 35 matrix,  gives the best accuracies.

instead of &66 x 766 one as required by ‘graph’. The dif-

ference can be significant if is even larger. There is of 4.3. Teapots|mage Analysis

course the overhead of EM training.
J We perform binary classification on the Teapots dataset,

Handling unseen data. Because ‘HM' is a mixture model, which was previously used for dimensionality reduction.
it naturally handles unseen points. On 384 new test pointSee (Weinberger et al., 2004) for details. The dataset con-
‘HM’ performs well, with accuracy 95.3% aftel/ > 35as  sjsts of a series of teapot photos, each rotated by a small
shown in Figure 4(bottom left). Note ‘graph’ cannot handle angles. Our task is to identify whether the spout points

unseen data and is therefore not shown in the plot. to the left or the right. Excluding the few images from the
original dataset in which the spout is roughly in the middle,
4.2. Handwritten Digits Recognition we arrive at 365 images. We process each image by con-

We use the ‘1vs2’ dataset which contains handwritten dig_yertlng itto gray scale and down-sizing it1d x 16. Each

its of 1s and 2s. Each gray scale image i 8, which image is thus represented by a 192-dimensional vector of

: ; . . pixel values. Nonetheless we believe the dataset resides on
is represented by a 64 dimensional vector of pixel values;

We usel + 1 — 1600 images as the labeled and unlabeleda n_1uch lower dimensional manifold, since image pairs in
g . which the teapot rotates by a small angle are close to each
set, and 600 additional images as unseen new data to tes ) :
. . ther. Therefore we expect graph-based semi-supervised
induction. The total numbers of 1s and 2s are the same. ;
learning methods to perform well on the dataset. We use
Themixturemodel. We use Gaussian mixture models. To 273 images ad. U U, and the remainin§2 as unseen test
avoid data sparseness problem, we model each Gaussidata.
component W'.th a spherical covariance, 1.e. d!agonql 9T he mixture model. We again use Gaussian mixture mod-
variance matrix with the same variance in all dimensions. . ) . O
: X . ?Is with spherical covariances. We initialize the models
Different components may have different variances. We se

the initial means and variances of the GMM with k-meansWlth k-means before running EM.
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synthetic data lvs. 2 teapots

095

Accuracy on U

Accuracy on U
Accuracy on U

07|

100
M

095

Accuracy on unseen
Accuracy on unseen
Accuracy on unseen

100
M

Accuracies on unseen test data (induction)

Figure 4.Sensitivity toM in the synthetic data (left), 1 vs. 2 (center) and teapots (right). Showtharmdassification accuracies éh
(top row) and unseen new data (bottom row)\dshanges. ‘graph’ is the harmonic function on the completeU graph; ‘HM’ is the
harmonic mixture, ‘sample’ is the smaller graph with sampled unlabeledaladdEM’ is the standard EM algorithm. Noteaxes are
not on the same scale.

The graph. We use a symmetrized 10NN weighted torsu, v. With [ = 10, ‘graph’ accuracy is around 90%. We
graph on the 273 images, with weights;; = use multinomial mixture models on documents. However
exp (=l — x;]|?/100%). unlike other tasks, ‘HM'’ suffers from a loss of transductive
accuracy, and only reaches 83% accuracy/and unseen
data. It does so with an undesirably larye around 600.
Furthermore ‘HM’ and ‘sample’ perform about the same
(though both are better than ‘EM’).

Sensitivity to M. The classification accuracies éhwith
different number of component® is shown in Figure 4
(top right). Each curve is the average of 20 trialsis
fixed at (merely) 2. With\/ > 15 components, ‘HM’ ap-
proaches the ‘graph’ performance. ‘sample’ and ‘EM’ areWhy does ‘HM’ perform well on other tasks but not on text
clearly worse. categorization? We think the reasons are: 1) The mani-
fold assumption needs to hold strongly. For instance in the
synthetic and the Teapots data the manifolds are evident,
and ‘HM’ achieved close approximations to ‘graph’. The
text data seems to have a weaker manifold structure. 2)
Handling unseen data. ‘HM’ performs similarly onthe 92  On top of that, the text data has a very high dimensionality
unseen images (Figure 4 bottom right), achieving high ac{D = 12008). The curse of dimensionality may prevent a
curacy with smalllM/, and outperforms ‘sample’ and ‘EM’. generative mixture model from fitting the manifold well. In

addition the multinomial model may not be appropriate for
4.4. Text Categorization: A Discussion creating localized supernodes.

We also perform text categorization on the PC vs. Madnterestingly we do not have to use generative models. If
groups from the 20-newsgroups data. Of the 1943 docuwe work witha = 0, all we need from the mixture model is
ments, we use 1600 &)U and the rest as unseen test data.the responsibility?. One can instead first use simple pro-
We use a symmetrized 10NN weighted graph on the 16080type methods like k-means to cluster the data, and then
documents with weighiv,, = exp (—(1 — ¢yy)/0.03), train discriminative models to obtaiR. This remains a

wherec,, is the cosine between th¢.idf document vec- future research direction.

Computational savings. The graph computation for ‘HM’
inverts al5 x 15 matrix, which is much cheaper thal x
271 for ‘graph’.
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5. Related Work an unknown mixing parametedlEEE Transactions on

Information Theory42, 2101-2117.
Recently Delalleau et al. (2005) used a small subset of the

unlabeled data to create a small graph for semi-supervisedozman, F., Cohen, I., & Cirelo, M. (2003). Semi-
learning. This is related to the Ny&tn method in spec- supervised learning of mixture modelkCML-03, 20th
tral clustering (Fowlkes et al., 2004), and to the random International Conference on Machine Learning
‘landmarks’ in dimensionality reduction (Weinberger et al ) o
2005). Our method is different in that it incorporates a gen-C€lalleau, O., Bengio, Y., & Roux, N. L. (2005). Efficient
erative mixture model, which is a second knowledge source NOn-parametric function induction in semi-supervised
besides the original graph. Our method outperforms ran- '€aming. Proceedings of the Tenth International Work-
dom subset selection, and can be viewed as a principled shop on Artificial Intelligence and Statistics (AISTAT

way to carry out the elaborate subset selection heuristics i 2005)

(Delalleau et al., 2005). Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004).
In terms of handling unseen data, our approach is closely Spectral grouping using the Nysm method. IEEE
related to the regularization framework of Belkin et al. Transactions on Pattern Analysis and Machine Intelli-
(2004b); Krishnapuram et al. (2005) as graph regulariza- gence 26, 214-225.

tion on mixture models. But instead of a regularization
term we used a discriminative term, which allows for the
closed form solution in the special case.

Krishnapuram, B., Williams, D., Xue, Y., Hartemink, A.,
Carin, L., & Figueiredo, M. (2005). On semi-supervised
classification. In L. K. Saul, Y. Weiss and L. Bottou
(Eds.),Advances in neural information processing sys-

6. Summary tems 17 Cambridge, MA: MIT Press.

To summarize, our proposed harmonic mixture methoq\”gam, K., McCallum, A. K., Thrun, S., & Mitchell, T.
reduces the graph problem size, and handles unseen tes{2000). Text classification from labeled and unlabeled

points. It achieves comparable accuracy as the harmonic gocuments using EMMachine Learning39, 103—134.
function on complete graph for semi-supervised learning.
Ratsaby, J., & Venkatesh, S. (1995). Learning from a mix-

ture of labeled and unlabeled examples with parametric
side informationProceedings of the Eighth Annual Con-
ference on Computational Learning Thepfjt2—417.

There are some open questions. One is when 0 would

be useful in practice. Another is whether we can use fast
prototype methods instead of EM. Finally, we want to au-

tomatically select the appropriate number of mixture com-

ponentsiM . Weinberger, K. Q., Packer, B. D., & Saul, L. K. (2005).
Nonlinear dimensionality reduction by semidefinite pro-
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